

Abstract—Ubiquitous computing in being actively researched

and one of the main technology in ubiquitous computing

environments is recognized as RFID system. The RFID system

has much benefits but simultaneously has some problems such as

user's privacy violation. In this paper, in order to improve the

survivability of its nodes, it should build available simulation

surrounding sensor nodes. Also, In the proposed cryptosystems

we use a new hash function for user authentication and a stream

cipher based on LFSR(Linear Feedback Shift Register) for

message encryption and decryption. Moreover, each algorithm

is programmed with C language and simulated on IBM-PC

system and we analyze the randomness properties of the

proposed algorithms by using statistical tests.

Index Terms—Tactical network environment, hash lock

approach, hash function, sensor network.

I. INTRODUCTION

RFID, its application, standardisation, and innovation are

constantly changing. Its adoption is still relatively new and

hence there are many features of the technology that are not

well understood by the general populace. Developments in

RFID technology continue to yield larger memory capacities,

wider reading ranges, and faster processing. It’s highly

unlikely that the technology will ultimately replace bar code -

even with the inevitable reduction in raw materials coupled

with economies of scale, the integrated circuit in an RF tag

will never be as cost-effective as a bar code label. However,

RFID will continue to grow in its established niches where bar

code or other optical technologies aren’t effective. If some

standards commonality is achieved, whereby RFID

equipment from different manufacturers can be used

interchangeably, the market will very likely grow

exponentially [1], [2].

A more complex proposal is the “Hash Lock” approach

counteracting unauthorized reads: A tag does not reveal its

information unless the reader has sent the right key being the

preimage to the hash value sent by the tag. The scheme

requires implementing cryptographic hash functions on the

tag and managing keys on the backend. This is regarded as

economic for the near future. Unfortunately, the scheme

offers data privacy but no location privacy since the tag can be

uniquely identified by its hash value. Another drawback is

that the key is sent in plain text over the forward channel

which can be eavesdropped easily from a large distance. The

extended scheme called “Randomized Hash Lock” ensures

Manuscript received April 9, 2015; revised June 26, 2015.

Jin-suk Kang is with Jangwee Research Institute for National Defence,

Ajou University, San 5, Woncheon-dong, Yeongtong-gu, Suwon 443-749,

Republic of Korea (e-mail: jskang01@ajou.ac.kr).

location privacy but is not scalable for a huge number of tags

since many hash-operations must be performed at the

back-end and it additionally relies on the implementation of a

random number generator in the tags to randomize tag

responses. Such devices need sources for physical

randomness so that the implementation is rather complex and

expensive [3], [4].

II. THE HASH-LOCK APPROACH

The Hash-Lock approach proposed by Weis et al. [5]. uses

the concept of locking and unlocking the tag to allow access.

The security of the Hash-Lock approach uses the principle

based on the difficulty of inverting a one-way hash function.

The scheme makes use of a back-end database to provide

correct reader to tag identification and the concept of meta-ID

stored in each tag. To lock the tag the reader sends a hash of a

random key, as the meta-ID, to the tag. i.e.

meta-ID<-hash(key). The reader then stores the meta-ID and

key in the back end database. While locked, the tag only

responds with the meta-ID when queried. As shown in Fig. 1,

to unlock the tag, the reader will query the tag for the meta-ID.

The reader will then use the meta-ID to lookup a key and ID

for the tag in the database. If the meta-ID is found, the reader

then sends the key to the tag in an attempt to unlock the tag.

The tag hashes the key and compares the results against the

meta-ID stored in the tag.

Fig. 1. Hash-locking: Reader unlock protocol.

A. Hash Function Algorithm

The Cryptographic hash functions are playing very

important roles in modern cryptology such as checking the

integrity of information or increasing efficiency of

authentication code and digital signature. While compared

with general hash functions used in non cryptographic

computer applications, although both cases are functions from

domain to range, they're different from each other in several

important aspects. Also, the hash function outputs the value

called has value or has code of fixed length by the input of

messages having random length. In more strict words, the

hash function h corresponds text alignment of random length

as n bit text alignment having fixed length.

When domain is called D and range is called R, the function

Independent Authentication Protocol in Tactical Network

Environment Using Hash Lock Approach

Jin-suk Kang

Database

Reader

Tag

(key, ID)

metaID metaID

Query

ID

key

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

374DOI: 10.7763/IJMLC.2015.V5.536

d)(: RDRDh is a many-to-one corresponding

function. Accordingly, the collision exists for the has function

in general. For example, assuming function h as the one

having input value of t bit and output value of n bit, the

number of input values while h has randomness corresponds

to each output value. Accordingly, two input values selected

at random with probability 2
n

 gets to have same output

value regardless of the t value.

The handling process of most has functions is the repetitive

one hashing the input of random length by divided processing

of successive fixed blocks. First, the input X becomes padded

to become a multiple of block length and divided from X1 to t

number of blocks as Xt. The hash function h is described as

follows.

0

1(,),

1 ,

()

i i i

t

H IV

H f H X

i t

h X H

 (1)

Here, f is the compress function), Hi is the chaining variable

between 1i and i , while IV is the initial value. The general

structure of repetitive has function using compressed function

is like the Fig. 2.

Fig. 2. Structure of the hash-function with recurrent.

The calculation of hash value is dependent on the chain

variable. While starting the hash calculation, this chain

variable gets to have the fixed initial value expressed as the

part of algorithm. The compressed function renews this chain

variable by getting the message block as input until it becomes

hashed. The processes get repeated in cycles for all message

blocks and the last value gets output as hash value on the same

message [2]. The hash function gets classified into 3 types

depending on which structure is used as internal compressed

function.

1) Hash-Functions based Block Cipher

2) Hash-Functions based Modular Calculation

3) The other Hash-Functions

The exclusive hash function has fast processing speed and

they're the functions specially designed for hashing regardless

of other system sub factors. The exclusive has function

proposed until now has the structure based on MD4 [6]

designed by Rivest in 1990. There are MD5 [3], SHA-1 [7],

RIPEMD-160 [8] and HAVAL [9] for hash functions of MD

series being widely used at this time.

When a specific hash function is assigned, although it is

ideal to verify the lowest limit on complications attacking the

hash function for the establishment of safe hash functions,

such method isn't known for the most part in reality and the

applicable known complication of the attack becomes

considered as the security of hash function for the most part. If

hash value is assumed as uniform probability variable. The

following are well-known facts.

 For the n bit hash function h , the guessing attack to

discover preimage and second preimage with n2

operation.

 For the attacker that is able to select messages, the

birthday attack is able to discover the collision message

pair M , M with about 2/2n operation.

If n bit hash function satisfies the following two

characteristics, it gets to have an ideal security. Once the hash

value is given, the discovery of preimage and second

preimage require n2 operation.

B. Suggestion of Algorithm

The exclusive hash function proposed in this thesis has

been designed at 32 bit process using addition, subtraction,

multiplication and exclusive logical sum operations that are

basic operations of the CPU. Although Boolean function has

been used in order to raise nonlinearity in case of MD series

exclusive hash functions, the 1x operation was used in this

thesis. Although the operation of getting inverse elements

generally takes long time, the operation was performed in

advance to form a reference table because it is an inverse

element at)2(2GF . All operations are accomplished as 32bit

module and six 32bit registers a, b, c, d, e and f get the final

hash value as chain variables. These registers become

initialized as
0h value and its value is as follows.

a = 0x01234567; b = 0xefcdab89; c = 0x98badcef;

d = 0x10325476; e = 0xc3d2e1f0; f = 0x5a3cf01d;

The 256 bit message blocks are divided into 32 bit module

and
ih is renewed as

1ih due to the operation being used and

connected as initial value of {x0, x1, x2 …… x7} registers,

key scheduling is performed in between and the current value

1ih of registers a, b, c, d, e and f are finally made at the

feedforward stage. The expression method of C programming

language has been used for the formulae to express algorithm.

1) The Structure of Algorithm

save_abcdef

pass(a, b, c, d, e, f, 3)

key_schedule

pass(a, b, c, d, e, f, 5)

key_schedule

pass(a, b, c, d, e, f, 7)

feedforward

a) Feedforward is save_abcdef: save initial value
ih

aa = a; bb = b; cc = c; dd = d; ee = e; ff = f;

b) Construct a pass(a, b, c, d, e, f, mul) is,

round (a, b, c, d, e, f, x0, mul);

round (b, c, d, e, f, a, x1, mul);

round (c, d, e, f, a, b, x2, mul);

round (d, e, f, a, b, c, x3, mul);

round (e, f, a, b, c, d, x4, mul);

round (f, a, b, c, d, e, x5, mul);

Message Block 1 X1 Message Block 2 X2 Message Block 1 X1 Padding

Compression

Function

Compression

Function

Compression

Function

Hash Value Initial Value

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

375

round (a, b, c, d, e, f, x6, mul);

round (f, b, d, a, c, e, x7, mul);

Here, construct a round (a, b, c, d, e, f, X, mul) is,

f ^= X; a -= Gen_32(f, f, f, f);

f ^= a; b += Gen_32(f, f, f, f);

b *= mul;

f ^= b; c += Gen_32(f, f, f, f);

c *= mul;

f ^= c; d += Gen_32(f, f, f, f);

d *= mul;

f ^= d; e += Gen_32(f, f, f, f);

e *=mul;

Here, the Gen_32() function is the one which gets four 32

bit registers as input to use first, second, third and fourth 8 bit

as the input of S-box and makes 32 bit value with

corresponding S-box output.

c) Key_schedule is,

x0 -= x7 ^ 0xA5A5A5A5; x1 ^= x0; x2 += x1;

x3 -= x2; ^ ((～x1) << 7); x4 ^= x3; x5 += x4;

x6 -= x5 ^((～x4) >> 23); x7 ^= x6; x0 += x7;

x1 -= x0 ^((～x7) << 7); x2 ^= x1; x3 += x2;

x4 -= x3 ^((～x2) >> 23); x5 ^= x4; x6 += x5;

x7 ^= x6 ^ 0x01234567;

It is like the following. Here the >>, << are left and right

logical shift operators.

d) Feedforward is,

a ^= aa; b -= bb; c += cc;

dd ^= dd; e -= ee; f += ff;

Here the a, b, c, d, e and f registers are
1ih which is the

halfway hash value of 192bit and becomes the final hash value

after termination of algorithm. Accordingly, the 32bit

SRES(Signed Response) and the encryption key 64bit
cK are

finally generated by the following formula.

dcbaSRES , (2)

efKC , (3)

2) S-box

S-box has used the 1x operation in order to raise

nonlinearity and the operation of getting inverse elements

generally require a lot of operation time. But the operation

was performed in advance to form a reference table because it

is an inverse element at)2(8GF Because inverse element of 0

doesn't exist, the value of 0 is corresponded. But because this

isn't cryptologically safe, the exclusive-OR has been

performed for 0xa5 value to form a table having 256 eight bit

values. The S-box table is shown on Table I.

TABLE I: S-BOX TABLE

III. DESIGN OF INDEPENDENT AUTHENTICATION PROTOCOL

A. Experimental

1) Simulation environment

In this paper, in order to improve the survivability of its

nodes, it should build available simulation surrounding under

the surrounding sensor nodes (it mean 4 component;

survivability of sensor nodes – available battery, the output of

sensor nodes – available area for search, the communication

path of sensor nodes – generation of routing table, bandwidth

of sensor nodes – the size of data transfer). Visual simulation

environment configuration with Fig. 3.

2) TinyOS

As in Fig. 4 is Tiny Operating System such as existent

UNIX in 32bits computer-on-a-chip a number Megabyte

memory need. Sensor node has memory of 10Kbyte degrees

of 8-16bit computer-on-a-chip in sensor network. There are

TinyOS, MicroC/OS, Nucleus, Nano-X to available

Operating System. TinyOS embedded hardware directly and

need one physical address space as one Process. Memory is

suitable Operating System to sensor network because memory

allocates compile dynamically and use Function Call instead

of software signaling or exception processing [9], [10].

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

376

Fig. 3. Simulation environment architecture.

Fig. 4. TinyOS architecture.

B. Design of Sense Node Data Modules

1) Design of message manager

Message manager serial communication data be delivered

through UIC(User Interface Command) main form and

compose this in a few arrangement form(Array List). Message

manager has following function.

 Log Service: Data original save

 Topology service: Paint topology on screen

 Node data history: Data history per node show

2) Module function

UART is delivered to high position application receiving

data of sensor node. Must establish UART for this and serial

communication and need connection attribute value setting

for this. Data delivered through Database serial

communication input database log leave.

IV. CONCLUSION

The work by Sarma et al. [10] predicts that over the next

several years, development of low-cost tags in the range of US

$0.05 or less will continue to present a challenge to

manufacturers. Low-cost tags will remain extremely resource

scarce, passively powered, and have limited memory

resources comprised of several hundred bytes, as opposed to

kilobytes. The range of communications will be a few meters,

with a limit on computational power. Using standard

cryptographic security mechanisms will exceed the capability

of these devices. To meet these challenges, more work must

be done to develop new hardware-efficient hash functions

within low-cost RFID tags, along with new lightweight

cryptographic primitives and protocols. Any new and

efficient functions need to take into account the limited

resources of low-cost RFID tags.

In this paper the threats to personal privacy and security

that exist in low-cost RFID tags have been identified, goals

and assumptions defined, and proposed solutions to address

these privacy and security risks analyzed. Based on the

comparison of these solutions, the selective blocker tag

provides the best solution satisfying most requirements.

As RFID technology advances allowing “smarter” tags, the

line between RFID devices, smart cards, and general-purpose

computers will blur. Today’s research benefiting RFID

devices will aid in the development of secure ubiquitous

computing systems in the future.

ACKNOWLEDGMENT

This research was supported by basic science research

program through the NRF funded by MEST

(No.2010-0020985 and No. 2014R1A2A1A11049469) and

also supported by the Technology Commercialization support

program, Ministry of Agriculture, Food and Rural Affairs

(No.113038-03-1-HD020).

REFERENCES

[1] V. Dixit, H. K. Verma, and A. K. Singh, “Comparision of various

Security Protocols in RFID,” International Journal of Computer

Applications, vol. 24, no. 7, June 2011.

[2] L. Yang, P. Yu, W. Bailing, Q. Yun et al., “Hash-based RFID mutual

authentication protocol,” International Journal of Security and Its

Applications, vol. 7, no. 3, May 2013.

[3] M. O. Balitanas and T. Kim, “Review: Security threats for

RFID-sensor network anti-collision protocol,” International Journal

of Smart Home, vol. 4, no. 1, pp. 23-36, January 2010.

[4] G. Avoine and P. Oechslin, “A scalable and provably secure

hash-based RFID protocol,” in Proc. IEEE International Conference

on Pervasive Computing and Communications, 2005, pp. 110-114.

[5] S. A. Weis, “Security and privacy in radio-frequency identification

devices,” MIT Master of Science Thesis, submitted May 2003.

[6] MIT Auto-ID Center. [Online]. Available:

http://www.autoidcenter.org

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

377

http://libra.msra.cn/Conference/1470/ieee-international-conference-on-pervasive-computing-and-communications
http://libra.msra.cn/Conference/1470/ieee-international-conference-on-pervasive-computing-and-communications

[7] S. Sarma, D. Brock, and D. Engels, “Radio frequency identification

and the electronic product code,” Micro IEEE Trans, vol. 21, no. 6, pp.

50-54, 2001.

[8] D. McCullough. (January 13, 2003). RFID tags: Big Brother in small

packages. CNet, Available:

http://news.com.com/2010-1069-980325.html

[9] A. Juels and R. Pappu, “Squealing Euros: Privacy Protection in

RFID-Enabled Banknotes,” in Financial Cryptography, R. Wright,

Ed., 2003, vol. 2742, pp. 103-121.

[10] S. Sarma, S. Weis, and D. Engels, “Radio-frequency identifiers:

Security Risks and Challenges,” CryptoBytes, vol. 6, no. 1, 2003.

Jin-suk Kang received his B.S. degree in information

engineering from Cheju National University, Jeju,

Korea, in 1999; got his M.S. and Ph.D. degrees in

computer engineering from Cheju National University,

Jeju, Korea, in 2001 and 2005, respectively. From 2006

to 2009, he was with the University of Incheon, Korea,

as a research professor. From February 2009 to March

2010, he worked with Chungbuk National University,

Korea, as a visiting professor. Since March 2010, he has been with the

Jangwee Research Institute for National Defence, Ajou University, Suwon,

Korea, where he is currently a research professor. His research interests

include the areas of multimedia, computer vision, human-computer

interaction, mobile computing and embedded system, etc.

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

378

