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Abstract—In this paper, a new PSO algorithm with adaptive 

inertia weight is introduced for global optimization. The 

objective of the study is to balance local search and global search 

abilities and alternate them through the algorithm progress. For 

this, an adaptive inertia weight is introduced using a feedback 

on particles' best positions. The inertia weight keeps varying to 

alternate exploration and exploitation. Tests are carried on a set 

of thirty test functions (the CEC 2014 benchmark functions) and 

compared with other settings of inertia weight. Results show 

that the new algorithm is very competitive mainly when 

increasing the dimension of the search space. 

 
Index Terms—Algorithms, exploration and exploitation, 

inertia weight, particle swarm optimization.  

 

I. INTRODUCTION 

Particle swarm optimization (PSO) was first introduced by 

Kennedy and Eberhart in 1995 [1] and imitates the swarm 

behavior to search the globally best solution. In this method, 

particles of the swarm move in a multidimensional search 

space looking for a potential solution. When moving, each 

particle is guided by its own experience and collaboration 

with neighbor swarm particles. This technique attracted a high 

level of interest because of its simplicity and its encouraging 

results in many fields. 

The basic PSO [1] is not the best tool to solve all 

engineering problems as it is slow in some cases and 

converges to local optima in some others (e.g. in the field of 

plasmonics [2]). To improve the PSO performance, different 

variants of the algorithm were developed with the main 

objective of balanced exploration-exploitation [3]-[6]. 

The inertia weight, introduced in 1998 [7], plays a key role 

in the PSO process, because it is a crucial tool to balance the 

exploration and exploitation. We introduce a new setting of 

this parameter. The inertia weight is dynamically adjusted 

using a feedback on the particles' best positions to alternate 

exploration and exploitation during the algorithm process. 

Our algorithm is compared with other settings of inertia 

weight -based on previous comparative studies- that are 

GPSO [3], Sugeno [4], APSO [5], and AIWPSO [8]. The tests 

are carried using the CEC 2014 benchmark functions [9] and 

show a great potential of the new setting. 

 The remainder of the paper is organized as follows. 

Section II provides an overview of the PSO and related work. 
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In Section III, the new algorithm is fully described. Section IV 

presents the simulation results and their discussion. Finally, 

we conclude in Section V with a brief discussion and a 

summary of results.  

 

II. BACKGROUND 

The PSO is basically a cooperative method where, at step t, 

the vector of decision variables, N being the number of 

particles and D being the search space dimension, is 

considered as an i
th

 particle in motion during the algorithm. 

Each position xi(t) represents a potential solution of the 

optimization problem. Then, the particles of the swarm 

communicate good positions to each other and adjust their 

own positions and velocities  
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where 
1

jr and 
2

jr are independent uniform random variables 

generated between 0 and 1, pi(t) is the best position of particle 

i i.e. its best experience, g(t) is the global best of the swarm, 

  is the inertia weight, and c1 and c2 are the acceleration 

coefficients. Equation (1) is used to evaluate the particle new 

velocity using its previous one, the distances between its 

current position and its best position, and the distance 

between its current position and the global best. Equation (2) 

is used to update the position of the particle using its previous 

position and its new velocity. 

The success of PSO depends on values taken by the inertia 

weight that was introduced by Shi and Eberhart in 1998 [7]. 

Without the first term of (1), the search will be reduced to a 

local search. If the inertia weight takes large values (other 

terms of this equation are almost omitted), the algorithm 

keeps exploring new spaces and then the convergence is 

delayed. Therefore, the inertia weight must be adjusted for a 

better exploration-exploitation trade-off. 

A large number of inertia weight settings were proposed. 

These approaches can be classified in four main groups: 

constant [7], random [10], time varying, and adaptive inertia 

weights. The most famous time varying law may be the linear 

decreasing of inertia weight [3]. Different other time varying 

laws were used such as sigmoid [11], simulated annealing 

[12], Sugeno function [4], exponential decreasing law [13], 

[14], and logarithmic decreasing law [15]. Then, the adaptive 

approaches were introduced with motivation a better control 
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of the population diversity by adaptive adjustment of the 

inertia weight using feedbacks of the process (e.g. the best 

fitness achieved [16], the number of updated best positions 

[8], or the distance between particles [5]). 

Many comparative studies were conducted to benchmark 

different settings of inertia weight. Bansal et al. [17] 

compared a set of fifteen relatively recent and popular inertia 

weight strategies and found that constant and linear 

decreasing inertia weight minimize the error, whereas other 

laws are better using other criteria. Nickabadi et al. suggested 

a new adaptive law, and compared it with different other 

settings of the inertia weight including constant, random, 

linear time varying, nonlinear time varying, and adaptive 

setting [8]. Their results show the superiority of the adaptive 

law they suggested. To end with, Arasomwan and Adewumi 

[18] covered another set of settings and showed that with 

good experimental setting, the linear decreasing law will 

perform competitively with similar variants. 

The most common, these approaches present decreasing 

inertia weight. However, other schemes can be of interest. For 

instance, Malik et al. got better performance for sigmoid 

increasing law compared with sigmoid decreasing law [11]. 

 

III. PSO WITH ADAPTIVE INERTIA WEIGHT 

The new PSO algorithm, denoted w-PSO, introduces a new 

adaptive parametric setting. The new algorithm is easy to 

implement as the acceleration coefficients are constant and 

the inertia weight is dynamically updated using a simple 

feedback on the particles' best positions. 

Many theoretical studies focused on the convergence 

related parameterization of PSO. It was demonstrated that the 

acceleration coefficients should obey 
1 2

4 1 ) (c c    [19], 

[20]. On the other hand, Martínez and Gonzalo showed that 

the sum of acceleration coefficients must be less than 4 [21], 

and recommended 
1 2

c c  to maximize the second order 

stability region. Moreover, equal values of acceleration 

coefficients gives the same weight to all the optima (global 

and local ones), and may avoid attraction to local optima 

during the exploitation phase. Therefore, we set the 

accelerations to the same value: 

                                1 2  1.5.c c                                  (3) 

The local and global search are balanced in this algorithm 

via an adaptive inertia weight. A theoretical study [19], 

assuming time varying parameters, showed that the inertia 

weight should be between 0 and 1. Empirically [3], the inertia 

weight was recommended to vary in the range [0.4, 0.9]. We 

let   vary in this range. First, we introduce d, a vector of K 

elements (K being a constant), each of which is defined as the 

maximum value (max) of the standard deviation (std) of 

( )jp t at each step of the algorithm 
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Introducing d(k) is obviously intended to get an indicator of 

the algorithm progress. Fig. 1 shows the variation of   using 

the test function f1 from CEC 2014 benchmark functions with 

K=1000. 

When the particles' best positions get closer to each other, 

 increases to reverse the trend and enable more exploration. 

Then, every K steps,  decreases which may help more 

exploitation. In this way, the governing law of   helps 

alternation of exploration and exploitation, which may 

improve the quality of the solution without using additional 

mechanisms (e.g. local search). 
 

 
Fig. 1. Variations of the inertia weight as a function of the step number t. 

 

IV. SIMULATION RESULTS 

The algorithm is tested using a set of thirty reference test 

functions recently introduced, and compared with four other 

settings of the inertia weight. 

A. Reference Test Functions 

Tests are carried using the CEC 2014 test functions (please 

refer to [9] for a full description): 

 Functions f1 to f3 are unimodal functions. 

 Functions f4 to f16 are simple multimodal functions. 

 Functions f17 to f22 are hybrid functions. 

 Functions f23 to f30 are composition functions. 

For each of these functions, the search space is [-100,100]
D
 

(D being the dimension search space). The values of the 

optimal solution are 100 to 3000 (by step of 100) for functions 

f1 to f30, respectively. 

B. Inertia Weight Laws Used for Comparison 

Based on previous comparative studies [8], [17], [18] (cf. 

section II), we choose the following time varying and adaptive 

laws for comparison: 

 GPSO with linear decreasing law [3]: 

0.9 0.5( / ) [0.4, 0.5]   t T , where t is the current step 

number and T is the maximal number of steps. 

 Sugeno [4]:  

1 ( / )
0.4 0.5 [0.4, 0.5],

1 ( / )



  



t T

s t T
where s is a constant 

greater than -1 and that is fixed to 10 

 APSO with adaptive law [5]:  
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1
[0.4, 0.5]

1 1.5exp( 2.6 )
  

  f
, where f is the 

evolutionary factor computed using the distance between 

particles. 

 AIWPSO with adaptive law [8]:  

( ) / [0,1],  S t N where N is the population size and S(t) 

is the number of improved best positions at step t. 

The chosen algorithms are tested using Matlab codes with 

the following parameters: the acceleration coefficients are set 

to 1.5, the population size N is set to 75, and the velocity of the 

global best g(t) is regenerated each time its quality is 

improved. The parameter K introduced in our algorithm is set 

to 1000. 

C. Comparison Criteria 

We carry thirty realizations for each algorithm using the 

test functions in dimensions D=10 and D=50. The solutions 

are evaluated after carrying a number of function evaluations 

FEs given by the following law as recommended in Ref. [9]: 

     10000 10000 .
D

FEs N T N D
N

                (6) 

The mean value and the standard deviation are computed 

and then algorithms are scored according to the number of 

times they yield the best results [9] (score varies between 0 

and 30) in both dimensions 10 and 50. 

D. Results and Discussion 

The mean value and the standard deviation (giving the 

dispersion from average) of the best solutions are reported in 

Table I-Table II.  

Comparing the performance of the algorithms on search 

spaces of dimension D=10 and D=50, we find that the quality 

of the solution (by the different settings) is deteriorated for 

some functions when increasing the dimension of search 

space. Such behavior may be avoided by increasing the 

number of function evaluations for D=50 or using additional 

mechanisms (e.g. hybridization) to these simple PSO 

algorithms. 
 

TABLE I: THE MEAN VALUE  ± STANDARD DEVIATION OF THE BEST SOLUTIONS FOR FIVE PSO ALGORITHMS IN DIMENSION D=10 (U  IS THE MULTIPLICATION 

FACTOR OF THE VALUE) 

 U w-PSO GPSO Sugeno APSO AIWPSO 
f
1 104 5.16±5.04    3.42±5.83 3.59±3.76 64.42±13.63 46.7±43.2 

f
2
 

103 3.61±2.31 2.93±2.04 3.20±2.09 3.67±2.96 14.8±50.22 
f
3
 

1 447±169 470±232 1733±1581 907±790 9603±3362 
f
4
 

1 422±17 420±18 421±18 436±18 427±18 
f
5
 

1 519±2.8 519±2.8 519±2.8 519±3.5 520±2.1 
f
6
 

1 601±1.4 601±1.1 601±1.4 603±1.5 603±1.5 
f
7
 

1 700.1±0.07 700.1±0.07 700.1±0.06 700.2±0.18 700.6±0.8 
f
8
 

1 800.9±0.9 802.3±1.4 801.6±1.3 814.9±7.4 811.6±1.5 
f
9
 

1 909.2±3.8 909.4±4.7 907.8±4.5 919.7±8.5 920.8±6.5 
f
10

 
1 1138±98 1158±106 1131±99 1399±203 1481±219 

f
11

 
1 1437±225 1440±106 1442±222 1775±296 1872±225 

f
12

 
1 1200.1±0.1 1200.5±0.3 1200.2±0.3 1200.2±0.1 1200.9±0.3 

f
13

 
1 1300.1±0.1 1300.2±0.1 1300.1±0.1 1300.3±0.1 1300.3±0.1 

f
14

 
1 1400.1±0.1 1400.1±0.1 1400.1±0.1 1400.4±0.1 1400.3±0.1 

f
15

 
1 1500.7±0.3 1501.1±0.5 1501±0.4 1501.6±0.7 1503.4±0.9 

f
16

 
1 1602.3±0.6 1602.3±0.5 1602.1±0.5 1602.8±0.4 1602.8±0.4 

f
17

 
103 7.47±12.07 5.47±3.27 4.32±2.63 6.60±10.95 20.77±8.21 

f
18

 
103 8.91±7.91 11.16±10.4 12.75±10.2 10.39±9.2 27.42±24.8 

f
19

 
1 1901.8±1 1901.7±0.7 1901.6±0.7 1902.9±1.4 1902.8±0.7 

f
20

 
103 2.57±0.27 2.15±0.5 2.13±0.15 5.33±4.99 3.16±1.71 

f
21

 
1 2227±108 2211±75 2198±61 2513±322 2226±21 

f
22

 
1 2231±39 2218±25 2215±19 2292±64 2226±21 

f
23

 
1 2629±8 10-5 2629±2 10 -12 2629±2 10-12 2630±1.7 2630±2.2 

f
24

 
1 2520±6.3 2521±5.8 2520±5.1 2553±33 2534±12.6 

f
25

 
1 2676±36 2685±32 2690±27 2696±15 2687±28 

f
26

 
1 2700.1±0.03 2700.1±0.1 2700.1±0.05 2700.2±0.1 2700.3±0.1 

f
27

 
1 2942±177 2990±142 2967±170 3019±142 3039±116 

f
28 1 3274±77 3241±85 3233±76 3355±121 3301±71 

f
29

 
105 6.30±13.96 7.09±16.06 4.55±12.43 8.24±20.84 3.50±10.58 

f
30

 
103 4.02±0.33 3.85±0.33 3.86±0.28 4.71±0.54 4.24±0.40 

 

However, in both dimensions, the best solutions are mainly 

found using the new algorithm w-PSO, GPSO, or Sugeno. 

First, in dimension D=10 and taking into account the 

dispersion of solutions, we find that: 

 For functions f5, f7, f12, f13, f14, f16, and f26, the five 

algorithms yield comparable solutions. 

 For functions f4, f6, f11, f19, f23, and f24, w-PSO, GPSO and 

Sugeno yield the best solutions. 

 For functions f22 and f30, the best solutions are given by 

GPSO and Sugeno algorithms. 

 w-PSO outperforms the other algorithms for functions f8, 

f15, f18, f25, and f27 as shown in Table I and Fig. 2. 

 GPSO gives the best results for functions f1 and f2. 

 AIWPSO outperforms the other algorithms for functions 
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f3 and f29. 

 With Sugeno law, the best results are found for the 

remaining functions: f9, f10, f17, f20, f21 and f28. 

If the algorithms are scored according to the number of 

times they yield the best results, then w-PSO, GPSO, Sugeno, 

APSO and AIWPSO get, respectively, 19, 17, 21, 7 and 8. 

On the other hand, in dimension D=50, the results are as 

follows: 

 For functions f7, f13 and f14, w-PSO, GPSO, Sugeno and 

APSO yield similar results. 

 For functions f4, f16 and f19, the best solutions are given by 

w-PSO, GPSO and Sugeno algorithms. 

 For functions f8, f12 and f21, w-PSO and Sugeno give the 

best solutions. 

 For the function f5, the best solutions are given by w-PSO 

and APSO. 

 For the function f10 the best solutions are given by Sugeno. 

 For functions f3 and f22 w-PSO and GPSO guarantees the 

best solutions. 

 GPSO gives the best solutions for functions f9, f11, f17, f18, 

f22, f25, f27-f30. 

 w-PSO outperforms the other algorithms for the 

remaining functions: f1, f2, f15, f20, f24, and f26 as shown in 

both Table II and Fig. 3. 

Consequently, according to the number of times the 

algorithms give the best results, the algorithms get the 

following scores respectively: 19, 18, 10, 4, and 0 for w-PSO, 

GPSO, Sugeno, APSO, and AIWPSO. 

To conclude, the Sugeno law yields the best results in most 

cases in dimension D=10, whereas in dimension D=50, the 

new setting of  outperforms the others in most cases. 

 
 

TABLE II: THE MEAN VALUE ± STANDARD DEVIATION OF THE BEST SOLUTIONS FOR FIVE PSO ALGORITHMS IN DIMENSION D=50 (U  IS THE MULTIPLICATION 

FACTOR OF THE VALUE) 

 U w-PSO GPSO Sugeno APSO AIWPSO 
f1 107 1.54±1.16 1.63±2.07 1.73±1.26 18.37±12.77 56.41±24.57 
f2 

1 6.1±6.25 103 2.46±13.3 105 2.96 ±9  107 8.3±30.1 107 3.8±18.7 108 
f3 

1 621±68 621±57 1941±5835 1097±545 97044±13196 
f4 

1 422±17 420±18 421±18 436±18 427±18 
f5 

1 520 ± 2 10-5 520.9 ± 0.1 521 ± 0.05 520 ± 10-5 521.1 ± 0.04 
f6 

1 628.8 ± 4.7 630.1 ± 3.8 631 ± 5 644 ± 4.6 656.4 ± 6.8 
f7 

1 700.01 ± 0.01 700.01 ± 0.01 700.01 ± 0.01 700.01 ± 0.01 1382 ± 146 
f8 

1 837 ± 19 866 ± 13 837 ± 11 1000 ± 51 1255 ± 69 
f9 

1 1084 ± 45 1044 ± 35 1052 ± 37 1183 ± 51 1470 ± 53 
f10 

1 2439 ± 598 3277 ± 594 2368 ± 484 5045 ± 726 14074 ± 447 
f11 

1 6813 ± 737 6613 ± 789 6625 ± 941 7424 ± 974 14282 ± 585 
f12 

1 1200.3 ± 0.1 1200.9 ± 0.4 1201.3 ± 0.9 1200.6 ± 0.2 1203.3 ± 0.3 
f13 

1 1300.5 ± 0.1 1300.6 ± 0.1 1300.5 ± 0.1 1300.5 ± 0.1 1305.7 ± 0.5 
f14 

1 1400.4 ± 0.2 1400.6 ± 0.3 1400.5 ± 0.3 1400.4 ± 0.1 1584 ± 36 
f15 

1 1512 ± 3.3 1517 ± 5.2 1517 ± 4.6 1587 ± 33 82675 ± 76149 
f16 

1 1620.3 ± 0.9 1620 ± 0.9 1620.8 ± 0.8 1621 ± 0.6 1622 ± 0.3 
f17 

106 3.57 ± 4.34 2.03 ± 1.91 2.99 ± 2.32 16.31 ± 14.05 25.66 ± 7.62 
f18 

1 3656 ± 1650 2936 ± 899 3484 ± 1886 1.74 ± 6.27 106 9.26 ± 6.44 108 
f19 

1 1965 ± 20 1961 ± 23 1966 ± 19 1979 ± 31 2230 ± 116 
f20 

103 2.63 ± 0.20 2.73 ± 0.32 3.69 ± 0.73 3.49 ± 0.85 44.57 ± 11.46 
f21 

106 0.71 ± 1.72 1.13 ± 1.44 0.71 ± 0.7 1.59 ± 2.67 10.89 ± 3.82 
f22 

1 3307 ± 346 2972 ± 288 3074 ± 276 3518 ± 328 4103 ± 351 
f23 

1 2646 ± 1.1 2646 ± 0.5 2648 ± 0.8 2700 ± 43 3105 ± 137 
f24 

1 2670 ± 6.4 2678 ± 4.5 2675 ± 5.6 2695 ± 12.7 2851 ± 27.2 
f25 

1 2725 ± 4.5 2722 ± 3.6 2724 ± 3.6 2753 ± 12.3 2783 ± 21.8 
f26 

1 2757 ± 50 2774 ± 62 2800 ± 76 2789 ± 61 2798 ± 73 
f27 

1 3828 ± 291 3769 ± 119 3849 ± 119 4304 ± 114 4572 ± 118 
f28 1 6549 ± 668 5157 ± 797 6178 ± 1091 78960 ± 787 6365 ± 997 
f29 

107 1.70 ± 5.28 1.28 ± 3.92 2.61 ± 5.99 10.98 ± 17.11 5.87 ± 6.56 
f30 

105 1.01 ± 0.73 0.41 ± 0.14 0.49 ± 0.22 5.53 ± 5.14 8.69 ± 13.64 

 

 
                                 (a) function f8。                                                                             (b) function f15。                                                                       (c) function f18。 
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(d) function f25。                                                               (e) function f27。 

Fig. 2. The mean of the best fitness for 30 independent runs as a function of step number in dimension D = 10 for functions f8, f15, f18, f25 and f27. 
1 

 

 

                                    (a) function f1.                                                                        (b) function f2.                                                    (c) function f15 
 

  
                            (d) function f20.                                                                                   (e) function f24.                                                                               (f) function f26. 

Fig. 3. The mean of the best fitness for 30 independent runs as a function of step number in dimension D = 50 for functions f1, f2, f15, f20, f24 and f26. 

 

 
1Fig. 2 and Fig. 3 should be in printed color.  

V. CONCLUSIONS 

In this paper, a new PSO algorithm (w-PSO) is introduced 

for global optimization. The objective of the study is to 

alternate exploration and exploitation during the algorithm 

progress. 

We introduced a simple algorithm with constant 

accelerations coefficients and an adaptive inertia weight. The 

exploitation and exploration are alternated via the inertia 

weight, which is varying in the range [0.4, 0.9] using a 

feedback on particles' best positions. When particles' best 

positions get closer to each other, the inertia weight is 

increased to enable more exploration and prevent a premature 

convergence. The exploitation is ensured by decreasing   

every K steps. With this setting, the inertia weight keeps 

oscillating through the algorithm process instead of being 

automatically decreased as in many previous studies. 

The new algorithm is tested on a set of thirty test functions 

(CEC 2014 benchmark functions) and compared with four 

other settings of inertia weight. Results show that the new 

setting is competitive with linear (GPSO) and Sugeno settings 

in low dimension. In dimension 10, with the new setting, the 

solutions are found to be the best in 19 out of 30 cases, giving 

to w-PSO the second place after Sugeno. Most importantly, 

w-PSO outperforms the other algorithms in solving problems 

in high dimension (D=50). 

For its simplicity and efficiency, we expect the w-PSO to 

be successfully applied to solve many problems. For instance, 

in a future work, the w-PSO will be applied to optimize 

complex plasmonic structures [22]. 
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