



Abstract—In this paper, a new PSO algorithm with adaptive

inertia weight is introduced for global optimization. The

objective of the study is to balance local search and global search

abilities and alternate them through the algorithm progress. For

this, an adaptive inertia weight is introduced using a feedback

on particles' best positions. The inertia weight keeps varying to

alternate exploration and exploitation. Tests are carried on a set

of thirty test functions (the CEC 2014 benchmark functions) and

compared with other settings of inertia weight. Results show

that the new algorithm is very competitive mainly when

increasing the dimension of the search space.

Index Terms—Algorithms, exploration and exploitation,

inertia weight, particle swarm optimization.

I. INTRODUCTION

Particle swarm optimization (PSO) was first introduced by

Kennedy and Eberhart in 1995 [1] and imitates the swarm

behavior to search the globally best solution. In this method,

particles of the swarm move in a multidimensional search

space looking for a potential solution. When moving, each

particle is guided by its own experience and collaboration

with neighbor swarm particles. This technique attracted a high

level of interest because of its simplicity and its encouraging

results in many fields.

The basic PSO [1] is not the best tool to solve all

engineering problems as it is slow in some cases and

converges to local optima in some others (e.g. in the field of

plasmonics [2]). To improve the PSO performance, different

variants of the algorithm were developed with the main

objective of balanced exploration-exploitation [3]-[6].

The inertia weight, introduced in 1998 [7], plays a key role

in the PSO process, because it is a crucial tool to balance the

exploration and exploitation. We introduce a new setting of

this parameter. The inertia weight is dynamically adjusted

using a feedback on the particles' best positions to alternate

exploration and exploitation during the algorithm process.

Our algorithm is compared with other settings of inertia

weight -based on previous comparative studies- that are

GPSO [3], Sugeno [4], APSO [5], and AIWPSO [8]. The tests

are carried using the CEC 2014 benchmark functions [9] and

show a great potential of the new setting.

 The remainder of the paper is organized as follows.

Section II provides an overview of the PSO and related work.

Manuscript received December 26, 2014; revised April 22, 2015.

S. Kessentini is with the Department of Mathematics, Faculty of Science

of Sfax, University of Sfax, Route de Soukra km 4-BP 802, 3038 Sfax,

Tunisia (e-mail: samehkessentini@gmail.com).

D. Barchiesi is with the Project Group for Automatic Mesh Generation

and Advanced Methods - Gamma3 Project (UTT-INRIA), University of

Technology of Troyes, 12 rue Marie Curie - BP 2060, 10010, Troyes Cedex,

France (e-mail: dominique.barchiesi@utt.fr).

In Section III, the new algorithm is fully described. Section IV

presents the simulation results and their discussion. Finally,

we conclude in Section V with a brief discussion and a

summary of results.

II. BACKGROUND

The PSO is basically a cooperative method where, at step t,

the vector of decision variables, N being the number of

particles and D being the search space dimension, is

considered as an i
th

 particle in motion during the algorithm.

Each position xi(t) represents a potential solution of the

optimization problem. Then, the particles of the swarm

communicate good positions to each other and adjust their

own positions and velocities  
1

() ()
j

i i j D
V t V t

 
 at each

step following

 

 

1 1

2 2

(1) () () ()

() () ,

j j j j j

i i i i

j j j

i

V t V t r c p t x t

r c g t x t

   

 

 (1)

 (1) () (1),j j j

i i ix t x t V t    (2)

where
1

jr and
2

jr are independent uniform random variables

generated between 0 and 1, pi(t) is the best position of particle

i i.e. its best experience, g(t) is the global best of the swarm,

 is the inertia weight, and c1 and c2 are the acceleration

coefficients. Equation (1) is used to evaluate the particle new

velocity using its previous one, the distances between its

current position and its best position, and the distance

between its current position and the global best. Equation (2)

is used to update the position of the particle using its previous

position and its new velocity.

The success of PSO depends on values taken by the inertia

weight that was introduced by Shi and Eberhart in 1998 [7].

Without the first term of (1), the search will be reduced to a

local search. If the inertia weight takes large values (other

terms of this equation are almost omitted), the algorithm

keeps exploring new spaces and then the convergence is

delayed. Therefore, the inertia weight must be adjusted for a

better exploration-exploitation trade-off.

A large number of inertia weight settings were proposed.

These approaches can be classified in four main groups:

constant [7], random [10], time varying, and adaptive inertia

weights. The most famous time varying law may be the linear

decreasing of inertia weight [3]. Different other time varying

laws were used such as sigmoid [11], simulated annealing

[12], Sugeno function [4], exponential decreasing law [13],

[14], and logarithmic decreasing law [15]. Then, the adaptive

approaches were introduced with motivation a better control

Particle Swarm Optimization with Adaptive Inertia Weight

Sameh Kessentini and Dominique Barchiesi

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

368DOI: 10.7763/IJMLC.2015.V5.535

of the population diversity by adaptive adjustment of the

inertia weight using feedbacks of the process (e.g. the best

fitness achieved [16], the number of updated best positions

[8], or the distance between particles [5]).

Many comparative studies were conducted to benchmark

different settings of inertia weight. Bansal et al. [17]

compared a set of fifteen relatively recent and popular inertia

weight strategies and found that constant and linear

decreasing inertia weight minimize the error, whereas other

laws are better using other criteria. Nickabadi et al. suggested

a new adaptive law, and compared it with different other

settings of the inertia weight including constant, random,

linear time varying, nonlinear time varying, and adaptive

setting [8]. Their results show the superiority of the adaptive

law they suggested. To end with, Arasomwan and Adewumi

[18] covered another set of settings and showed that with

good experimental setting, the linear decreasing law will

perform competitively with similar variants.

The most common, these approaches present decreasing

inertia weight. However, other schemes can be of interest. For

instance, Malik et al. got better performance for sigmoid

increasing law compared with sigmoid decreasing law [11].

III. PSO WITH ADAPTIVE INERTIA WEIGHT

The new PSO algorithm, denoted w-PSO, introduces a new

adaptive parametric setting. The new algorithm is easy to

implement as the acceleration coefficients are constant and

the inertia weight is dynamically updated using a simple

feedback on the particles' best positions.

Many theoretical studies focused on the convergence

related parameterization of PSO. It was demonstrated that the

acceleration coefficients should obey
1 2

4 1) (c c    [19],

[20]. On the other hand, Martínez and Gonzalo showed that

the sum of acceleration coefficients must be less than 4 [21],

and recommended
1 2

c c to maximize the second order

stability region. Moreover, equal values of acceleration

coefficients gives the same weight to all the optima (global

and local ones), and may avoid attraction to local optima

during the exploitation phase. Therefore, we set the

accelerations to the same value:

 1 2 1.5.c c (3)

The local and global search are balanced in this algorithm

via an adaptive inertia weight. A theoretical study [19],

assuming time varying parameters, showed that the inertia

weight should be between 0 and 1. Empirically [3], the inertia

weight was recommended to vary in the range [0.4, 0.9]. We

let  vary in this range. First, we introduce d, a vector of K

elements (K being a constant), each of which is defined as the

maximum value (max) of the standard deviation (std) of

()jp t at each step of the algorithm

   
1

() max () , 1 ,j

j D
d k std p t k K

 
   (4)

where k=(t modulus K), and  
1

() ()j j

i
i N

p t p t
 

 is the vector

regrouping the j
th

 components of all pi(t). Then,  is varied

following

 1

()
() 0.9 0.4

max ()k K

d k
t

d k


 

  (5)

Introducing d(k) is obviously intended to get an indicator of

the algorithm progress. Fig. 1 shows the variation of  using

the test function f1 from CEC 2014 benchmark functions with

K=1000.

When the particles' best positions get closer to each other,

 increases to reverse the trend and enable more exploration.

Then, every K steps,  decreases which may help more

exploitation. In this way, the governing law of  helps

alternation of exploration and exploitation, which may

improve the quality of the solution without using additional

mechanisms (e.g. local search).

Fig. 1. Variations of the inertia weight as a function of the step number t.

IV. SIMULATION RESULTS

The algorithm is tested using a set of thirty reference test

functions recently introduced, and compared with four other

settings of the inertia weight.

A. Reference Test Functions

Tests are carried using the CEC 2014 test functions (please

refer to [9] for a full description):

 Functions f1 to f3 are unimodal functions.

 Functions f4 to f16 are simple multimodal functions.

 Functions f17 to f22 are hybrid functions.

 Functions f23 to f30 are composition functions.

For each of these functions, the search space is [-100,100]
D

(D being the dimension search space). The values of the

optimal solution are 100 to 3000 (by step of 100) for functions

f1 to f30, respectively.

B. Inertia Weight Laws Used for Comparison

Based on previous comparative studies [8], [17], [18] (cf.

section II), we choose the following time varying and adaptive

laws for comparison:

 GPSO with linear decreasing law [3]:

0.9 0.5(/) [0.4, 0.5]   t T , where t is the current step

number and T is the maximal number of steps.

 Sugeno [4]:

1 (/)
0.4 0.5 [0.4, 0.5],

1 (/)



  



t T

s t T
where s is a constant

greater than -1 and that is fixed to 10

 APSO with adaptive law [5]:

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

369

1
[0.4, 0.5]

1 1.5exp(2.6)
  

  f
, where f is the

evolutionary factor computed using the distance between

particles.

 AIWPSO with adaptive law [8]:

() / [0,1],  S t N where N is the population size and S(t)

is the number of improved best positions at step t.

The chosen algorithms are tested using Matlab codes with

the following parameters: the acceleration coefficients are set

to 1.5, the population size N is set to 75, and the velocity of the

global best g(t) is regenerated each time its quality is

improved. The parameter K introduced in our algorithm is set

to 1000.

C. Comparison Criteria

We carry thirty realizations for each algorithm using the

test functions in dimensions D=10 and D=50. The solutions

are evaluated after carrying a number of function evaluations

FEs given by the following law as recommended in Ref. [9]:

 10000 10000 .
D

FEs N T N D
N

       (6)

The mean value and the standard deviation are computed

and then algorithms are scored according to the number of

times they yield the best results [9] (score varies between 0

and 30) in both dimensions 10 and 50.

D. Results and Discussion

The mean value and the standard deviation (giving the

dispersion from average) of the best solutions are reported in

Table I-Table II.

Comparing the performance of the algorithms on search

spaces of dimension D=10 and D=50, we find that the quality

of the solution (by the different settings) is deteriorated for

some functions when increasing the dimension of search

space. Such behavior may be avoided by increasing the

number of function evaluations for D=50 or using additional

mechanisms (e.g. hybridization) to these simple PSO

algorithms.

TABLE I: THE MEAN VALUE ± STANDARD DEVIATION OF THE BEST SOLUTIONS FOR FIVE PSO ALGORITHMS IN DIMENSION D=10 (U IS THE MULTIPLICATION

FACTOR OF THE VALUE)

 U w-PSO GPSO Sugeno APSO AIWPSO
f
1 104 5.16±5.04 3.42±5.83 3.59±3.76 64.42±13.63 46.7±43.2

f
2

103 3.61±2.31 2.93±2.04 3.20±2.09 3.67±2.96 14.8±50.22
f
3

1 447±169 470±232 1733±1581 907±790 9603±3362
f
4

1 422±17 420±18 421±18 436±18 427±18
f
5

1 519±2.8 519±2.8 519±2.8 519±3.5 520±2.1
f
6

1 601±1.4 601±1.1 601±1.4 603±1.5 603±1.5
f
7

1 700.1±0.07 700.1±0.07 700.1±0.06 700.2±0.18 700.6±0.8
f
8

1 800.9±0.9 802.3±1.4 801.6±1.3 814.9±7.4 811.6±1.5
f
9

1 909.2±3.8 909.4±4.7 907.8±4.5 919.7±8.5 920.8±6.5
f
10

1 1138±98 1158±106 1131±99 1399±203 1481±219

f
11

1 1437±225 1440±106 1442±222 1775±296 1872±225

f
12

1 1200.1±0.1 1200.5±0.3 1200.2±0.3 1200.2±0.1 1200.9±0.3

f
13

1 1300.1±0.1 1300.2±0.1 1300.1±0.1 1300.3±0.1 1300.3±0.1

f
14

1 1400.1±0.1 1400.1±0.1 1400.1±0.1 1400.4±0.1 1400.3±0.1

f
15

1 1500.7±0.3 1501.1±0.5 1501±0.4 1501.6±0.7 1503.4±0.9

f
16

1 1602.3±0.6 1602.3±0.5 1602.1±0.5 1602.8±0.4 1602.8±0.4

f
17

103 7.47±12.07 5.47±3.27 4.32±2.63 6.60±10.95 20.77±8.21

f
18

103 8.91±7.91 11.16±10.4 12.75±10.2 10.39±9.2 27.42±24.8

f
19

1 1901.8±1 1901.7±0.7 1901.6±0.7 1902.9±1.4 1902.8±0.7

f
20

103 2.57±0.27 2.15±0.5 2.13±0.15 5.33±4.99 3.16±1.71

f
21

1 2227±108 2211±75 2198±61 2513±322 2226±21

f
22

1 2231±39 2218±25 2215±19 2292±64 2226±21

f
23

1 2629±8 10-5 2629±2 10 -12 2629±2 10-12 2630±1.7 2630±2.2

f
24

1 2520±6.3 2521±5.8 2520±5.1 2553±33 2534±12.6

f
25

1 2676±36 2685±32 2690±27 2696±15 2687±28

f
26

1 2700.1±0.03 2700.1±0.1 2700.1±0.05 2700.2±0.1 2700.3±0.1

f
27

1 2942±177 2990±142 2967±170 3019±142 3039±116

f
28 1 3274±77 3241±85 3233±76 3355±121 3301±71

f
29

105 6.30±13.96 7.09±16.06 4.55±12.43 8.24±20.84 3.50±10.58

f
30

103 4.02±0.33 3.85±0.33 3.86±0.28 4.71±0.54 4.24±0.40

However, in both dimensions, the best solutions are mainly

found using the new algorithm w-PSO, GPSO, or Sugeno.

First, in dimension D=10 and taking into account the

dispersion of solutions, we find that:

 For functions f5, f7, f12, f13, f14, f16, and f26, the five

algorithms yield comparable solutions.

 For functions f4, f6, f11, f19, f23, and f24, w-PSO, GPSO and

Sugeno yield the best solutions.

 For functions f22 and f30, the best solutions are given by

GPSO and Sugeno algorithms.

 w-PSO outperforms the other algorithms for functions f8,

f15, f18, f25, and f27 as shown in Table I and Fig. 2.

 GPSO gives the best results for functions f1 and f2.

 AIWPSO outperforms the other algorithms for functions

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

370

f3 and f29.

 With Sugeno law, the best results are found for the

remaining functions: f9, f10, f17, f20, f21 and f28.

If the algorithms are scored according to the number of

times they yield the best results, then w-PSO, GPSO, Sugeno,

APSO and AIWPSO get, respectively, 19, 17, 21, 7 and 8.

On the other hand, in dimension D=50, the results are as

follows:

 For functions f7, f13 and f14, w-PSO, GPSO, Sugeno and

APSO yield similar results.

 For functions f4, f16 and f19, the best solutions are given by

w-PSO, GPSO and Sugeno algorithms.

 For functions f8, f12 and f21, w-PSO and Sugeno give the

best solutions.

 For the function f5, the best solutions are given by w-PSO

and APSO.

 For the function f10 the best solutions are given by Sugeno.

 For functions f3 and f22 w-PSO and GPSO guarantees the

best solutions.

 GPSO gives the best solutions for functions f9, f11, f17, f18,

f22, f25, f27-f30.

 w-PSO outperforms the other algorithms for the

remaining functions: f1, f2, f15, f20, f24, and f26 as shown in

both Table II and Fig. 3.

Consequently, according to the number of times the

algorithms give the best results, the algorithms get the

following scores respectively: 19, 18, 10, 4, and 0 for w-PSO,

GPSO, Sugeno, APSO, and AIWPSO.

To conclude, the Sugeno law yields the best results in most

cases in dimension D=10, whereas in dimension D=50, the

new setting of  outperforms the others in most cases.

TABLE II: THE MEAN VALUE ± STANDARD DEVIATION OF THE BEST SOLUTIONS FOR FIVE PSO ALGORITHMS IN DIMENSION D=50 (U IS THE MULTIPLICATION

FACTOR OF THE VALUE)

 U w-PSO GPSO Sugeno APSO AIWPSO
f1 107 1.54±1.16 1.63±2.07 1.73±1.26 18.37±12.77 56.41±24.57
f2

1 6.1±6.25 103 2.46±13.3 105 2.96 ±9 107 8.3±30.1 107 3.8±18.7 108
f3

1 621±68 621±57 1941±5835 1097±545 97044±13196
f4

1 422±17 420±18 421±18 436±18 427±18
f5

1 520 ± 2 10-5 520.9 ± 0.1 521 ± 0.05 520 ± 10-5 521.1 ± 0.04
f6

1 628.8 ± 4.7 630.1 ± 3.8 631 ± 5 644 ± 4.6 656.4 ± 6.8
f7

1 700.01 ± 0.01 700.01 ± 0.01 700.01 ± 0.01 700.01 ± 0.01 1382 ± 146
f8

1 837 ± 19 866 ± 13 837 ± 11 1000 ± 51 1255 ± 69
f9

1 1084 ± 45 1044 ± 35 1052 ± 37 1183 ± 51 1470 ± 53
f10

1 2439 ± 598 3277 ± 594 2368 ± 484 5045 ± 726 14074 ± 447
f11

1 6813 ± 737 6613 ± 789 6625 ± 941 7424 ± 974 14282 ± 585
f12

1 1200.3 ± 0.1 1200.9 ± 0.4 1201.3 ± 0.9 1200.6 ± 0.2 1203.3 ± 0.3
f13

1 1300.5 ± 0.1 1300.6 ± 0.1 1300.5 ± 0.1 1300.5 ± 0.1 1305.7 ± 0.5
f14

1 1400.4 ± 0.2 1400.6 ± 0.3 1400.5 ± 0.3 1400.4 ± 0.1 1584 ± 36
f15

1 1512 ± 3.3 1517 ± 5.2 1517 ± 4.6 1587 ± 33 82675 ± 76149
f16

1 1620.3 ± 0.9 1620 ± 0.9 1620.8 ± 0.8 1621 ± 0.6 1622 ± 0.3
f17

106 3.57 ± 4.34 2.03 ± 1.91 2.99 ± 2.32 16.31 ± 14.05 25.66 ± 7.62
f18

1 3656 ± 1650 2936 ± 899 3484 ± 1886 1.74 ± 6.27 106 9.26 ± 6.44 108
f19

1 1965 ± 20 1961 ± 23 1966 ± 19 1979 ± 31 2230 ± 116
f20

103 2.63 ± 0.20 2.73 ± 0.32 3.69 ± 0.73 3.49 ± 0.85 44.57 ± 11.46
f21

106 0.71 ± 1.72 1.13 ± 1.44 0.71 ± 0.7 1.59 ± 2.67 10.89 ± 3.82
f22

1 3307 ± 346 2972 ± 288 3074 ± 276 3518 ± 328 4103 ± 351
f23

1 2646 ± 1.1 2646 ± 0.5 2648 ± 0.8 2700 ± 43 3105 ± 137
f24

1 2670 ± 6.4 2678 ± 4.5 2675 ± 5.6 2695 ± 12.7 2851 ± 27.2
f25

1 2725 ± 4.5 2722 ± 3.6 2724 ± 3.6 2753 ± 12.3 2783 ± 21.8
f26

1 2757 ± 50 2774 ± 62 2800 ± 76 2789 ± 61 2798 ± 73
f27

1 3828 ± 291 3769 ± 119 3849 ± 119 4304 ± 114 4572 ± 118
f28 1 6549 ± 668 5157 ± 797 6178 ± 1091 78960 ± 787 6365 ± 997
f29

107 1.70 ± 5.28 1.28 ± 3.92 2.61 ± 5.99 10.98 ± 17.11 5.87 ± 6.56
f30

105 1.01 ± 0.73 0.41 ± 0.14 0.49 ± 0.22 5.53 ± 5.14 8.69 ± 13.64

 (a) function f8。 (b) function f15。 (c) function f18。

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

371

(d) function f25。 (e) function f27。

Fig. 2. The mean of the best fitness for 30 independent runs as a function of step number in dimension D = 10 for functions f8, f15, f18, f25 and f27.
1

 (a) function f1. (b) function f2. (c) function f15

 (d) function f20. (e) function f24. (f) function f26.

Fig. 3. The mean of the best fitness for 30 independent runs as a function of step number in dimension D = 50 for functions f1, f2, f15, f20, f24 and f26.

1Fig. 2 and Fig. 3 should be in printed color.

V. CONCLUSIONS

In this paper, a new PSO algorithm (w-PSO) is introduced

for global optimization. The objective of the study is to

alternate exploration and exploitation during the algorithm

progress.

We introduced a simple algorithm with constant

accelerations coefficients and an adaptive inertia weight. The

exploitation and exploration are alternated via the inertia

weight, which is varying in the range [0.4, 0.9] using a

feedback on particles' best positions. When particles' best

positions get closer to each other, the inertia weight is

increased to enable more exploration and prevent a premature

convergence. The exploitation is ensured by decreasing 

every K steps. With this setting, the inertia weight keeps

oscillating through the algorithm process instead of being

automatically decreased as in many previous studies.

The new algorithm is tested on a set of thirty test functions

(CEC 2014 benchmark functions) and compared with four

other settings of inertia weight. Results show that the new

setting is competitive with linear (GPSO) and Sugeno settings

in low dimension. In dimension 10, with the new setting, the

solutions are found to be the best in 19 out of 30 cases, giving

to w-PSO the second place after Sugeno. Most importantly,

w-PSO outperforms the other algorithms in solving problems

in high dimension (D=50).

For its simplicity and efficiency, we expect the w-PSO to

be successfully applied to solve many problems. For instance,

in a future work, the w-PSO will be applied to optimize

complex plasmonic structures [22].

REFERENCES

[1] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.

IEEE International Conference on Neural Networks, Perth, Austarlia,

1995, pp. 1942-1948.

[2] S. Kessentini, D. Barchiesi, T. Grosges, and M. L. de la Chapelle,

“Particle swarm optimization and evolutionary methods for plasmonic

biomedical applications,” in Proc. IEEE Congress on Evolutionary

Computation (CEC’11), New Orleans, LA, 2011, pp. 2315-2320.

[3] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm

optimization,” in Proc. IEEE Congress on Evolutionary Computation

(CEC’99), Washington, DC, 1999, pp. 1945-1950.

[4] K. Lei, Y. Qiu, and Y. He, “A new adaptive well-chosen inertia weight

strategy to automatically harmonize global and local search ability in

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

372

particle swarm optimization,” in Proc. First International Symposium

on Systems and Control in Aerospace and Astronautics, Harbin, 2006,

pp. 977-980.

[5] Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, “Adaptive particle

swarm optimization,” IEEE Transactions on Systems, Man, and

Cybernetics-Part B: Cybernetics, vol. 39, pp. 1362-1381, 2009.

[6] S. Kessentini, D. Barchiesi, T. Grosges, L. G. Moreau, and M. Lamy de

la Chapelle, “Adaptive non-uniform particle swarm optimizetion:

application to plasmonic design,” International Journal of Applied

Metaheuristic Computing, vol. 2, pp. 18-28, 2011.

[7] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in

Proc. IEEE Congress on Evolutionary Computation (CEC’98),

Anchorage, AK, 1998, pp. 69-73.

[8] A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “A novel particle

swarm optimization algorithm with adaptive inertia weight,” Applied

Soft Computing, vol. 11, pp. 3658-3670, 2011.

[9] J. J. Liang, B. Y. Qu, and P. N. Suganthan, “Problem definitions and

evaluation criteria for the CEC 2014 special session and competition

on single objective real-parameter numerical optimization,” Technical

Report, December 2013.

[10] R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic systems

with particle swarms,” in Proc. IEEE Congress on Evolutionary

Computation (CEC’01), Seoul, South Korea, 2001, pp. 94-100.

[11] R. F. Malik, T. A. Rahman, S. Z. M. Hashim, and R. Ngah, “New

particle swarm optimizer with sigmoid increasing inertia weight,”

International Journal of Computer Science and Security, vol. 1, pp.

35-44, 2007.

[12] W. A. Hassan, M. B. Fayek, and S. I. Shaheen, “PSOSA: An optimized

particle swarm technique for solving the urban planning problem,” in

Proc. International Conference on Computer Engineering and

Systems, 2006, pp. 401-405.

[13] G. Chen, X. Huang, J. Jia, and Z. Min, “Natural exponential inertia

weight strategy in particle swarm optimization,” in Proc. Sixth World

Congress on Intelligent Control and Automation (WCICA), 2006, vol.

1, pp. 3672-3675.

[14] H. R. Li and Y. L. Gao, “Particle swarm optimization algorithm with

exponent decreasing inertia weight and stochastic mutation,” in Proc.

Second International Conference on Information and Computing

Science, 2009, pp. 66-69.

[15] Y. Gao, X. An, and J. Liu, “A particle swarm optimization algorithm

with logarithm decreasing inertia weight and chaos mutation,” in Proc.

International Conference on Computational Intelligence and

Security, 2008, vol. 1, pp. 61-65.

[16] A. Nikabadi and M. Ebadzadeh, “Particle swarm optimization

algorithms with adaptive inertia weight: a survey of the state of the art

and a novel method,” IEEE Journal of Evolutionary Computation,

2008.

[17] J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma, S. S. Jadon, and A.

Abraham, “Inertia weight strategies in particle swarm optimization,” in

Proc. Third World Congress on Nature and Biologically Inspired

Computing, 2011, pp. 640-647.

[18] M. A. Arasomwan and A. O. Adewumi, “On the performance of linear

decreasing inertia weight particle swarm optimization for global

optimization,” The Scientific World Journal, pp. 1-12, 2013.

[19] M. R. Rapaic and Z. Kanovic, “Time varying PSO — convergence

analysis, convergence-related parameterization and new parameter

adjustment schemes,” Information Processing Letters, vol. 109, pp.

548-552, 2009.

[20] M. Jiang, Y. P. Luo, and S. Y. Yang, “Stochastic convergence analysis

and parameter selection of the standard particle swarm optimization

algorithm,” Information Processing Letters, vol. 102, pp. 8-16, 2007.

[21] J. L. F. Martínez and E. G. Gonzalo, “The PSO family: Deduction,

stochastic analysis and comparison,” Swarm Intelligence, vol. 3, pp.

245-273, 2009.

[22] S. Kessentini and D. Barchiesi, “Quantitative comparison of optimized

nanorods, nanoshells and hollow nanospheres for photothermal

therapy,” Biomedical Optics Express, vol. 3, pp. 590-604, 2012.

Sameh Kessentini was born in Tunisia. She gets her

polyvalent engineering diploma in 2007 and master

degree in mathematical engineering in 2008 from the

Tunisia Polytechnic School. She receives her Ph.D.

degree in optimization and systems security from

University of Technology of Troyes, France in 2012.

She is now working as a lecturer in Faculty of Science

of Sfax-Tunisia, in the Department of Mathematics.

Her major fields of interest are mathematical

modeling, numerical methods, and optimization and advanced methods;

with engineering applications. Her research working published in many

journals and conferences’ proceedings. She is also a reviewer for two

indexed journals and many conferences since 2012.

Dominique Barchiesi was born on March 12, 1966 in

France. He receives his B.S. degree in physics 1988

and B.S. degree in mathematics 1993, M.S. degree in

physics 1989, Ph.D. degree in engineering 1993,

tenure in physics and signal processing 1999 from the

University of Franche-Comté. His major fields of

research interest are numerical modelling,

optimization and advanced methods with application

to engineering of nanotechnologies and plasmonics,

teaching of mathematics with strong links to physics and signal processing,

and SPOC design.

 He was an assistant professor at the University of Franche-Comté,

France from 1993 to 1999 and is nowadays a full professor of theoretical

physics, applied mathematics and statistics at the University of Technology

of Troyes, France. The result of his research has been published in over one

hundred fifty articles, conferences, and book chapters since 1993, in the

fields of cryptography, signal processing, optimization, finite element

method, plasmonics, near-field optical microscopies, optics,

electromagnetism, and didactic of physics.

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

373

