

Abstract—A reinforcement learning (RL) agent mostly

assumes environments are stationary which is not feasible on

most real world problems. Most RL approaches adapt slow

changes by forgetting the previous dynamics of the

environment. Reinforcement learning-context detection

(RL-CD) is a technique that helps determine changes of the

environment’s nature which the agent with the capability to

learn different dynamics of the non-stationary environment. In

this study we propose an autonomous agent that learns a

dynamic environment by taking advantage of hierarchical

reinforcement learning (HRL) and present how the hierarchical

structure can be integrated into RL-CD to speed up the

convergence of a policy.

Index Terms—Reinforcement learning, autonomous agent,

hierarchical reinforcement learning, non-stationary

environment, betweenness centrality, prioritized sweeping.

I. INTRODUCTION

Reinforcement learning (RL) is a behavioral learning

method in which an agent interacts with an environment by

choosing actions and this environment returns a reward

signal and a new state. The aim of the agent is to maximize its

cumulative reward by attaining some goal state. The

environment is generally represented by a Markov Decision

Process (MDP). The agent-environment interaction proceeds

until the agent reaches a terminal state or a pre-specified

number of actions are taken [1]. The goal state is a terminal

state that the agent is expected to attain through the execution

of a series of actions. The agent is said to learn this series of

actions if it always selects (in a greedy policy) to execute this

series of actions. If the agent accrues a maximum of

cumulative reward by executing this specific series of actions

then it is said to learn the optimal policy.

In problems with a large or continuous state space,

hierarchical approaches are advantageous because the agent

can consider not just one task, but a whole range of sub-tasks,

solve them independently, and combine their individual

solutions to solve the whole task. Also the agent is capable of

executing primitive actions as well as higher-level,

temporally-extended actions, called options. Options are

represented in terms of Semi-Markov Decision Processes

(SMDPs) and establish a close analogy with actions and

MDPs they are represented with. SMDPs provide a flexibility

for the options in terms of the variable execution timing

Manuscript received December 22, 2014; revised April 21, 2015. This

work is supported by the Marmara University Research Fund, BAPKO,

D-Type project.
Yiğit E. Yücesoy is with the Halic University, Istanbul, Turkey (e-mail:

efe@ycsoy.com).

M. Borahan Tümer is with the Marmara University, Istanbul, Turkey

(e-mail: borahan.tumer@marmara.edu.tr).

II. RELATED WORK

A. Reinforcement Learning

Reinforcement Learning (RL) is a behavioral learning

method where the learner, the agent, does not have any

knowledge about its current state or consequences of actions.

The agent learns how to behave from the immediate

–negative or positive- reward received as a response to each

action [10]. RL can be modeled by Markov Decision

Processes (MDP), a sequential, discrete time, decision

making framework which can be specified by four variables

(s, a, s', r) where; s ∈ S is the current state of agent, a ∈ As is

the selected action in action set of state s, s' ∈ S is the next

state which is responded by environment and r is the

immediate reward of transition from state s to s' with action a.

Hierarchical Reinforcement Learning with Context

Detection (HRL-CD)

Yiğit E. Yücesoy and M. Borahan Tümer

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

353DOI: 10.7763/IJMLC.2015.V5.533

possibilities which also gives way to using actions concurrent

with options as single time-step options [2]-[4].

Decomposing a problem into smaller tasks greatly

improves RL methods; on the other hand, it raises another

problem: how are sub-goals of options to be extracted?

Sub-goals can be seen as bottlenecks or doorways in an

environment [4]. If the agent can discover these bottleneck

regions and learn policies to reach them from within a set of

initial states (i.e., the initiation set) during the initial stages of

learning, it can use these policies for more effective

exploration as well as refine quicker its overall policy.

McGovern and Barto used diverse density [5], Şimşek and

Barto employed the concept of betweenness centrality from

the graph theory [6], and Menache et al. used graph based

Min-Cut algorithm to find sub-goals in an environment [7].

In a non-stationary environment an effective RL algorithm

must be able to keep up with the changes to find an optimal

policy, which turns out to be a problem for classic RL

algorithms. Choi et al. developed a method called

Multiple-Model Reinforcement Learning (MMRL) [8] which

assumes a fixed number of dynamics and known by the

designer. This assumption is not practical and unpretentious

for real world problems. In order to overcome this problem,

Silva et al. developed Reinforcement Learning with Context

Detection (RL-CD) algorithm for solving RL problems in a

non-stationary environment by detecting environmental

changes and creating new or selecting existing partial models

for the current state of the environment [9].

Hierarchical reinforcement learning is used for large scale

problems via creating a new hierarchy by separating the main

problems into sub-problems. Also RL-CD provides the agent

to perceive the differences of the environment’s dynamics.

This study extends RL-CD by constructing over a

hierarchical structure to improve convergence speed to a fit

policy.

With this setup, the problem can be defined in sequential

discrete time steps, t=0, 1, 2..., T. In every step, the agent

observes the current state st, then performs an action at from a

and receives a new state st+1 and an immediate reward rt+1.

At each step the agent selects an action among possible

actions by taking into account the probabilities from policy,

π. The agent applies the policy to determine which action a to

choose on state s. In other words, the policy π(s, a) denotes

the probability of taking action a in state s under policy π [9].

The agent’s goal is to find the best policy to maximize the

total reward.

B. Dynamic Programming Value Iteration

In the context of MDP, dynamic programming (DP) offers

algorithms to evaluate a policy provided that a perfect model

of the environment is available. DP can be used to compute

value functions and an optimal policy can be gained from

optimal value function, V*. a

ssP '
 is the transition probability

of reaching state s' from state s when taking action a and a

ssR '

reward of transition from state s to state s’ via action a [9].

'

'')'(max)(
s

a

ss

a

ssa sVRPsV (1)

This operation is called backup because a state-value is

updated by using approximate future or successor

state-values. Applying one backup to every state is called a

sweep which is iterated to converge to an optimal value

function V* [11].

C. Prioritized Sweeping

Prioritized Sweeping (PS) is a memory-based RL

algorithm which creates a model of the environment during

the learning phase. In general, the model is used by the agent

to predict how the environment will respond to its actions,

this is why the model contains next state — s' and reward

signal — r for a state-action -(s,a) tuple. With this

information, PS effectively updates the value table of (s,a)

pairs where only those pairs’ values get adjusted which move

the environment to an (s,a) pair with a non-zero value, which

is the main idea behind this algorithm. A priority queue is

kept to update (s,a) pairs in a sorted fashion by the amount of

their value adjustment. Ө is an application-dependent

threshold parameter to determine if an (s,a) pair picks up a

value adjustment big enough to deserve to be in the priority

queue and actually get updated. (If the (s,a) pair is already in

the queue, the newly calculated priority gets compared with

the old priority and the maximum one is updated for that (s,a)

pair. After updating the value of the (s,a) pair selected from

the queue by its priority, priorities of predecessors to the

selected state are calculated and if eligible enough they are

pushed into the queue. In this way updates are propagated

backwards until there is no priority left significant enough to

handle [12].

D. Hierarchical Reinforcement Learning

HRL is a RL technique devised to cope up with the curse

of dimensionality caused by problems with a large or

continuous state space by decomposing the learning process

into hierarchies using divide-and-conquer approach. Either

manually by the designer or by some algorithm prior to the

learning [4], or, as we present, autonomously by the agent as

a part of the learning [10], the environment is divided into a

number of regions that facilitate the split of the main task into

a number of sub-tasks with well-defined sub-goals.

In a lower level hierarchy, all sub-goals are learned within

the corresponding regions using “flat” RL techniques, and the

policy ij that leads in region i to sub-goal sgj is stored —

along with a set of possible start states describing the relevant

region of application and a termination condition specifying

where and with what probability the policy ends — as a

complex action or the term we use in this work, an option.

Fig. 1. Time steps of classical MDP (a) and MDP with options (b).

In an upper level hierarchy, equipped with a set of options

executable in different regions of the environment, the agent

is capable of moving with “larger steps” (i.e., in a temporally

extended fashion as shown in Fig. 1(b)) any time it selects

one of these options in relevant states.

In order to define an option three components must be

included: I⊆S, initiation set which is a portion of the

environment, π: S×A→[0,1] is the defined policy for the

option’s behavior and β:S
+ → [0,1] is the termination

condition of the option. An option o can be used in all states

which are defined in the initiation set [2]. When an option

terminates the agent selects another option. Note that

primitive actions are considered as special case of options

which consist of one single time step [13].

E. Betweenness Centrality

On a social network, importance of a person raises with

how many people are connected through that person. Making

an analogy to the graph theory, some nodes are more critical

than others since they lie on the shortest paths between many

node pairs. In this sense they form a bottleneck playing a

central role for other nodes’ communication. In other words,

a point is considered to be central if it falls between other

points’ shortest paths [14], [15].

tvs

v

st

stvg

)(
)((2)

where s, t and v are some nodes on a grid, σst is the number of

shortest paths from s to t and σst(v) is the number of shortest

paths from s to t which pass on node v. g(v) is the

betweenness centrality of the node v. In order to calculate

betweenness centrality of a node, all the shortest paths

between each node pair node are needed to be calculated

except adjacent nodes.

F. Reinforcement Learning with Context Detection

On a classical RL approach, changes can be adapted by an

agent via forgetting previously learned policy and learning

new dynamics of an environment which works only if the

nature of an environment changes slowly and does not come

up repetitively. However, when the use of some historical

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

354

experience addressing a previous state of the environment is

required, the agent has to be able to acquire the corresponding

knowledge about the environment. Otherwise if the

environment changes and any of the previous experience do

not correspond to the new state, the agent must detect the

need of a new model as mentioned in RL-CD. To apply the

RL-CD method, dynamism of an environment should be

divided into stationary dynamics. However the changes of the

environment do not have to be known by the agent. The

purpose of RL-CD is to perceive the differences

automatically and divide the environment into stationary

parts [16]. Therefore RL-CD requires four conditions to be

satisfied; 1) dynamics of an environment should be separated

into several environments which have their own nature, 2) the

differences which are caused by the environment’s nature

cannot be observable by the agent but they can be predicted,

3) the changes which occur in the environment are

independent from the actions of the agent and 4) the changes

do not occur frequently.

RL-CD creates models, m, for every different

characteristic of the environment. Quality of a model, E, is a

value that shows the extent to which the estimate of this

previously acquired model matches with the current

environment. The agent uses the model with the highest

quality, Emax. When there is no model that has a higher E than

a pre-specified minimum match quality threshold, i.e., Emin is

less than the minimum quality threshold that means a new

model must be created by the agent [8].

III. HIERARCHICAL REINFORCEMENT LEARNING WITH

CONTEXT DETECTION

RL-CD detects environmental changes and as a reaction,

creates a new model of the environment or assigns a

previously learned model for the agent. Once a new model is

created, it is considered as a new problem, in other words

with every new model, a new problem emerges. In this study,

HRL is applied to speed up the convergence to a possibly

optimum policy of every distinct partial model. This

enhancement in speed is acquired by naturally isolating

clusters of options to be used only at specific models.

In order to autonomously divide the main problem into

smaller tasks, sub-goals should be discovered by the agent

without the interference of a designer. We use betweenness

centrality, which requires a perfect model; hence, the agent

should acquire a rather close model to a perfect model to

discover sub-goals. In other words if the agent has an ability

to perceive the environment as a whole sub-goals can be

discovered using betweenness centrality.

Betweenness centrality can detect important nodes of a

graph already generated by any model based algorithm, and

since RL-CD also needs a model of the environment, a model

based algorithm, PS, is used as the learning algorithm in this

study. Fig. 2 shows a model created by the agent from

experience which is modeled as a graph to apply betweenness

centrality.

 The agent must assess the accuracy of the model which

must reflect the environment as accurately as possible to

gather better sub-goal states. At the end of each episode,

betweenness centrality is iterated by the agent to find

candidate sub-goal states until the states discovered to be

potential sub-goals by the agent are stably identified.

In order to estimate the accuracy of discovered sub-goals

we use variance of sub-goal counts (Var[CSG]) on every

episode which decreases with the increasing model accuracy.

In other words, the agent’s model of the environment must be

accurate enough to create options or sub-tasks.

Fig. 2. Model of an environment constructed by the agent.

When the search for sub-goals is finished, the agent creates

initiation sets for options by using the model of the

environment. After an initiation set and the corresponding

sub-goal are defined for an option, the agent can use a

model-based algorithm, e.g., DP Value Iteration (DVI) to

learn the defined portion of the environment. DVI requires

and works on a perfect model of the environment provided by

the initiation set of the option so an option can be learned

apart from the main problem.

Once the options of a partial model are learned by the

agent, learning continues over the hierarchical structure

exploiting the options learned so far. Thereby for the partial

model on every state, an option can be selected among

primitive actions. On that account, on the partial models

which represents the environment with sufficient accuracy

the agent learns using options. On the other hand other partial

models that do not satisfy the mentioned criteria have to

continue learning over primitive actions, i.e., one time-step

options.

Hence in order to construct a setup for HRL-CD apart from

the classical RL-CD, options, current ε values for ε-greedy

selection, and step counts for every episode must be stored

and isolated in the corresponding partial model.

On the other hand, on a dynamic environment, termination

condition for options (β) is not sufficient because the agent

must make a new decision when the environment changes

other than continuing the option selected for the previous

nature of the environment. For this reason, when the agent

detects a change in the environment after choosing a proper

model, the option executed by the agent is terminated to make

a new decision for the current state of the environment.

IV. EMPIRICAL RESULTS

A. Setup for the Experiments

Limitations of the problem selection for this work are

mostly dictated by the RL-CD algorithm’s restrictions about

the environment [8]. We conduct our experiments on a grid

world problem to demonstrate that 1) the algorithm works, 2)

it outperforms RL-CD. Further the grid world is used since it

is suitable enough for visualization purposes so that

environmental changes and reactions of the agent can be

efficiently observable. Dynamism is incorporated to the

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

355

problem by reversing or rotating the directions of the actions

as indicated in Fig. 3.

Fig. 3. Different dynamics of the grid world problem; default, right rotated,

reversed, left rotated.

Prioritized sweeping parameters for updating Q function

are chosen as learning rate, α=0.2 and discount factor, γ=0.95

and threshold, θ=0.1.

Policy for choosing actions is constructed on ε-greedy

strategy. The value of ε is started at 0.7 and decreased to 0.01

as the learning continues.

 1007.001.0)(

t

et
(3)

Exponential Decay function (3) is implemented for

determining ε value for each time-step which decreases ε

value to 0.01 over time.

For RL-CD, Emin and ρ values are set to -0.4 and 0.1

respectively.

TABLE I: ENVIRONMENT STATE SPACES OF EXPERIMENTS

State Space Environment Dynamics

100 2

225 2

400 2
400 4

625 2

900 2
900 4

1225 2

1600 2
2025 2

2500 2

3025 2
3600 2

In this study, we conducted 1300 experiments with various

state-spaces shown in Table I. With each state space size, 100

experiments are performed where each 100-experiment set

consists of 50 runs of PS with RL-CD and 50 runs for

HRL-CD.

B. Results

In initial stages, HRL-CD operates essentially on primitive

actions to learn and solve the problem until the agent gathers

enough knowledge about the environment. That is why, some

parts of the environment (usually those parts closer to

terminal states) are experienced by primitive actions until

options are created and learned by the agent. Accordingly,

this fact results, for small environments with small state

space, in too fast a convergence to a policy before options can

be learned. This is not any different than RL-CD, but

mechanisms for hierarchical structure become redundant for

such a problem. Thus when dealing with small environments

HRL-CD does not have any advantages over classical

RL-CD.

Fig. 4. An environment with 100 states.

As a typical example to the above remark we conduct an

experiment with a relatively small (i.e., 10×10) state space.

HRL-CD suffers from the problem mentioned above. In Fig.

4 we show that HRL-CD does not offer an advantage over

RL-CD for this problem. At this point, the hierarchical

structure becomes redundant for environments of

approximately 100 states and below for the given problem.

Fig. 5. Range of learning options in 50 trials with an environment of 900

states.

Fig. 5 shows the results of the experiment with 30×30

states which better presents the influence of the hierarchical

structure over RL-CD. Until options are built HRL-CD and

RL-CD show the same tendency. HRL-CD agent

outperforms RL-CD after starting to utilize options and the

convergence to the learned policy significantly accelerates.

Learning of options occurs at the interval between the two red

vertical lines shown in Fig. 5.

Fig. 6. Learning curve of the agent on an environment with 900 states.

The effect of the options on learning can also be

interpreted by step counts of episodes as stated in Fig. 5 or

can be observable by the variance of step counts through the

learning process of the problem as shown on Fig. 6. As we

take into account the sub-goal counts to determine if the

model is accurate enough, the fall of the variance of sub-goal

counts (Var[CSG]) under a specific threshold triggers the

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

356

construction of the options.

On Fig. 6 Var[CSG] starts no sooner than 10
th
 episode

because we average over the last 10 episodes to calculate

Var[CSG]. The accuracy of the environment model, measured

by the Var[CSG] per episode, is continuously checked to

detect the episode at which the model represents the

environment closely enough. This specific episode is where

the construction of options may begin since at this very point,

the model sufficiently closely represents the real

environment. Since, after learning options, we do not need to

assess the accuracy of the model any more, the calculation of

Var[CSG] stops and the learning process of the main problem

continues also making use of the available options.

Fig. 7. Captures of 30×30 and 60×60 environments on the time options are

learned. Dark areas indicate the corresponding portion of the environment

that does not learned by the agent.

Fig. 7 shows two environments with 900 and 3600 states,

respectively. White areas at the lower right corner are learned

by the HRL-CD agent using primitive actions and while

learning the remaining part (i.e., the dark areas) of the

environment the options are also employed. The larger

environment (the one at the right) can gain more performance

from options because a larger area can be learned with the

involvement of hierarchical structures.

Fig. 8. Learning curve of the agent on an environment with 3600 states.

In Fig. 8, the HRL-CD agent arrives at the point at which

Var[CSG] falls under the preset “model maturity” threshold

and allows for the construction of options in average before

episode 29 (12%) and episode 30 (3%) for environments with

900 and 3600 states as shown in Fig. 6 and Fig. 8, in

respective order.

Instead of comparing states, we can compare updated

action-values which can provide a more accurate evaluation.

Table II tabulates the number of Q values learned i.e.,

updated to a value different than zero. This measurement

gives a more accurate rate about the learned portion of the

environment. Thus a better comparison can be achievable.

For instance, we already know that HRL-CD does not offer

an improvement when considering an environment with 100

states. Table II shows that approximately 44% of the problem

is experienced by the agent using only primitive actions and

this 44% of experience can even include the solution of the

main problem. But as the problem become larger, for

example the environment with 3600 states, construction of

the options occurs after the agent goes through approximately

1.2% of the main problem, which leaves 98.8% of the

problem to be solved by options.

TABLE II: EFFECT OF ENVIRONMENT SIZE ON USAGE OF OPTION/ PRIMITIVE

ACTION RATE

State

Space

Learned

Q Values

Missed

Q Values

Learned by

Primitive Actions Options

100 172 217 44.20% 55.80%

225 200 684 22.60% 77.40%

900 182 3404 5.10% 94.90%

3600 166 14213 1.20% 98.80%

Fig. 9. Total average steps with various environment sizes.

Results of various sizes of experiments are presented in Fig.

9. We show in this figure that as the state space increases,

effectiveness of HRL-CD over classical RL-CD grows. The

results shown on Fig. 9 can be considered as alternative

evidence supporting our claim that the sooner the options are

started to be used, the quicker the convergence into a

satisfactory policy occurs. The sooner the agent has access to

options during learning, the faster HRL-CD agent converges

than RL-CD agent provided they operate on the same

environment.

0K

100K

200K

300K

400K

500K

600K

700K

800K

900K

1.000K

100 225 400 625 900 1225 1600 2025 2500 3025 3600

M
ill

is
e

co
n

d
s

State Space

HRL-CD

RL-CD

Fig. 10. Average time in milliseconds with various environment sizes.

We have also compared the actual execution times of both

algorithms. We have employed the StopWatch class of .NET

Framework to assess the time as a measurement and run the

program under Windows 7 operating system. We illustrate

the time curves on Fig. 10. One should note here that both the

implementation of the algorithm and the concurrency

properties the relevant operating system provides extremely

affect to the time consumed by the execution of options and

primitive actions. Even the results presented on Fig. 10 show

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

357

that HRL-CD outperforms RL-CD, total time steps, shown in

Fig. 9, is a more accurate measure than the actual execution

times of both algorithms.

V. CONCLUSION

In this work we focused on deterministic, discrete,

dynamic environments, which have different dynamics that

occurs infrequently and independent from the agent. We

implemented an autonomous agent that can learn a dynamic

environment based on RL-CD technique without intervention

of a human. We also take advantage of hierarchical

reinforcement learning for constructing the algorithm which

has been used in the literature to speed up the learning

process [2]. In order to keep the agent autonomous,

hierarchical structure is maintained by betweenness centrality

with the idea proposed at [5].

By exploiting RL-CD and HRL with betweenness

centrality we implemented an algorithm called Hierarchical

Reinforcement Learning with Context Detection which

shows significant improvement especially for environments

with large state-space. Even though we did not observe any

progress on environments with small state-space, as the size

of the environments grows, HRL-CD outperforms RL-CD

with increasing significance. This behavior of the agent is the

result of the preparing phase for the hierarchical structure. In

order for the HRL-CD agent to autonomously create a

hierarchy, the agent must gather some information about the

environment, but on small problems, the RL-CD agent solves

the problem before HRL-CD agent constructs a hierarchy

which results in the same or a poorer performance for the

HRL-CD agent.

Our implementation of HRL-CD separates and stores

options in their corresponding model and prevents the usage

of options among models which is justifiable and a safe

approach since every model addresses a different dynamic of

the environment. But if we consider a chance that different

models can include the same or similar initiation sets,

learning these initiation sets separately becomes redundant.

Soni et al. offers a solution to transfer policies from one

domain to another by adopting homomorphism [17]. As a

future work, the approach in [17] can be applied to HRL-CD

to transfer policies of the options among models for the

different dynamics of the environment.

On the other hand, restrictions about the environment

stated by the RL-CD do not define a strict rule about the

differences of the dynamism of the environment. A similar

study may be run where the amount of the difference of

various stationary portions and the time spans of individual

dynamisms of the dynamic environment are two other system

variables.

REFERENCES

[1] A. Mcgovern, R. S. Sutton, S. Singh, D. Precup, and B. Ravindran,

“Hierarchical optimal control of MDPs,” in Proc. the Tenth Yale
Workshop on Adaptive and Learning Systems, 1998, pp. 186-191.

[2] R. S. Sutton, D. Precup, and S. Singh. (1999). Between MDPs and

semi-MDPs: A framework for temporal abstraction in reinforcement

learning. Artificial Intelligence, [Online]. pp. 181-211. Available:
http://dx.doi.org/10.1016/S0004-3702(99)00052-1

[3] A. McGovern and A. G. Barto, “Automatic discovery of subgoals in

reinforcement learning using diverse density,” in Proc. the 18th
International Conference on Machine Learning, 2001, pp. 361-368.

[4] Ö. Şimşek, “Behavioral building blocks for autonomous

agents-description identification and learning,” Ph.D. Thesis,
University of Massachusetts, Amherst, 2008.

[5] O. Şimşek and A. G. Barto, “Betweenness centrality as a basis for

forming skills,” Technical Report TR-2007-26, University of
Massachusetts, Department of Computer Science, Amherst, MA, 2007.

[6] I. Menache, S. Mannor, and N. Shimkin, “Q-cut — dynamic discovery

of sub-goals in reinforcement learning,” Machine Learning: ECML, pp.
187-195, 2002.

[7] S. P. M. Choi, D. Y. Yeung, and N. L. Zhang, “Multi-model approach

to non-stationary reinforcement learning,” Artificial Intelligence and
Soft Computing, ACTA Press, pp. 357-160, 2001.

[8] B. C. Silva, E. W. Basso, A. L. C. Bazzan, and P. M. Engel, “Dealing

with non-stationary environments using context detection,” in Proc.
the 23rd International Conference on Machine Learning ICML, 2006,

p. 2.

[9] R. S. Sutton and A. G. Barto, “Reinforcement learning: An
introduction,” Cambridge, MA: MIT press, 1998.

[10] K. L. Pack, M. L. Littman, and A. W. Moore, “Reinforcement learning:

A survey,” arXiv preprint cs/9605103, 1996.
[11] B. G. Andrew and S. Mahadevan, “Recent advances in hierarchical

reinforcement learning,” Discrete Event Dynamic Systems, vol. 13, no.

4, pp. 341-379, 2003.
[12] M. W. Andrew and C. G. Atkeson, “Prioritized sweeping:

Reinforcement learning with less data and less time,” Machine

Learning, vol. 13, no. 1, pp. 103-130, 1993.
[13] S. Martin and D. Precup, “Learning options in reinforcement learning,”

Abstraction, Reformulation, and Approximation, Springer Berlin

Heidelberg, pp. 212-223, 2002.
[14] B. Ulrik, “A faster algorithm for betweenness centrality,” Journal of

Mathematical Sociology, vol. 25, no. 2, pp. 163-177, 2001.

[15] N. E. J. Mark, “A measure of betweenness centrality based on random
walks,” Social Networks, vol. 27, no. 1, pp. 39-54, 2005.

[16] D. de Oliveira, A. L. Bazzan, B. C. da Silva, E. W. Basso, L. Nunes, R.
Rossetti, and L. Lamb, “Reinforcement learning based control of

traffic lights in non-stationary environments: A case study in a

microscopic simulator,” EUMAS, December 2006.
[17] S. Vishal and S. Singh, “Using homomorphisms to transfer options

across continuous reinforcement learning domains,” AAAI, vol. 6,

2006.

M. Borahan Tümer received his B.S. and M.S.

degrees both in computer engineering from Boğaziçi
University (İstanbul, Turkey) in 1987, and from

Istanbul Technical University, İstanbul, Turkey in

1990, respectively and his Ph.D. degree in electrical
and computer engineering from Marquette University,

Milwaukee, WI in 1998. Dr. Tümer is an associate

professor of the Computer Engineering Department at
Marmara University. Dr. Tümer’s current research

interests are in learning systems with an emphasis on reinforcement learning

and sequential decision making, learning automata, adaptive medical signal
processing, neural networks.

Yiğit Efe Yücesoy is currently an M.Sc. student at
Marmara University and he is working as a research

assistant at Halic University, Turkey. He received his

B.Sc. degree in computer engineering from the
Department of Engineering, Halic University, Istanbul

in 2009.

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

358

