
  

 

Abstract—A reinforcement learning (RL) agent mostly 

assumes environments are stationary which is not feasible on 

most real world problems. Most RL approaches adapt slow 

changes by forgetting the previous dynamics of the 

environment. Reinforcement learning-context detection 

(RL-CD) is a technique that helps determine changes of the 

environment’s nature which the agent with the capability to 

learn different dynamics of the non-stationary environment. In 

this study we propose an autonomous agent that learns a 

dynamic environment by taking advantage of hierarchical 

reinforcement learning (HRL) and present how the hierarchical 

structure can be integrated into RL-CD to speed up the 

convergence of a policy.  

 
Index Terms—Reinforcement learning, autonomous agent, 

hierarchical reinforcement learning, non-stationary 

environment, betweenness centrality, prioritized sweeping. 

 

I. INTRODUCTION 

Reinforcement learning (RL) is a behavioral learning 

method in which an agent interacts with an environment by 

choosing actions and this environment returns a reward 

signal and a new state. The aim of the agent is to maximize its 

cumulative reward by attaining some goal state. The 

environment is generally represented by a Markov Decision 

Process (MDP). The agent-environment interaction proceeds 

until the agent reaches a terminal state or a pre-specified 

number of actions are taken [1]. The goal state is a terminal 

state that the agent is expected to attain through the execution 

of a series of actions. The agent is said to learn this series of 

actions if it always selects (in a greedy policy) to execute this 

series of actions.  If the agent accrues a maximum of 

cumulative reward by executing this specific series of actions 

then it is said to learn the optimal policy. 

In problems with a large or continuous state space, 

hierarchical approaches are advantageous because the agent 

can consider not just one task, but a whole range of sub-tasks, 

solve them independently, and combine their individual 

solutions to solve the whole task. Also the agent is capable of 

executing primitive actions as well as higher-level, 

temporally-extended actions, called options. Options are 

represented in terms of Semi-Markov Decision Processes 

(SMDPs) and establish a close analogy with actions and 

MDPs they are represented with. SMDPs provide a flexibility 

for the options in terms of the variable execution timing 
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II. RELATED WORK 

A. Reinforcement Learning 

Reinforcement Learning (RL) is a behavioral learning 

method where the learner, the agent, does not have any 

knowledge about its current state or consequences of actions. 

The agent learns how to behave from the immediate 

–negative or positive- reward received as a response to each 

action [10]. RL can be modeled by Markov Decision 

Processes (MDP), a sequential, discrete time, decision 

making framework which can be specified by four variables 

(s, a, s', r) where; s ∈ S is the current state of agent, a ∈ As is 

the selected action in action set of state s, s' ∈ S is the next 

state which is responded by environment and r is the 

immediate reward of transition from state s to s' with action a. 
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possibilities which also gives way to using actions concurrent 

with options as single time-step options [2]-[4]. 

Decomposing a problem into smaller tasks greatly 

improves RL methods; on the other hand, it raises another 

problem: how are sub-goals of options to be extracted? 

Sub-goals can be seen as bottlenecks or doorways in an 

environment [4]. If the agent can discover these bottleneck 

regions and learn policies to reach them from within a set of 

initial states (i.e., the initiation set) during the initial stages of 

learning, it can use these policies for more effective 

exploration as well as refine quicker its overall policy. 

McGovern and Barto used diverse density [5], Şimşek and 

Barto employed the concept of betweenness centrality from 

the graph theory [6],  and Menache et al. used graph based 

Min-Cut algorithm to find sub-goals in an environment [7].   

In a non-stationary environment an effective RL algorithm 

must be able to keep up with the changes to find an optimal 

policy, which turns out to be a problem for classic RL 

algorithms. Choi et al. developed a method called 

Multiple-Model Reinforcement Learning (MMRL) [8] which 

assumes a fixed number of dynamics and known by the 

designer. This assumption is not practical and unpretentious 

for real world problems. In order to overcome this problem, 

Silva et al. developed Reinforcement Learning with Context 

Detection (RL-CD) algorithm for solving RL problems in a 

non-stationary environment by detecting environmental 

changes and creating new or selecting existing partial models 

for the current state of the environment [9].  

Hierarchical reinforcement learning is used for large scale 

problems via creating a new hierarchy by separating the main 

problems into sub-problems. Also RL-CD provides the agent 

to perceive the differences of the environment’s dynamics. 

This study extends RL-CD by constructing over a 

hierarchical structure to improve convergence speed to a fit 

policy. 

 



  

With this setup, the problem can be defined in sequential 

discrete time steps, t=0, 1, 2..., T. In every step, the agent 

observes the current state st, then performs an action at from a 

and receives a new state st+1 and an immediate reward rt+1. 

At each step the agent selects an action among possible 

actions by taking into account the probabilities from policy, 

π. The agent applies the policy to determine which action a to 

choose on state s. In other words, the policy π(s, a) denotes 

the probability of taking action a in state s under policy π [9]. 

The agent’s goal is to find the best policy to maximize the 

total reward. 

B. Dynamic Programming Value Iteration 

In the context of MDP, dynamic programming (DP) offers 

algorithms to evaluate a policy provided that a perfect model 

of the environment is available. DP can be used to compute 

value functions and an optimal policy can be gained from 

optimal value function, V*. a

ssP '
 is the transition probability 

of reaching state s' from state s when taking action a and a

ssR '
 

reward of transition from state s to state s’ via action a [9]. 

 

  
'

'' )'(max)(
s

a

ss

a

ssa sVRPsV                   (1) 

This operation is called backup because a state-value is 

updated by using approximate future or successor 

state-values. Applying one backup to every state is called a 

sweep which is iterated to converge to an optimal value 

function V* [11]. 

C. Prioritized Sweeping 

Prioritized Sweeping (PS) is a memory-based RL 

algorithm which creates a model of the environment during 

the learning phase. In general, the model is used by the agent 

to predict how the environment will respond to its actions, 

this is why the model contains next state — s' and reward 

signal —  r for a state-action -(s,a) tuple. With this 

information, PS effectively updates the value table of (s,a) 

pairs where only those pairs’ values get adjusted which move 

the environment to an (s,a) pair with a non-zero value, which 

is the main idea behind this algorithm. A priority queue is 

kept to update (s,a) pairs in a sorted fashion by the amount of 

their value adjustment. Ө is an application-dependent 

threshold parameter to determine if an (s,a) pair picks up a 

value adjustment big enough to deserve to be in the priority 

queue and actually get updated. (If the (s,a) pair is already in 

the queue, the newly calculated priority gets compared with 

the old priority and the maximum one is updated for that (s,a) 

pair. After updating the value of the (s,a) pair selected from 

the queue by its priority, priorities of predecessors to the 

selected state are calculated and if eligible enough they are 

pushed into the queue. In this way updates are propagated 

backwards until there is no priority left significant enough to 

handle [12]. 

D. Hierarchical Reinforcement Learning 

HRL is a RL technique devised to cope up with the curse 

of dimensionality caused by problems with a large or 

continuous state space by decomposing the learning process 

into hierarchies using divide-and-conquer approach. Either 

manually by the designer or by some algorithm prior to the 

learning [4], or, as we present, autonomously by the agent as 

a part of the learning [10], the environment is divided into a 

number of regions that facilitate the split of the main task into 

a number of sub-tasks with well-defined sub-goals. 

In a lower level hierarchy, all sub-goals are learned within 

the corresponding regions using “flat” RL techniques, and the 

policy ij that leads in region i to sub-goal sgj is stored — 

along with a set of possible start states describing the relevant 

region of application and a termination condition specifying 

where and with what probability the policy ends — as a 

complex action or the term we use in this work, an option. 

 

 
Fig. 1. Time steps of classical MDP (a) and MDP with options (b). 

 

In an upper level hierarchy, equipped with a set of options 

executable in different regions of the environment, the agent 

is capable of moving with “larger steps” (i.e., in a temporally 

extended fashion as shown in Fig. 1(b)) any time it selects 

one of these options in relevant states.   

In order to define an option three components must be 

included: I⊆S, initiation set which is a portion of the 

environment, π: S×A→[0,1] is the defined policy for the 

option’s behavior and β:S
+ → [0,1] is the termination 

condition of the option. An option o can be used in all states 

which are defined in the initiation set [2]. When an option 

terminates the agent selects another option. Note that 

primitive actions are considered as special case of options 

which consist of one single time step [13]. 

E. Betweenness Centrality 

On a social network, importance of a person raises with 

how many people are connected through that person. Making 

an analogy to the graph theory, some nodes are more critical 

than others since they lie on the shortest paths between many 

node pairs.  In this sense they form a bottleneck playing a 

central role for other nodes’ communication. In other words, 

a point is considered to be central if it falls between other 

points’ shortest paths [14], [15]. 
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where s, t and v are some nodes on a grid, σst is the number of 

shortest paths from s to t and σst(v) is the number of shortest 

paths from s to t which pass on node v. g(v) is the 

betweenness centrality of the node v. In order to calculate 

betweenness centrality of a node, all the shortest paths 

between each node pair node are needed to be calculated 

except adjacent nodes. 

F. Reinforcement Learning with Context Detection 

On a classical RL approach, changes can be adapted by an 

agent via forgetting previously learned policy and learning 

new dynamics of an environment which works only if the 

nature of an environment changes slowly and does not come 

up repetitively. However, when the use of some historical 

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

354



  

experience addressing a previous state of the environment is 

required, the agent has to be able to acquire the corresponding 

knowledge about the environment. Otherwise if the 

environment changes and any of the previous experience do 

not correspond to the new state, the agent must detect the 

need of a new model as mentioned in RL-CD. To apply the 

RL-CD method, dynamism of an environment should be 

divided into stationary dynamics. However the changes of the 

environment do not have to be known by the agent. The 

purpose of RL-CD is to perceive the differences 

automatically and divide the environment into stationary 

parts [16]. Therefore RL-CD requires four conditions to be 

satisfied; 1) dynamics of an environment should be separated 

into several environments which have their own nature, 2) the 

differences which are caused by the environment’s nature 

cannot be observable by the agent but they can be predicted, 

3) the changes which occur in the environment are 

independent from the actions of the agent and 4) the changes 

do not occur frequently. 

RL-CD creates models, m, for every different 

characteristic of the environment. Quality of a model, E, is a 

value that shows the extent to which the estimate of this 

previously acquired model matches with the current 

environment. The agent uses the model with the highest 

quality, Emax. When there is no model that has a higher E than 

a pre-specified minimum match quality threshold, i.e., Emin is 

less than the minimum quality threshold that means a new 

model must be created by the agent [8]. 

 

III. HIERARCHICAL REINFORCEMENT LEARNING WITH 

CONTEXT DETECTION 

RL-CD detects environmental changes and as a reaction, 

creates a new model of the environment or assigns a 

previously learned model for the agent. Once a new model is 

created, it is considered as a new problem, in other words 

with every new model, a new problem emerges. In this study, 

HRL is applied to speed up the convergence to a possibly 

optimum policy of every distinct partial model. This 

enhancement in speed is acquired by naturally isolating 

clusters of options to be used only at specific models.  

In order to autonomously divide the main problem into 

smaller tasks, sub-goals should be discovered by the agent 

without the interference of a designer. We use betweenness 

centrality, which requires a perfect model; hence, the agent 

should acquire a rather close model to a perfect model to 

discover sub-goals. In other words if the agent has an ability 

to perceive the environment as a whole sub-goals can be 

discovered using betweenness centrality. 

Betweenness centrality can detect important nodes of a 

graph already generated by any model based algorithm, and 

since RL-CD also needs a model of the environment, a model 

based algorithm, PS, is used as the learning algorithm in this 

study. Fig. 2 shows a model created by the agent from 

experience which is modeled as a graph to apply betweenness 

centrality. 

 The agent must assess the accuracy of the model which 

must reflect the environment as accurately as possible to 

gather better sub-goal states. At the end of each episode, 

betweenness centrality is iterated by the agent to find 

candidate sub-goal states until the states discovered to be 

potential sub-goals by the agent are stably identified.  

In order to estimate the accuracy of discovered sub-goals 

we use variance of sub-goal counts (Var[CSG]) on every 

episode which decreases with the increasing model accuracy. 

In other words, the agent’s model of the environment must be 

accurate enough to create options or sub-tasks. 

 
Fig. 2. Model of an environment constructed by the agent. 

 

When the search for sub-goals is finished, the agent creates 

initiation sets for options by using the model of the 

environment. After an initiation set and the corresponding 

sub-goal are defined for an option, the agent can use a 

model-based algorithm, e.g., DP Value Iteration (DVI) to 

learn the defined portion of the environment. DVI requires 

and works on a perfect model of the environment provided by 

the initiation set of the option so an option can be learned 

apart from the main problem. 

Once the options of a partial model are learned by the 

agent, learning continues over the hierarchical structure 

exploiting the options learned so far. Thereby for the partial 

model on every state, an option can be selected among 

primitive actions. On that account, on the partial models 

which represents the environment with sufficient accuracy 

the agent learns using options. On the other hand other partial 

models that do not satisfy the mentioned criteria have to 

continue learning over primitive actions, i.e., one time-step 

options.   

Hence in order to construct a setup for HRL-CD apart from 

the classical RL-CD, options, current ε values for ε-greedy 

selection, and step counts for every episode must be stored 

and isolated in the corresponding partial model. 

On the other hand, on a dynamic environment, termination 

condition for options (β) is not sufficient because the agent 

must make a new decision when the environment changes 

other than continuing the option selected for the previous 

nature of the environment. For this reason, when the agent 

detects a change in the environment after choosing a proper 

model, the option executed by the agent is terminated to make 

a new decision for the current state of the environment. 
 

IV. EMPIRICAL RESULTS 

A. Setup for the Experiments 

Limitations of the problem selection for this work are 

mostly dictated by the RL-CD algorithm’s restrictions about 

the environment [8]. We conduct our experiments on a grid 

world problem to demonstrate that 1) the algorithm works, 2) 

it outperforms RL-CD.  Further the grid world is used since it 

is suitable enough for visualization purposes so that 

environmental changes and reactions of the agent can be 

efficiently observable. Dynamism is incorporated to the 
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problem by reversing or rotating the directions of the actions 

as indicated in Fig. 3. 

 

 
Fig. 3. Different dynamics of the grid world problem; default, right rotated, 

reversed, left rotated. 

 

Prioritized sweeping parameters for updating Q function 

are chosen as learning rate, α=0.2 and discount factor, γ=0.95 

and threshold, θ=0.1. 

Policy for choosing actions is constructed on ε-greedy 

strategy. The value of ε is started at 0.7 and decreased to 0.01 

as the learning continues. 
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Exponential Decay function (3) is implemented for 

determining ε value for each time-step which decreases ε 

value to 0.01 over time. 

For RL-CD, Emin and ρ values are set to -0.4 and 0.1 

respectively. 
 

TABLE I: ENVIRONMENT STATE SPACES OF EXPERIMENTS 

State Space Environment Dynamics 

100 2 

225 2 

400 2 
400 4 

625 2 

900 2 
900 4 

1225 2 

1600 2 
2025 2 

2500 2 

3025 2 
3600 2 

 

In this study, we conducted 1300 experiments with various 

state-spaces shown in Table I. With each state space size, 100 

experiments are performed where each 100-experiment set 

consists of 50 runs of PS with RL-CD and 50 runs for 

HRL-CD. 

B. Results 

In initial stages, HRL-CD operates essentially on primitive 

actions to learn and solve the problem until the agent gathers 

enough knowledge about the environment. That is why, some 

parts of the environment (usually those parts closer to 

terminal states) are experienced by primitive actions until 

options are created and learned by the agent. Accordingly, 

this fact results, for small environments with small state 

space, in too fast a convergence to a policy before options can 

be learned. This is not any different than RL-CD, but 

mechanisms for hierarchical structure become redundant for 

such a problem. Thus when dealing with small environments 

HRL-CD does not have any advantages over classical 

RL-CD. 

 

 
Fig. 4. An environment with 100 states. 

 

As a typical example to the above remark we conduct an 

experiment with a relatively small (i.e., 10×10) state space.  

HRL-CD suffers from the problem mentioned above. In Fig. 

4 we show that HRL-CD does not offer an advantage over 

RL-CD for this problem. At this point, the hierarchical 

structure becomes redundant for environments of 

approximately 100 states and below for the given problem. 

 

 
Fig. 5. Range of learning options in 50 trials with an environment of 900 

states. 

 

Fig. 5 shows the results of the experiment with 30×30 

states which better presents the influence of the hierarchical 

structure over RL-CD. Until options are built HRL-CD and 

RL-CD show the same tendency. HRL-CD agent 

outperforms RL-CD after starting to utilize options and the 

convergence to the learned policy significantly accelerates. 

Learning of options occurs at the interval between the two red 

vertical lines shown in Fig. 5.  
 

 
Fig. 6. Learning curve of the agent on an environment with 900 states. 

 

The effect of the options on learning can also be 

interpreted by step counts of episodes as stated in Fig. 5 or 

can be observable by the variance of step counts through the 

learning process of the problem as shown on Fig. 6. As we 

take into account the sub-goal counts to determine if the 

model is accurate enough, the fall of the variance of sub-goal 

counts (Var[CSG]) under a specific threshold triggers the 
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construction of the options. 

On Fig. 6 Var[CSG] starts no sooner than 10
th
 episode 

because we average over the last 10 episodes to calculate 

Var[CSG]. The accuracy of the environment model, measured 

by the Var[CSG] per episode, is continuously checked to 

detect the episode at which the model represents the 

environment closely enough. This specific episode is where 

the construction of options may begin since at this very point, 

the model sufficiently closely represents the real 

environment. Since, after learning options, we do not need to 

assess the accuracy of the model any more, the calculation of 

Var[CSG] stops and the learning process of the main problem 

continues also making use of the available options. 

 

 
Fig. 7. Captures of 30×30 and 60×60 environments on the time options are 

learned. Dark areas indicate the corresponding portion of the environment 

that does not learned by the agent. 

 

Fig. 7 shows two environments with 900 and 3600 states, 

respectively. White areas at the lower right corner are learned 

by the HRL-CD agent using primitive actions and while 

learning the remaining part (i.e., the dark areas) of the 

environment the options are also employed. The larger 

environment (the one at the right) can gain more performance 

from options because a larger area can be learned with the 

involvement of hierarchical structures. 

 

 
Fig. 8. Learning curve of the agent on an environment with 3600 states. 

 

In Fig. 8, the HRL-CD agent arrives at the point at which 

Var[CSG] falls under the preset “model maturity” threshold 

and allows for the construction of options in average before 

episode 29 (12%) and episode 30 (3%) for environments with 

900 and 3600 states as shown in Fig. 6 and Fig. 8, in 

respective order. 

Instead of comparing states, we can compare updated 

action-values which can provide a more accurate evaluation. 

Table II tabulates the number of Q values learned i.e., 

updated to a value different than zero. This measurement 

gives a more accurate rate about the learned portion of the 

environment. Thus a better comparison can be achievable.  

For instance, we already know that HRL-CD does not offer 

an improvement when considering an environment with 100 

states. Table II shows that approximately 44% of the problem 

is experienced by the agent using only primitive actions and 

this 44% of experience can even include the solution of the 

main problem. But as the problem become larger, for 

example the environment with 3600 states, construction of 

the options occurs after the agent goes through approximately 

1.2% of the main problem, which leaves 98.8% of the 

problem to be solved by options. 

 
TABLE II: EFFECT OF ENVIRONMENT SIZE ON USAGE OF OPTION/ PRIMITIVE 

ACTION RATE 

State 

Space 

Learned  

Q Values 

Missed  

Q Values 

Learned by 

Primitive Actions Options 

100 172 217 44.20% 55.80% 

225 200 684 22.60% 77.40% 

900 182 3404 5.10% 94.90% 

3600 166 14213 1.20% 98.80% 

 

 
Fig. 9. Total average steps with various environment sizes. 

 

Results of various sizes of experiments are presented in Fig. 

9.  We show in this figure that as the state space increases, 

effectiveness of HRL-CD over classical RL-CD grows. The 

results shown on Fig. 9 can be considered as alternative 

evidence supporting our claim that the sooner the options are 

started to be used, the quicker the convergence into a 

satisfactory policy occurs. The sooner the agent has access to 

options during learning, the faster HRL-CD agent converges 

than RL-CD agent provided they operate on the same 

environment. 
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Fig. 10. Average time in milliseconds with various environment sizes. 

 

We have also compared the actual execution times of both 

algorithms.  We have employed the StopWatch class of .NET 

Framework to assess the time as a measurement and run the 

program under Windows 7 operating system.  We illustrate 

the time curves on Fig. 10.  One should note here that both the 

implementation of the algorithm and the concurrency 

properties the relevant operating system provides extremely 

affect to the time consumed by the execution of options and 

primitive actions. Even the results presented on Fig. 10 show 
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that HRL-CD outperforms RL-CD, total time steps, shown in 

Fig. 9, is a more accurate measure than the actual execution 

times of both algorithms. 

 

V. CONCLUSION 

In this work we focused on deterministic, discrete, 

dynamic environments, which have different dynamics that 

occurs infrequently and independent from the agent. We 

implemented an autonomous agent that can learn a dynamic 

environment based on RL-CD technique without intervention 

of a human. We also take advantage of hierarchical 

reinforcement learning for constructing the algorithm which 

has been used in the literature to speed up the learning 

process [2]. In order to keep the agent autonomous, 

hierarchical structure is maintained by betweenness centrality 

with the idea proposed at [5]. 

By exploiting RL-CD and HRL with betweenness 

centrality we implemented an algorithm called Hierarchical 

Reinforcement Learning with Context Detection which 

shows significant improvement especially for environments 

with large state-space. Even though we did not observe any 

progress on environments with small state-space, as the size 

of the environments grows, HRL-CD outperforms RL-CD 

with increasing significance. This behavior of the agent is the 

result of the preparing phase for the hierarchical structure. In 

order for the HRL-CD agent to autonomously create a 

hierarchy, the agent must gather some information about the 

environment, but on small problems, the RL-CD agent solves 

the problem before HRL-CD agent constructs a hierarchy 

which results in the same or a poorer performance for the 

HRL-CD agent.  

Our implementation of HRL-CD separates and stores 

options in their corresponding model and prevents the usage 

of options among models which is justifiable and a safe 

approach since every model addresses a different dynamic of 

the environment. But if we consider a chance that different 

models can include the same or similar initiation sets, 

learning these initiation sets separately becomes redundant. 

Soni et al. offers a solution to transfer policies from one 

domain to another by adopting homomorphism [17]. As a 

future work, the approach in [17] can be applied to HRL-CD 

to transfer policies of the options among models for the 

different dynamics of the environment. 

On the other hand, restrictions about the environment 

stated by the RL-CD do not define a strict rule about the 

differences of the dynamism of the environment. A similar 

study may be run where the amount of the difference of 

various stationary portions and the time spans of individual 

dynamisms of the dynamic environment are two other system 

variables. 

REFERENCES 

[1] A. Mcgovern, R. S. Sutton, S. Singh, D. Precup, and B. Ravindran, 

“Hierarchical optimal control of MDPs,” in Proc. the Tenth Yale 
Workshop on Adaptive and Learning Systems, 1998, pp. 186-191. 

[2] R. S. Sutton, D. Precup, and S. Singh. (1999). Between MDPs and 

semi-MDPs: A framework for temporal abstraction in reinforcement 

learning.  Artificial Intelligence, [Online]. pp. 181-211. Available: 
http://dx.doi.org/10.1016/S0004-3702(99)00052-1 

[3] A. McGovern and A. G. Barto, “Automatic discovery of subgoals in 

reinforcement learning using diverse density,” in Proc. the 18th 
International Conference on Machine Learning, 2001, pp. 361-368. 

[4] Ö. Şimşek, “Behavioral building blocks for autonomous 

agents-description identification and learning,” Ph.D. Thesis, 
University of Massachusetts, Amherst, 2008. 

[5] O. Şimşek and A. G. Barto, “Betweenness centrality as a basis for 

forming skills,” Technical Report TR-2007-26, University of 
Massachusetts, Department of Computer Science, Amherst, MA, 2007. 

[6] I. Menache, S. Mannor, and N. Shimkin, “Q-cut — dynamic discovery 

of sub-goals in reinforcement learning,” Machine Learning: ECML, pp. 
187-195, 2002. 

[7] S. P. M. Choi, D. Y. Yeung, and N. L. Zhang, “Multi-model approach 

to non-stationary reinforcement learning,” Artificial Intelligence and 
Soft Computing, ACTA Press, pp. 357-160, 2001. 

[8] B. C. Silva, E. W. Basso, A. L. C. Bazzan, and P. M. Engel, “Dealing 

with non-stationary environments using context detection,” in Proc. 
the 23rd International Conference on Machine Learning ICML, 2006, 

p. 2. 

[9] R. S. Sutton and A. G. Barto, “Reinforcement learning: An 
introduction,” Cambridge, MA: MIT press, 1998. 

[10] K. L. Pack, M. L. Littman, and A. W. Moore, “Reinforcement learning: 

A survey,” arXiv preprint cs/9605103, 1996. 
[11] B. G. Andrew and S. Mahadevan, “Recent advances in hierarchical 

reinforcement learning,” Discrete Event Dynamic Systems, vol. 13, no. 

4, pp. 341-379, 2003. 
[12] M. W. Andrew and C. G. Atkeson, “Prioritized sweeping: 

Reinforcement learning with less data and less time,” Machine 

Learning, vol. 13, no. 1, pp. 103-130, 1993. 
[13] S. Martin and D. Precup, “Learning options in reinforcement learning,” 

Abstraction, Reformulation, and Approximation, Springer Berlin 

Heidelberg, pp. 212-223, 2002. 
[14] B. Ulrik, “A faster algorithm for betweenness centrality,” Journal of 

Mathematical Sociology, vol. 25, no. 2, pp. 163-177, 2001. 

[15] N. E. J. Mark, “A measure of betweenness centrality based on random 
walks,” Social Networks, vol. 27, no. 1, pp. 39-54, 2005. 

[16] D. de Oliveira, A. L. Bazzan, B. C. da Silva, E. W. Basso, L. Nunes, R. 
Rossetti, and L. Lamb, “Reinforcement learning based control of 

traffic lights in non-stationary environments: A case study in a 

microscopic simulator,” EUMAS, December 2006. 
[17] S. Vishal and S. Singh, “Using homomorphisms to transfer options 

across continuous reinforcement learning domains,” AAAI, vol. 6, 

2006. 

 

M. Borahan Tümer received his B.S. and M.S. 

degrees both in computer engineering from Boğaziçi 
University (İstanbul, Turkey) in 1987, and from 

Istanbul Technical University, İstanbul, Turkey in 

1990, respectively and his Ph.D. degree in electrical 
and computer engineering from Marquette University, 

Milwaukee, WI in 1998. Dr. Tümer is an associate 

professor of the Computer Engineering Department at 
Marmara University. Dr. Tümer’s current research 

interests are in learning systems with an emphasis on reinforcement learning 

and sequential decision making, learning automata, adaptive medical signal 
processing, neural networks. 

 

Yiğit Efe Yücesoy is currently an M.Sc. student at 
Marmara University and he is working as a research 

assistant at Halic University, Turkey. He received his 

B.Sc. degree in computer engineering from the 
Department of Engineering, Halic University, Istanbul 

in 2009. 

 

 

 

 

 

 
 

International Journal of Machine Learning and Computing, Vol. 5, No. 5, October 2015

358


