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Abstract—The energy function of the off-lattice AB model 

has a number of deep valleys and hills which usually leads the 

search algorithms to trap into a local minimum point.  Existing 

studies usually performs algorithmic improvements on the 

well-known search methods to avoid from these local minimum 

points. However, these algorithmic improvements further 

increase the computational time which is not desired for the 

protein folding problem. In this study, it is aimed to smooth the 

energy landscape of  this energy function and thus, to find a 

near optimal or optimal configuration without performing 

algorithmic improvements on the search methods. This is 

achieved by adding an additional term to the original energy 

function by which a hydrophobic core is formed and a near 

optimal and optimal configuration is found easily. In the 

experiments, a newly proposed optimization algorithm, the 

Vortex Search (VS) algorithm, is used to minimize both the 

original and modified energy functions. Experimental results 

showed that, the modified energy function helps the VS 

algorithm to find the desired configurations much more easier 

than the original function when the maximum number of 

iterations is kept equal for both cases.

Index Terms—Off-lattice AB model, protein folding, vortex 

search algorithm.

I. INTRODUCTION

The protein folding problem is one of the most widely 

studied optimization problem which is known to be 

NP-complete. Once the proteins are synthesized, they fold in 

a unique three dimensional structure that makes them 

functional or biologically active. This physical process is 

known as the protein folding process. The mechanism behind 

the protein folding process is still unknown. However, there 

are some mathematical models proposed to simulate the 

protein folding process and to find the correct fold of an 

amino-acid sequence [1].

Existing mathematical models for the protein folding 

problem (or process) can be categorized into two different 

groups. The first group includes the all atom models in which 

all atomic details of a protein along with the physical 

interactions such as bond angle, torsion angle, van-der Waals 

forces, electrostatic interactions, charge transfer etc. are 

considered. These models are usually computationally 

expensive and utilize molecular dynamic (MD) simulations. 

The second group includes the simplified coarse-grained 

methods which are emerging as a practical alternative to 

all-atom models. In the coarse-grained methods, each 

amino-acid of a chain is represented in a binary form. 
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Perhaps the most widely studied model is the so called HP 

model [2], in which each amino-acid in a protein chain is 

considered either hydrophobic or polar. In the HP model, 

high resolution lattice models are used to accurately model 

the protein structure and to retain the computational 

efficiency of lattice models as well [3]. In lattice models, 

each amino-acid is mapped to a particular lattice point to 

form a continuous and self-avoiding amino-acid chain with 

fix bond lengths between successive amino-acid pairs. The 

lattice models benefits greatly from the discretization of 

protein phase space; however, it also suffers from this 

strategy. The discrete nature of the model surely affects the 

folding behaviors, especially the dynamics of the system [3]. 

To overcome this problem off-lattice model (or toy model) 

was proposed [4]. In the off-lattice model each amino-acid in 

a protein chain is considered either A (hydrophobic) or B 

(polar or hydrophilic) as in HP model. In this model, again 

the amino-acids are linked up with a fixed bond length, but 

different from the HP model the backbone can continuously 

bend between any pair of successive links. Additionally, in 

this model nonconsecutive amino-acids interact through a 

modified Leonard-Jones potential and there is an energy 

contribution from each bond angle between successive bonds. 

Therefore, when compared to the HP model, the off-lattice 

AB model is much more realistic.

Although, it is a more realistic model of the protein folding 

problem, even the simplified off-lattice AB model is far to be 

solved in polynomial time (it is NP complete). In literature, a 

number of studies have been proposed to solve the protein 

folding problem [5]-[9] by using off-lattice AB model. These 

studies, mainly utilizes well-known optimization algorithms 

or their extensions. When the proposed studies are compared 

to each other, it can be shown that, the improvements from 

one study over another mainly arise in terms of the fitness 

value reached by each method. The computational efficiency 

or the convergence behaviors of the used methods are usually 

not compared. 

In this study, it is aimed to increase the convergence speed 

of the algorithms to a near optimal or an optimal protein fold 

by modifying the off-lattice AB model energy function. In 

their initial study, Stillinger et. al. pointed out that, the given 

energy function of the off-lattice AB model makes no 

mention of solvent [4]. They also stated that, one could 

implicitly modify the energy function to include a solvent 

effect. Thus, with a small modification on the energy 

function of the off-lattice AB model, it is shown that, the 

energy surface of this function can be smoothed and thus, the 

convergence speed of the algorithms can be significantly 

improved. In our simulations, a newly proposed 

metaheuristic, the Vortex Search (VS) algorithm [10], is used. 

However, any other optimization algorithm could also be 
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used in the experiments.

The remaining part of this paper is organized as follows. In 

Section-2, the off-lattice AB model is mentioned and then the 

modified energy function for the off-lattice AB model is 

introduced. Section-3 covers the recently proposed Vortex 

Search algorithm. In Section-4, experimental results and 

discussions are given. Finally, Section-5 concludes the work.

II. THE OFF-LATTICE AB MODEL

A. The Original Energy Function

The off-lattice AB model was proposed by Stillinger et. al. 

[4]. In this model, amino-acids are linked by rigid unit-length 

bonds to form linear unoriented polymers that reside in two 

dimensions. A configuration of n-mer sequence is defined by 

n angles 12 ,..., nθθ ,where πθπ i  . A sample 

configuration is shown in Fig.1. It is obvious that 

0iθ corresponds to linearity of successive bonds, and 

positive angles indicate counterclockwise rotation.

Fig. 1. A sample configuration of off-lattice AB model in two 

dimensional space.

The free energy function Φ of a configuration is defined as 

in Eq. (1).
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The first component of the energy function models the 

backbone bend potentials and it is independent of the A,B 

sequence, while the second one models the non-bonded 

interactions and it depends on the A,B sequence and receives 

a contribution from the each amino-acid pairs that are not 

directly attached by a backbone bond. Thus, 1),( jξiξC for 

AA pairs, 5.0),( jξiξC for AB or BA pairs, and 

5.0),( jξiξC for BB pairs. ijr represents the distance 

between the amino-acid i and the amino-acid j and can be 

computed by using Eq. (2).
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Stillinger et al. pointed out that, the above given energy 

function of the off-lattice AB model makes no mention of 

solvent [4]. They also stated that, one could implicitly modify 

the energy function to include a solvent effect. In the 

following subsection, the proposed modified energy function 

that includes the solvent effect is introduced.

B. The Modified Energy Function

Protein-solvent interactions and the influence of the 

solvent on protein's thermodynamic properties is in fact very 

complex and a simulation with a real solvent medium is 

therefore computationally expensive. Thus, in this study 

instead of a real solvent medium, the solvent effect is 

implicitly modeled by an hydrophobic core. It is accepted 

that the first-order driving force of the protein folding is due 

to a "hydrophobic collapse" in which those amino-acids 

which prefer to be shielded from water are driven to the core 

of the protein, while those which interact more favorably 

with water remain on the outside of the protein [11]. Hence, 

the energy function of the off-lattice AB model is modified to 

force the amino-acid chain to form a hydrophobic core which 

in turn favors hydrophobic-hydrophobic interactions. To 

achieve this, a simple modification is performed on the 

original energy function. The modified energy function 

includes an additional term h which is a function of the 

distance for non-consecutive AA pair of amino-acids, while 

for other pairs it is independent of the distance (Eq. (3)).  
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In Eq. (3), 
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,
 for AA pairs, and  jiij ξξCP ,

for other pairs, n represents the total number of amino-acids 

for a given amino-acid chain. In this manner, AA pairs are 

forced to form a hydrophobic core. Because the neighbor BB 

pairs are also welcomed, they are also included in the 

additional term but they are independent of the distance to 

prevent a possible formation of a hydrophilic core. Both the 

AB and BA pairs are also selected to be independent of 

distance. Otherwise, they form a high energy barrier during 

search process which prevents the algorithm to visit other 

configurations. The additional term h helps the algorithm to 

form a hydrophobic core during the search process. However, 

using this term alone causes to algorithm to form 

configurations that have high AA pair interactions by 

suppressing the effect of the bend potentials. The desired 

case is to have configurations in which both the bend 

potential effects and the hydrophobic effects are balanced. 

Thus, the Eq. (3) is compensated by an additional term which 

balances these two forces and forms more realistic 

configurations (Eq. (4)). 
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In Eq. (4), An represents the total number of A type 

amino-acids for a given amino-acid chain, Φ is the original 

energy function. Because the energy value of the original 

function can never exceed the An value,  a normalization 

can be performed by using the total number of A type 

amino-acids. This normalization process balances the effect 

of the terms which is required to find desired configurations.

Then the modified off-lattice AB model energy function is 

given as in Eq. (6).
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( , )m f h                                  (5)

The modified energy function is thought to have a more 

smoothed energy surface when compared to the original 

function which has many local minimum points with deep 

valleys and hills. Thus, it is much easier for algorithms to 

converge the optimum or a near optimal point during the 

search process.  This assumption is verified with the 

experimental results given in Section IV.

III. THE VORTEX SEARCH ALGORITHM

The Vortex Search (VS) algorithm is a recently proposed 

metaheuristic approach which is shown to be an effective 

method to perform numerical function optimization [10]. In 

order to achieve a good balance between the exploration and 

the exploitation, the search behavior of the VS algorithm is 

modeled as a vortex pattern.

Let us consider a two-dimensional optimization problem. 

In a two dimensional space, a vortex pattern can be modeled 

by a number of nested circles. Here, the outer (largest) circle 

of the vortex is first centered on the search space, where the 

initial center 0 can be calculated using Eq. (6).

2

lowLimupLim
μ0


                                (6)

where upLim and lowLim are 1d vectors that define the 

bound constraints of the problem in d dimensional space. 

Then a number of neighbor solutions )(sCt (t represents the 

iteration index and initially 0t ) are randomly generated 

around the initial center 0μ in the d-dimensional space by 

using a Gaussian distribution. Here, 

  nkssssC k ,...,2,1,,...,,)( 210  represents the solutions, 

and n represents the total number of candidate solutions. In 

Eq. 7, the general form of the multivariate Gaussian 

distribution is given.
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where d represents the dimension, x is the 1d vector of a 

random variable, μ is the 1d vector of the sample mean 

(center), and Σ is the covariance matrix. If the diagonal 

elements (variances) of the values of Σ are equal and if the 

off-diagonal elements (covariance) are zero (uncorrelated), 

then the resulting shape of the distribution will be spherical 

(which can be considered circular for a two-dimensional 

problem, as in our case). Thus, the value of Σ can be 

computed using equal variances with zero covariance, as in 

Eq.  (8).

    ddI  2                                (8)

where 2σ represents the variance of the distribution and I

represents the dd  identity matrix. The initial standard 

deviation  0σ of  the distribution can be calculated by using 

Eq. (9).
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Here, 0σ can also be considered as the initial radius  0r of 

the outer circle for a two-dimensional optimization problem. 

Because a weak locality is required in the initial phases, 0r is 

chosen to be a large value. Then in the selection phase, a 

solution (which is the best one) )(0

' sCs  is selected and 

memorized from )(0 sC to replace the current circle center 

0 . Prior to the selection phase, the candidate solutions must 

be ensured to be inside the search boundaries, as in Eq. (10).
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where nk ,...,2,1 , di ,...,2,1 and rand is a uniformly 

distributed random number. Next, the memorized best 

solution 's is assigned to be the center of the second circle 

(the inner one). In the generation phase of the second step, 

the effective radius  1r of this new circle is reduced, and 

then, a new set of solutions )(1 sC is generated around the 

new center. In the selection phase of the second step, the new 

set of solutions )(1 sC is evaluated to select a solution 

)(1

' sCs  . If the selected solution is better than the best 

solution found so far, then this solution is assigned to be the 

new best solution and it is memorized. Next, the center of the 

third circle is assigned to be the memorized best solution 

found so far. This process iterates until the termination 

condition is met. A description of the VS algorithm is also 

provided in Fig. 2.

Fig. 2. A description of the vortex search algorithm.

The radius decrement process given in Fig. 2 can be 

considered as a type of adaptive step-size adjustment process, 

which is also used in RS (Random Search) algorithms [12]. 

This process should be performed in such a way that allows 

the algorithm to behave in an explorative manner in the initial 

steps and in an exploitative manner in the latter steps. In the 

VS algorithm, the inverse incomplete gamma function is used 

to decrease the value of the radius during each iteration pass 

[10]. The incomplete gamma function used in the VS 
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algorithm is not very successful on the protein folding 

problem because of the shape of the energy landscape. The 

energy landscape of the protein folding problem has a funnel 

like shape which requires a sharp decrease in the initial steps 

and a less slope in the latter steps. Thus, in this study a 

piece-wise linear function is used to achieve this type of 

behavior.  In Eq. (11) required equations are given to form 

the piece-wise liner function that is used during the radius 

decrement process. 
t

a represents the function value at each 

iteration pass and 0a is selected as 10 a to ensure full 

coverage of the search space at the first iteration, t is the 

iteration index, and MaxItr represents the maximum number 

of iterations. Fig. 3 shows the change of the a value with 

respect to the iteration number.
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The initial radius 0r can be calculated using Eq. (12). 

Because 10 a ,  00 r as indicated before.

tt ar  0                                         (12)
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Fig. 3. Change of the piece-wise linear function (a value) for 5000 

iterations.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In Table I, computational results of 50 different trials are 

listed for 6 different benchmark amino-acid chains. The 

maximum number of iterations is selected as 5000 for the VS 

algorithm. Note that, the values listed in the column named 

“VS with modified energy function” are corresponding 

original energy function values of the found configurations 

by using the modified energy function with VS algorithm. As 

it can be shown from this table, for short amino-acid chains, 

original energy function performs better than the modified 

one in terms of the reached fitness value. However, note that, 

as stated in the first section, aim of this study is not to find the 

known ground state energy configurations of these 

benchmark sequences, but the aim is to find a near optimal 

solution as quickly as possible. Although, there is a small 

difference in the reached best energy values, the resulting 

configurations are quite similar. For short sequences, it is 

trivial to find a near optimal or optimal configuration. But 

when it comes to longer chains, the original energy function 

fails to find the near optimal configurations and performs 

worst than the modified energy function.  As stated before, 

by using the original energy function, usually algorithmic 

improvements are required to find the optimal configuration. 

Even these improvements, do not guarantee the optimal 

configuration and they are usually computationally 

expensive. 

Because of the complexity of the energy landscape created 

by the original energy function, even very similar 

configurations can have very distinct energy values. These 

means the original energy function have a number of deep 

valleys and hills around the ground state configuration. Thus, 

a more smoothed energy landscape is required for an 

algorithm to find the optimal or near optimal configuration 

easily. The small modification performed on the original 

energy function smoothes the energy landscape and thus 

allows the algorithms to find a near optimal or optimal 

configuration as quickly as possible. In Fig. 4, for the 

amino-acid chain BABABBABABBABBABABBAB, the 

best energy value achieved at each iteration pass is shown for 

the modified energy function and it is compared to the 

corresponding original energy value. As it can be shown from 

the Fig. 4, the modified energy function has a smooth energy 

landscape. But in contrast, the corresponding original energy 

value highly varies towards the near optimal configuration 

found by the algorithm. 

In Fig. 5 optimal and near optimal configurations found by 

the proposed method are given. These configurations are 

quite similar to the known ground state configurations 

[5]-[9]. 

ABAAB

ABBBB

AABABB

AAABAA ABBABBABABBAB BABABBABABBABBABABBAB

Fig. 5. Best configurations found by modified energy function and VS 

algorithm.

TABLE I: COMPUTATIONAL RESULTS OF THE PROPOSED METHOD

Sequence n VS with original 

energy function

VS with modified 

energy function

ABAAB 5 Mean: -1.37647

Std: 0

Best: -1.37647

Mean: -1.3631

Std: 2.41e-4

Best: -1.3637

ABBBB 5 Mean: -0.06596

Std: 0

Best: -0.06596

Mean: -0.06596

Std: 0

Best: -0.06596

AABABB 6 Mean: -1.3497

Std: 0.0155

Best: -1.36198

Mean: -1.3288

Std: 0.0128

Best: -1.3406

AAABAA 6 Mean: -3.5939

Std: 0.1234

Best: -3.6975

Mean: -3.5433

Std: 0.1332

Best: -3.6757

ABBABBABABBAB 13 Mean: -1.7590

Std: 0.3996

Best: -2.42

Mean: -2.4335

Std: 0.5966

Best: -3.2522

BABABBABABBABB

ABABBAB

21 Mean: -3.2622

Std: 0.7744

Best: -5.3137

Mean: -3.4190

Std: 0.7965

Best: -5.8249
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Fig. 4. Iteration number vs. energy value plot of amino-acid chain 

BABABBABABBABBABABBAB with modified energy function and its 

corresponding original energy function plot.

V. CONCLUSION

The off-lattice AB model for the protein folding problem is 

one of the most widely studied models within computer

science community. This model has a very complex energy 

function which makes difficult the problem to be solved 

within a reasonable time. Existing studies usually performs 

algorithmic improvements on the well-known search 

methods to find a near optimal or optimal configuration. 

However, these attempts further complicates the problem 

because an improvement on a search algorithm usually 

requires additional computational time which is not desired 

for the protein folding problem. Different from the existing 

studies, in this study, it is aimed to smooth the energy 

landscape of the off-lattice AB model energy function. By 

this way, even simple algorithms could find a near optimal or 

optimal configuration quickly without trapping into a local 

minimum point. For this purpose, a simple modification is 

performed on the original energy function by an additional 

term which helps the algorithm to form a hydrophobic core 

during the search process. This modification must be perform 

in such a way that will provide a balance between the original 

function and the additional term. Experiments showed that, 

the modified energy functions performs well on the chains up 

to 21 amino-acids. 

In the future studies, a more efficient energy function will 

be searched to find the near optimal or optimal configurations 

for longer amino-acid chains.
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