

Abstract—We consider the Canadian Traveler Problem

(CTP) wherein an agent needs to traverse a given graph's edges

that may or may not be blocked. The agent can observe the

actual status of an edge only upon reaching either end of the

edge. To aid its traversal, the agent is given prior blockage

probabilities associated with each edge. The goal is to devise an

algorithm that minimizes the expected traversal cost between

two given nodes. Both penalty-based and rollout-based

algorithms have been shown separately to provide high quality

policies for CTP. In this study, we compare these two

algorithmic frameworks via computational experiments

involving Delaunay and grid graphs using one specific

penalty-based algorithm and four rollout-based algorithms.

Our results indicate that the penalty-based algorithm executes

several orders of magnitude faster than rollout-based ones

while also providing better policies, suggesting that

penalty-based algorithms stand as a prominent candidate for

fast and efficient sub-optimal solution of CTP.

Index Terms—Probabilistic path planning, canadian traveler

problem, penalty-based algorithm, rollout-based algorithm.

I. INTRODUCTION

The Canadian Traveler Problem (CTP) is a probabilistic

path planning problem that is a representation of a situation

Canadian drivers encounter. When a driver reaches an

intersection and observes that the road ahead is blocked due

to heavy snow, the driver looks for another route. In the

graph theoretic analogue of this situation, an agent is given

probabilities associated with traversability of each edge in a

graph and the goal is to devise a policy1 that will result in the

shortest expected traversal cost between given starting and

termination points.

CTP has applications in robot navigation in stochastic

domains [1]-[3] adaptive traffic routing [4]-[6] and naval

minefield countermeasures [7]-[12]. Along with practical

applications, CTP has interesting theoretical properties,

which enables it to be cast as a Markov Decision Process

(MDP) with exponentially many states (hence its

intractability), or Partially Observable Markov Decision

Process (POMDP) with deterministic observations. It can

actually be shown that CTP belongs to an intermediate set of

problems, called Deterministic POMDPs that allow for state

uncertainty, meanwhile avoiding noisy observations [13],

Manuscript received December 9, 2014; revised February 26, 2015. This

research was supported by The Scientific and Technological Research

Council of Turkey (TUBITAK), Grant No. 111M541 and 113M489.

The authors are with the Department of Industrial Engineering, Istanbul

Sehir Univ., Istanbul, 34662, Turkey (e-mail: furkansahin@std.sehir.edu.tr,

aksakalli@sehir.edu.tr).
1 The terms solution and policy shall be used interchangeably in this

manuscript.

[14].

An AO*-based optimal algorithm has recently been

introduced for CTP that runs several orders of magnitude

faster than the classical AO* and value iteration [13]. The

new algorithm, called CAO*, improves upon AO* by

utilizing two key features: (1) a caching mechanism to avoid

re-expanding visited states, and (2) dynamic upper and lower

bounds at a node level for further state-space pruning.

Optimal algorithms for special cases of CTP have also been

studied [14], [15]. Approximation algorithms and heuristics

for CTP have been introduced as well [16]-[18]. In this

context, Eyerich et al. [19] made a significant contribution by

introducing and evaluating sampling-based (also known as

rollout-based) probabilistic algorithms for CTP on both

theoretical and empirical fronts. Although they show that a

new UCT-based [20] rollout algorithm (called Optimistic

UCT) converges to a global optimum, a major limitation of

rollout-based approaches in general is that they do not scale

well with large instances in terms of execution time. Hence,

the need for efficient and effective CTP algorithms arises.

A penalty-based algorithm for CTP generalizes the

well-known optimism approach by incorporating a penalty

term in the agent's traversal that discourages the agent from

traversing edges that are farther away from the termination

and/or edges that have high blockage probability. In

particular, a penalty-based algorithm calls for successive

execution of a deterministic shortest path algorithm with

respect to a particular penalty function until the agent's

arrival at the termination. One particular penalty-based

algorithm called the Distance-to-Termination (DT)

Algorithm was evaluated by utilizing CAO* as a benchmark

and it was shown to find high quality policies in very short

execution times [21]. One attractive feature of penalty-based

algorithms is that they scale quite well in terms of the

problem size relative to rollout-based approaches.

II. CTP FORMULATION

Let G = (V,E) be an undirected graph. An agent wishes to

A Comparison of Penalty and Rollout-Based Algorithms

for the Canadian Traveler Problem

O. Furkan Sahin and Vural Aksakalli

319

International Journal of Machine Learning and Computing, Vol. 5, No. 4, August 2015

DOI: 10.7763/IJMLC.2015.V5.527

Our goal in this study is to compare the penalty-based DT

Algorithm against four rollout-based ones both in terms of

execution time and solution quality for random CTP

instances defined on Delaunay and grid graphs. Our purpose

is to assess relative merits of these two algorithmic

frameworks on an empirical basis. The rest of this manuscript

is organized as follows: Section II is devoted to formal

definition of CTP. Section III describes the penalty and

rollout-based algorithms. The computational experiments are

presented in Section IV, which is followed by a summary and

our conclusions.

320

International Journal of Machine Learning and Computing, Vol. 5, No. 4, August 2015

traverse from Vs to Vt using edges Ee for which

the following functions are defined:

 Edge length function 1,0: E

 Blockage probability function 1,0: Ep

We assume that there are two types of edges. First, edges

in the subset EE ' are called stochastic edges for which

traversability status are unknown, but blockage probabilities

are known a priori by the agent in the form of the function p.

The agent cannot traverse a stochastic edge unless it has been

disambiguated and found to be unblocked. Disambiguation is

defined as revealing the actual status of a stochastic edge by

reaching an end node. Once disambiguated, status of a

stochastic edge does not change over the course of traversal.

It is further assumed that blockage probabilities of stochastic

edges are independent. The second subset 'EE is called the

set of deterministic edges, which are known to be traversable

without any disambiguation requirements. For convenience,

blockage probabilities of deterministic edges are defined to

be 0. The Canadian Traveler Problem (CTP) is defined as

finding the policy that will result in the shortest expected s, t

path length.

III. ALGORITHMS FOR CTP

We consider a total of six algorithms for CTP. The first

algorithm is Optimism that does not require any rollouts, yet

it can be used as a benchmark due to its simplicity and

popularity. The next four are the rollout-based methods:

Hindsight Optimization, Optimistic Rollout, Blind UCT, and

Optimistic UCT. The last algorithm is the penalty-based DT

Algorithm (DTA).

A. Optimism (OMT)

The Optimism Algorithm (OMT) employs a popular

technique from robotic motion planning called free-space

assumption. The agent assumes that all edges are traversable

and calculates the deterministic shortest path and

re-calculates it again whenever a blocked edge is encountered.

Optimistic policy does not take probabilistic information (in

this case blockage probabilities) into account. Within the

context of CTP, OMT employs the following

navigate-disambiguate-repeat (NDR) strategy:

1) Find the deterministic s, t shortest path in the graph

where all the edge weights are set to the edge lengths.

That is,)(:)(eewOMT

2) Traverse the path until a node associated with an

ambiguous stochastic edge is reached.

3) Since an ambiguous edge cannot be traversed,

disambiguate the edge from the current node. Set the

blockage probability to zero if the edge has been found

to be traversable, and 1 otherwise.

4) Set the current node as the new starting node s and repeat

1 through 3 until t is reached.

Despite its simplicity, Optimism is a common approach for

solving both CTP [22] and robotic motion planning problems

[23], [24]. Hence, it can be considered as a baseline for

evaluating solution quality of CTP algorithms.

B. Hindsight Optimization (HOP)

Hindsight optimization (HOP) solves a sequence of

determinized problems to calculate a policy in a stochastic

setting. However, unlike Optimism, HOP uses graph-specific

probabilistic information by generating a set of samples from

the graph and performs a sequence of actions called rollouts.

In each rollout, HOP creates a determinized instance of the

graph where some edges are blocked and some are

traversable according to their blockage probabilities. Next,

the algorithm solves a deterministic shortest path problem in

each rollout to estimate an average travel cost to determine

the next action. The algorithm determines the next course of

action by greedily choosing the step that gives the minimum

average travel cost estimate. The number of rollouts, denoted

by N, is an algorithm parameter. Solution quality is directly

proportional to N while run time is inversely proportional. In

our experiments, for all rollout-based algorithms, N is fixed

to 10,000 which has been shown to provide a good trade-off

between solution quality and run time [19].

HOP has been successfully used in various domains such

as network control [25] and probabilistic planning [26], [27].

However, as N approaches to infinity, it has been observed

that HOP often converges to a suboptimal policy for CTP

[19].

C. Optimistic Rollout (ORO)

In order to address the suboptimality issue of HOP,

optimistic rollout (ORO) approach makes a subtle

modification to the rollout mechanism [19]. Both algorithms

perform N number of rollouts to compute cost estimates to

select the next action. However, ORO executes the optimistic

policy to assign the distance traveled as the rollout cost. In

other words, in ORO rollouts, the underlying deterministic

subgraph is hidden to the agent (whereas in HOP, it is

revealed to the agent, hence the deterministic shortest path

calculations). In practice, the agent traverses the

deterministic subgraph while following the optimistic policy,

and it re-plans the path whenever a blocked edge is

encountered. ORO selects successor edges which give the

minimum optimistic policy cost until the termination node is

reached.

D. Blind UCT (UCTB)

Introduced by Kocsis and C. Szepesvari [20], UCT (Upper

Confidence Bounds Applied to Trees) has shown success in

sequential decision making problems ranging from

multi-armed bandit problems to general Markov Decision

Processes [26], [28], including CTP [19]. UCT follows the

logic of the previous algorithms and calculates a cost estimate

by averaging the cost of N rollouts. Similar to ORO, in every

rollout, the underlying subgraph is hidden to the agent.

However, how the algorithm chooses the next action during

the rollouts is quite different from the previous algorithms.

Let b denote the initial belief state of the agent prior to its s, t

traversal. Starting from the belief state b, ibbb ,...,, 1

is called a belief sequence consisting of a particular order of

belief states. In each rollout, a belief state is added to the

sequence until the agent reaches the termination node.

The critical part is how UCT selects a b amongst the

alternative successor states
nbb ,...,1

. This is where the

321

International Journal of Machine Learning and Computing, Vol. 5, No. 4, August 2015

fundamental difference between the previous rollout-based

algorithms and UCT reveals itself. In HOP and ORO, each

rollout is an independent simulation whereas in UCT,

rollouts affect each other to allow exploiting the

graph-specific information. In simple terms, to select the next

action, UCT biases the selection towards successors that (1)

produce low cost estimates and (2) remain unexplored in the

previous rollouts. This trade-off between exploitation and

exploration is balanced with respect to what is called the UCT

Formula below:

 i

k

i

i

K

K

CCost
R

R
B

,

log
21

(1)

In the above expression,

i denotes the sequence that is extended with the

belief state
ib

),(iCost is the cost of traversing from to
i

)(kR denotes the number of rollouts starting with

among rollouts 1 through k, and

 kC is the average travel cost of rollouts kR .

To avoid the case where 0kR that makes the UCT

Formula approach to , the algorithm starts the first m

rollouts with visiting each successor of once. By selecting

the
i that maximizes the UCT Formula, UCT optimizes the

trade-off explained above.

E. Optimistic UCT (UCTO)

The UCT Algorithm explained above will be referred to as

Blind UCT (UCTB) in the following sections. To improve

solution quality and speed of convergence, UCTB is

modified by incorporating the optimistic approach and the

resulting algorithm is referred to as UCTO [19]. Specifically,

UCTO operates as follows:

1) During the rollouts, it breaks ties for unvisited

successors by picking the one that gives the lowest

optimistic policy cost.

2) It defines kR and kC using M additional

rollouts for the successor belief states while calculating

the cost of belief states using the optimistic policy.

Thus, during the initial rollouts, OMT helps UCTO to

select better paths earlier by sensing it during the additional

M rollouts. A reasonable number of additional rollouts M is

determined empirically, which is taken as 20 in our

computational experiments.

IV. PENALTY-BASED ALGORITHMS

Introduced by Aksakalli and Ari [8], the notion of

penalty-based algorithms for CTP refers to a heuristic

framework that involves successive calculation of

deterministic shortest paths during the agent's s, t traversal

with respect to the edge weights:

 eFeew Ee

ePBA '1)(:)((2)

where 1 is the indicator function and 0eF is an edge

penalty function. The idea behind using a penalty function is

to discourage the agent from traversing risky edges by

assigning them additional weights. In particular, a

penalty-based algorithm can be seen as an extension of

Optimism that uses)(ewPBA instead of)(ewOMT in

calculation of deterministic shortest paths within the NDR

strategy. Likewise, Optimism can be thought of as a

penalty-based algorithm where 0eF for all Ee .

Subsequent to a series of computational experiments,

Aksakalli and Ari [8] advocates utilization of the following

penalty function:

))(log(

)(1

)(
:)(

epe

tDTA

ep

ed
eF

 (3)

where edt
denotes the distance from the edge e's middle

point to t, hence the name “distance-to-termination” (DT).

Observe that)(eF DTA specifically discourages the agent

from traversing edges that have high blockage probabilities

as well as edges that are far away from the termination node.

The penalty-based algorithm that uses)(eF DTA as the penalty

function shall be referred to as the DT Algorithm (DTA),

which is the particular penalty-based algorithm used in our

experiments in comparison against rollout-based ones.

V. COMPUTATIONAL EXPERIMENTS

Fig. 1. A Delaunay graph consisting of 20 nodes and 48 edges. Blocked

edges are represented by bold edges.

For both graph types, blockage probabilities are sampled

from Beta probability distribution parameterized via what we

call sensor accuracy and denote by λ [18]. Specifically, in

any CTP instance, for randomly chosen 50% of the edges,

blockage probabilities are sampled from Beta(4 – λ, 4 + λ)

(denoting unblocked edges in reality) and the blockage

probabilities of the other 50% of the edges are sampled from

Beta(4 + λ, 4 - λ) (this time denoting blocked edges in reality).

The motivation for introducing the sensor accuracy

parameter is to generate meaningful blockage probabilities,

which are obtained from sensors in practice. A real-life

application of sensor-obtained blockage probabilities within

a probabilistic path planning domain can be found in a U.S.

This section empirically compares performance of the above

six algorithms for CTP instances defined on two different

graph types: 1) classical Delaunay graphs on the plane and 2)

grid graphs, which are essentially 8-adjacency integer lattices.

An example of a Delaunay graph consisting of 20 nodes and 48

edges is shown in Fig. 1 whereas an example of a 10 ×10 grid

graph is illustrated in Fig. 2.

322

International Journal of Machine Learning and Computing, Vol. 5, No. 4, August 2015

Navy minefield data set called the COBRA data [29].

Fig. 2. A CTP instance on a 10 ×10 grid graph. Blocked edges are

represented by bold edges.

As λ approaches to 0 (lowest sensor accuracy), the sensor

will render “useless” information about the blockage status of

graph edges. On the other hand, as λ approaches to 4 (highest

sensor accuracy), the sensor will render almost “perfect”

information [18]. For each graph size on both Delaunay and

grid graphs, we consider two sensor accuracy levels: λ = 2

and λ = 3, which we designate as low and high sensor

accuracy, respectively. Probability density plots of the

respective λ values are shown in Fig. 3 and Fig. 4.

Fig. 3. Blockage probability density plots for λ = 2 for the Beta distribution.

Fig. 4. Blockage probability density plots for λ = 3 for the Beta distribution.

For all parameter combinations, each algorithm is tested on

a total of 900 instances for Delaunay graphs with 20 and 100

realizations each from 30 different graphs. Due to high

complexity and excessive run time requirements for larger

problems, we perform 100 runs (10 realizations each from 10

different graphs) for both Delaunay graphs with 250 nodes

and 20 20 grid graphs. Each graph was modeled to consist

of only stochastic edges. The computational experiments

were performed on a PC with a quad-core 3.60 GHz

processor and 16 GB of memory. All algorithms were

implemented in C++.

At this point, a clarification is in order. Definition of CTP

calls for minimization of expected s, t path length cost.

However, for a given CTP instance, computation of this

quantity for any algorithm is exponential in the number of

stochastic edges and it is prohibitively expensive. Therefore,

as in [19], we first sample what is called a “weather” from the

probability distribution of the stochastic edges to determine

the actual blockage status of these edges. Next, based on the

outcome of this sampling procedure, we form a deterministic

graph where some of these edges are blocked and the others

are not. Finally, we execute the algorithm under

consideration and find the actual travel cost of the s, t path.

A. Delaunay Graph Results

Experimental results on Delaunay graphs are summarized

in Table I. We observe that regarding rollout-based

algorithms, UCTO exhibits the best overall performance in

general, which is in line with the results of [19]. For low

sensor accuracy, i.e., for λ = 2, DTA outperforms all other

algorithms, though not by a large margin in the case of

rollout-based algorithms. On the other hand, for high sensor

accuracy, that is, for λ = 3, superiority of DTA against OMT

and rollout-based algorithms is more pronounced, indicating

DTA's sensitivity to reliable sensor information. In all

combinations considered, DTA outperformed OMT by up to

53.4% and UCTO by up to 8.1%. In particular, the cost of the

policies found by DT was better than OMT and UCTO by

38.6% and 4.2% respectively on the average.

In terms of run time, our results show that rollout-based

policies do not scale well with large instances, which can be

major advantage of penalty-based algorithms is that they

scale relatively gracefully with the graph size2. In all of our

tests, DTA ran extremely fast. In particular, whereas UCTO

ran in 95.2 seconds on graphs with 250 nodes, DTA ran in

merely 0.3 seconds, which is about a 320-fold computational

advantage. Of course, this is in addition to a 4.2%

improvement in solution quality of DTA over UCTO on the

average.

B. Grid Graph Results

Grid graph results are shown in Table and Table for

solution quality and execution time respectively. Despite the

high memory capacity, UCTB failed to yield a solution for

grid graphs, hence the “-” mark in the tables. Similar to

2 With at most n successive deterministic shortest path computations, run

time of DTA (as well as Optimism) can be seen to be O(n2logn) where n is the

number of graph nodes.

For both graph types, we consider two parameters for the

random CTP instances: graph size and sensor accuracy. We

use three different graph s izes for Delaunay graphs: small

graphs with 20 nodes, moderate graphs with 100 nodes, and

large graphs with 250 nodes. For grid-based graphs, we

consider two graph sizes: 10 ×10 lattices with 420 edges and 20

×20 lattices with 1640 edges.

×

nodes as well as 10 10 grid graphs: 30 blockage probability ×

II IV

seen in both . 5 IIIFig . On the other hand, one and Table

Delaunay graphs, DTA outperformed OMT by up to 23.7%

and UCTO by up to 3.2%. On the average, the cost of the

policies found by DTA was better than OMT by 20.9% and

UCTO by 2.8% respectively. In terms of execution time, DT

ran about 220 times faster than UCTO on 10x10 grid graphs

and about 40 times faster on 20x20 grid graphs. In particular,

on 20x20 grid graphs, DT ran in just 0.2 seconds on the

average whereas UCTO completed in 117.5 seconds.

Solution quality improvement of DTA was even higher with

the high sensor accuracy.

TABLE II: AVERAGE COST OF ALGORITHMS FOR GRID GRAPHS. LOWEST ALGORITHM COST FOR EACH PARAMETER COMBINATION IS DENOTED IN BOLD.

LAST TWO COLUMNS SHOW HOW MUCH DT IS BETTER THAN OMT AND UCTO RESPECTIVELY IN PERCENTAGES

λ Size OMT DT UCTO UCTB HOP ORO

DT vs.

OMT (%)

DT vs.

UCTO (%)

2 10x10 16.1 13.7 14.0 - 13.9 14.1 17.9 2.2

 20x20 31.3 25.9 26.6 - 26.7 26.4 20.7 2.9

3 10x10 16.0 12.9 13.3 - 19.6 19.9 20.9 2.8

 20x20 29.4 24.2 25.0 - 24.6 25.4 21.4 3.2

Mean 23.2 19.2 19.7 - 19.6 19.9 20.9 2.8

Median 22.8 18.9 19.5 - 19.4 19.8 21.1 2.8

Std. Dev. 8.3 6.8 7.1 - 7.0 6.9 2.4 0.3

TABLE III: RUNTIME AVERAGES (IN SECONDS) OF ALGORITHMS ON

DELAUNAY GRAPHS

Size OMT DT UCTO UCTB HOP ORO

20 0.1 0.1 0.6 1.4 0.6 1.7

100 0.1 0.2 18.5 104.5 10.5 51.5

250 0.2 0.3 95.2 747.3 48.8 326.2

TABLE IV: RUNTIME AVERAGES (IN SECONDS) OF ALGORITHMS ON GRID

GRAPHS

Size OMT DT UCTO UCTB HOP ORO

10x10 0.0 0.0 11.6 - 9.1 45.1

20x20 0.1 0.2 117.5 - 70.6 453.6

Fig. 5. Average run time as a function of size on Delaunay graphs.

VI. SUMMARY AND CONCLUSIONS

This study provides a set of computational experiments to

compare the penalty-based DT Algorithm against

rollout-based algorithms for CTP on random problem

instances defined on Delaunay and grid graphs. Our results

indicate that DTA runs significantly faster than rollout-based

algorithms while providing better policies in general. Run

time advantages of DTA are even more pronounced as graph

sizes get larger. As for solution quality, DTA outperformed

all other algorithms in all combinations for both sensor

accuracy levels in our tests, which we believe is quite

remarkable especially taking into account how simple it is

and how quickly it finds a solution.

There is one particular issue regarding sensitivity of DTA's

solution quality to sensor accuracy. As illustrated in the

previous section, relative performance of DTA seems to

increase as λ increases for λ = 2. However, in our limited

experiments for lower values of λ, performance of DTA took

a turn for the worse, this time sometimes being outperformed

by even OMT, i.e., the Optimism Algorithm. We suspect that

this behavior is related to the specific form of the DT penalty

function that seems to require a good amount of separation

between densities of blocked and unblocked edge

probabilities. We leave it to future research to devise efficient

methodologies for identification of better penalty functions

for a given CTP instance in the case of poor sensor accuracy.

ACKNOWLEDGMENT

We thank Patrick Eyerich, Thomas Keller, and Malte

Helmert for sharing with us their computer code for the

rollout-based algorithms.

323

International Journal of Machine Learning and Computing, Vol. 5, No. 4, August 2015

TABLE I: AVERAGE COST OF ALGORITHMS FOR DELAUNAY GRAPHS. LOWEST ALGORITHM COST FOR EACH PARAMETER COMBINATION IS DENOTED IN BOLD.

LAST TWO COLUMNS SHOW HOW MUCH DT IS BETTER THAN OMT AND UCTO RESPECTIVELY IN PERCENTAGES

λ Size OMT DT UCTO UCTB HOP ORO

DT vs.

OMT (%)

DT vs.

UCTO (%)

2 20 1938 1546 1551 2024 1593 1582 25.4 0.3

100 2543 1892 1954 3573 2147 2020 34.4 3.3

250 2554 1934 2010 4186 2247 2077 32.1 3.9

3 20 2035 1509 1540 2134 1562 1606 34.9 2.1

100 2630 1715 1854 3564 1899 1937 53.4 8.1

250 2634 1741 1870 3456 1842 1932 51.3 7.4

Mean 2389 1723 1797 3156 1882 1859 38.6 4.2

Median 2549 1728 1862 3510 1871 1935 34.6 3.6

Std. Dev. 316 174 203 874 280 212 11.2 3.0

REFERENCES

[1] D. M. Blei and L. P. Kaelbling, “Shortest paths in a dynamic uncertain

domain,” in Proc. the IJCAI Workshop on Adaptive Spatial

Representations of Dynamic Environments, CA: AAAI Press, 1999.

[2] D. Ferguson, A. Stenz, and S. Thrun, “PAO* for planning with hidden

state,” in Proc. the 2004 IEEE International Conf. on Robotics and

Automation, NJ: Wiley-IEEE Press, pp. 2840-2847, 2004.

[3] M. Likhachev, G. Gordon, and S. Thrun, “Planning for Markov

decision processes with sparse stochasticity,” Advances in Neural

Information Processing Systems, L. K. Saul, Y. Weiss, and L. Bottou,

eds., MA: MIT Press, pp. 785-792, 2005.

[4] D. Dey, A. Kolobov, R. Caruana, E. Kamar, E. Horvitz, and A. Kapoor,

“Gauss meets Canadian traveler: shortest-path problems with

correlated natural dynamics,” in Proc. the AAMS, pp. 1101-1108, 2014.

[5] J. Fawcett and P. Robinson, “Adaptive routing for road traffic,” IEEE

Comp. Graphics Appl., vol. 20, no. 3, pp. 46-53, 2000.

[6] S. Gao and I. Chabini, “Optimal routing policy problems in stochastic

time-dependent networks,” Transp. Res., Part B-Methodological, vol.

40, no. 2, pp. 93-122, 2006.

[7] V. Aksakalli, “The BAO* algorithm for stochastic shortest path

problems with dynamic learning,” in Proc. the 46th IEEE Conf. on

Decision and Control, NJ: Wiley-IEEE Press, pp. 6003-6008, 2007.

[8] V. Aksakalli and I. Ari, “Penalty-based algorithms for the stochastic

obstacle scene problem,” INFORMS Journal on Computing, vol. 26, no.

2, pp. 370-384, 2014.

[9] V. Aksakalli and E. Ceyhan, “Optimal obstacle placement with

disambiguations,” Ann. Appl. Stat., vol. 6, no. 4, pp. 1730-1774, 2012.

[10] V. Aksakalli, D. E. Fishkind, C. E. Priebe, and X. Ye, “The reset

disambiguation policy for navigating stochastic obstacle fields,” Naval

Res. Logist., vol. 58, pp. 389-399, 2011.

[11] D. E. Fishkind, C. E. Priebe, K. Giles, L. N. Smith, and V. Aksakalli,

“Disambiguation protocols based on risk simulation,” IEEE Trans. on

Systems, Man, and Cybernetics, Part A, vol. 37, no. 5, pp. 814-823,

2007.

[12] X. Ye and C. E. Priebe, “A graph-search based navigation algorithm for

traversing a potentially hazardous area with disambiguation,” Internat.

J. Oper. Res. And Information Sys., vol. 1, no. 3, pp. 14-27, 2010.

[13] V. Aksakalli, O. F. Sahin, and I. Ari, “An AO* based exact algorithm

for the Canadian traveler problem,” INFORMS Journal on Computing,

Forthcoming, 2015.

[14] Z. Bnaya, A. Felner, D. Fried, O. Maksin, and S. E. Shimony,

“Repeated-task Canadian traveler problem,” in Proc. Annual

Symposium on Combinatorial Search, CA:AAAI Press, pp. 24-30,

2011.

[15] E. Nikolova and D. R. Karger, “Route planning under uncertainty: the

Canadian traveller problem,” in Proc. the 23rd AAAI Conf. on Artificial

Intelligence, Chicago, IL, CA: AAAI Press, pp. 969-974, 2008.

[16] M. Baglietto, G. Battistelli, F. Vitali, and R. Zoppoli, “Shortest path

problems on stochastic graphs: a neurodynamic programming

approach,” in Proc. the 42nd IEEE Conf. on Decision and Control, NJ:

Wiley-IEEE Press, pp. 6187-6193, 2003.

[17] E. D. Demaine, Y. Huang, C. S. Liao, and K. Sadakane, “Canadians

should travel randomly,” Automata, Languages, and Programming,

Lecture Notes in Computer Science, J. Esparza, P. Fraigniaud, T.

Husfeldt, and E. Koutsoupias, eds., Springer Berlin Heidelberg, vol.

8572, pp. 380-391, 2014.

[18] Y. Xu, M. Hu, B. Su, B. Zhu, and Z. Zhu, “The Canadian traveller

problem and its competitive analysis,” J. Combinatorial Opt., vol. 18,

pp. 195-205, 2009.

[19] P. Eyerich, T. Keller, and M. Helmert, “High-quality policies for the

Canadian traveler problem,” in Proc. the 24th AAAI Conf. on Artificial

Intelligence, Atlanta, GA, Palo Alto, CA:AAAI Press, pp. 51-58, 2010.

[20] L. Kocsis and C. Szepesvari, “Bandit based Monte-Carlo planning,” in

Proc. the ECML, NY: Springer, pp. 282-293, 2006.

[21] O. F. Sahin and V. Aksakalli, “A fast and effective online algorithm for

the Canadian traveler problem,” in Proc. the ICAPS Workshop on

Planning and Robotics, 2014.

[22] Z. Bnaya, A. Felner, and S. E. Shimony, “Canadian traveler problem

with remote sensing,” in Proc. the IJCAI, AAAI Press, pp. 437-442,

2009.

[23] S. Koenig and M. Likhachev, “D* lite,” in Proc. the AAAI/IAAI, pp.

476-483, 2002.

[24] A. Stentz, “Optimal and efficient path planning for partially-known

environments,” in Proc. the ICRA, pp. 3310-3317, 1994.

[25] E. K. P. Chong, R. L. Givan, and H. S. Chang, “A framework for

simulation-based network control via hindsight optimization,” in Proc.

the 39th IEEE Conf. on Decision and Control, pp. 1433-1438, 2000.

[26] R. Bjarnason, A. Fern, and P. Tadepalli, “Lower bounding Klondike

solitaire with Monte-Carlo planning,” in Proc. the ICAPS, pp. 26-33,

2009.

[27] S. W. Yoon, A. Fern, R. Givan, and S. Kambhampati, “Probabilistic

planning via determinization in hindsight,” in Proc. the 23rd National

Conference on Artificial Intelligence, vol. 2, pp. 1010-1016, 2008.

[28] S. Gelly and D. Silver, “Combining online and offline knowledge in

UCT,” in Proc. the ICML, pp. 273-280, 2007.

[29] N. H. Witherspoon, J. H. Holloway, K. S. Davis, R. W. Miller, and A. C.

Dubey, “The coastal battlefield reconnaissance and analysis (COBRA)

program for minefield detection,” in Proc. the SPIE, pp. 500-508,

1995.

O. F. Sahin has received his B.Sc. degree in

manufacturing systems engineering from Sabanci

University, Turkey. He is currently a graduate student in

industrial and systems engineering at Istanbul Sehir

University, Turkey.

V. Aksakalli received his B.Sc. degree in mathematics

from Middle East Technical University in Ankara,

Turkey, his M.Sc. degree in industrial engineering and

operations research from North Carolina State

University in Raleigh, NC, and M.Sc. and Ph.D. degrees

in applied mathematics & statistics from Johns Hopkins

University in Baltimore, Maryland. He spent a number of

years in the U.S. working in the industry as an operations

research analyst, optimization software engineer, and senior business

technologies consultant. He is currently an associate professor of industrial

engineering at Istanbul Sehir University in Turkey. His research interests are

in stochastic optimization, data mining, and applied probability and statistics.

324

International Journal of Machine Learning and Computing, Vol. 5, No. 4, August 2015

