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Abstract—We consider the Canadian Traveler Problem 

(CTP) wherein an agent needs to traverse a given graph's edges 

that may or may not be blocked. The agent can observe the 

actual status of an edge only upon reaching either end of the 

edge. To aid its traversal, the agent is given prior blockage 

probabilities associated with each edge. The goal is to devise an 

algorithm that minimizes the expected traversal cost between 

two given nodes. Both penalty-based and rollout-based 

algorithms have been shown separately to provide high quality 

policies for CTP. In this study, we compare these two 

algorithmic frameworks via computational experiments 

involving Delaunay and grid graphs using one specific 

penalty-based algorithm and four rollout-based algorithms. 

Our results indicate that the penalty-based algorithm executes 

several orders of magnitude faster than rollout-based ones 

while also providing better policies, suggesting that 

penalty-based algorithms stand as a prominent candidate for 

fast and efficient sub-optimal solution of CTP. 

 
Index Terms—Probabilistic path planning, canadian traveler 

problem, penalty-based algorithm, rollout-based algorithm. 

 

I. INTRODUCTION 

The Canadian Traveler Problem (CTP) is a probabilistic 

path planning problem that is a representation of a situation 

Canadian drivers encounter. When a driver reaches an 

intersection and observes that the road ahead is blocked due 

to heavy snow, the driver looks for another route. In the 

graph theoretic analogue of this situation, an agent is given 

probabilities associated with traversability of each edge in a 

graph and the goal is to devise a policy1 that will result in the 

shortest expected traversal cost between given starting and 

termination points. 

CTP has applications in robot navigation in stochastic 

domains [1]-[3] adaptive traffic routing [4]-[6] and naval 

minefield countermeasures [7]-[12]. Along with practical 

applications, CTP has interesting theoretical properties, 

which enables it to be cast as a Markov Decision Process 

(MDP) with exponentially many states (hence its 

intractability), or Partially Observable Markov Decision 

Process (POMDP) with deterministic observations. It can 

actually be shown that CTP belongs to an intermediate set of 

problems, called Deterministic POMDPs that allow for state 

uncertainty, meanwhile avoiding noisy observations [13], 
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[14]. 

An AO*-based optimal algorithm has recently been 

introduced for CTP that runs several orders of magnitude 

faster than the classical AO* and value iteration [13]. The 

new algorithm, called CAO*, improves upon AO* by 

utilizing two key features: (1) a caching mechanism to avoid 

re-expanding visited states, and (2) dynamic upper and lower 

bounds at a node level for further state-space pruning. 

Optimal algorithms for special cases of CTP have also been 

studied [14], [15]. Approximation algorithms and heuristics 

for CTP have been introduced as well [16]-[18]. In this 

context, Eyerich et al. [19] made a significant contribution by 

introducing and evaluating sampling-based (also known as 

rollout-based) probabilistic algorithms for CTP on both 

theoretical and empirical fronts. Although they show that a 

new UCT-based [20] rollout algorithm (called Optimistic 

UCT) converges to a global optimum, a major limitation of 

rollout-based approaches in general is that they do not scale 

well with large instances in terms of execution time. Hence, 

the need for efficient and effective CTP algorithms arises. 

A penalty-based algorithm for CTP generalizes the 

well-known optimism approach by incorporating a penalty 

term in the agent's traversal that discourages the agent from 

traversing edges that are farther away from the termination 

and/or edges that have high blockage probability. In 

particular, a penalty-based algorithm calls for successive 

execution of a deterministic shortest path algorithm with 

respect to a particular penalty function until the agent's 

arrival at the termination. One particular penalty-based 

algorithm called the Distance-to-Termination (DT) 

Algorithm was evaluated by utilizing CAO* as a benchmark 

and it was shown to find high quality policies in very short 

execution times [21]. One attractive feature of penalty-based 

algorithms is that they scale quite well in terms of the 

problem size relative to rollout-based approaches. 

 

II. CTP FORMULATION 

Let G = (V,E)  be an undirected graph. An agent wishes to 
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Our goal in this study is to compare the penalty-based DT 

Algorithm against four rollout-based ones both in terms of 

execution time and solution quality for random CTP 

instances defined on Delaunay and grid graphs. Our purpose 

is to assess relative merits of these two algorithmic 

frameworks on an empirical basis. The rest of this manuscript 

is organized as follows: Section II is devoted to formal 

definition of CTP. Section III describes the penalty and 

rollout-based algorithms. The computational experiments are 

presented in Section IV, which is followed by a summary and 

our conclusions.
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traverse from Vs to Vt using edges Ee for which 

the following functions are defined:

 Edge length function  1,0: E

 Blockage probability function  1,0: Ep

We assume that there are two types of edges. First, edges 

in the subset EE ' are called stochastic edges for which 

traversability status are unknown, but blockage probabilities 

are known a priori by the agent in the form of the function p. 

The agent cannot traverse a stochastic edge unless it has been 

disambiguated and found to be unblocked. Disambiguation is 

defined as revealing the actual status of a stochastic edge by 

reaching an end node. Once disambiguated, status of a 

stochastic edge does not change over the course of traversal. 

It is further assumed that blockage probabilities of stochastic 

edges are independent. The second subset 'EE  is called the 

set of deterministic edges, which are known to be traversable 

without any disambiguation requirements. For convenience, 

blockage probabilities of deterministic edges are defined to 

be 0. The Canadian Traveler Problem (CTP) is defined as 

finding the policy that will result in the shortest expected s, t

path length.

III. ALGORITHMS FOR CTP

We consider a total of six algorithms for CTP. The first 

algorithm is Optimism that does not require any rollouts, yet 

it can be used as a benchmark due to its simplicity and 

popularity. The next four are the rollout-based methods: 

Hindsight Optimization, Optimistic Rollout, Blind UCT, and 

Optimistic UCT. The last algorithm is the penalty-based DT 

Algorithm (DTA).

A. Optimism (OMT)

The Optimism Algorithm (OMT) employs a popular 

technique from robotic motion planning called free-space 

assumption. The agent assumes that all edges are traversable 

and calculates the deterministic shortest path and 

re-calculates it again whenever a blocked edge is encountered. 

Optimistic policy does not take probabilistic information (in 

this case blockage probabilities) into account. Within the 

context of CTP, OMT employs the following 

navigate-disambiguate-repeat (NDR) strategy:

1) Find the deterministic s, t shortest path in the graph 

where all the edge weights are set to the edge lengths. 

That is, )(:)( eewOMT 

2) Traverse the path until a node associated with an 

ambiguous stochastic edge is reached.

3) Since an ambiguous edge cannot be traversed, 

disambiguate the edge from the current node. Set the 

blockage probability to zero if the edge has been found 

to be traversable, and 1 otherwise.

4) Set the current node as the new starting node s and repeat 

1 through 3 until t is reached.

Despite its simplicity, Optimism is a common approach for 

solving both CTP [22] and robotic motion planning problems 

[23], [24]. Hence, it can be considered as a baseline for 

evaluating solution quality of CTP algorithms.

B. Hindsight Optimization (HOP)

Hindsight optimization (HOP) solves a sequence of 

determinized problems to calculate a policy in a stochastic 

setting. However, unlike Optimism, HOP uses graph-specific 

probabilistic information by generating a set of samples from 

the graph and performs a sequence of actions called rollouts. 

In each rollout, HOP creates a determinized instance of the 

graph where some edges are blocked and some are 

traversable according to their blockage probabilities. Next, 

the algorithm solves a deterministic shortest path problem in 

each rollout to estimate an average travel cost to determine 

the next action. The algorithm determines the next course of 

action by greedily choosing the step that gives the minimum 

average travel cost estimate. The number of rollouts, denoted 

by N, is an algorithm parameter. Solution quality is directly 

proportional to N while run time is inversely proportional. In 

our experiments, for all rollout-based algorithms, N is fixed 

to 10,000 which has been shown to provide a good trade-off 

between solution quality and run time [19].

HOP has been successfully used in various domains such 

as network control [25] and probabilistic planning [26], [27]. 

However, as N approaches to infinity, it has been observed 

that HOP often converges to a suboptimal policy for CTP 

[19].

C. Optimistic Rollout (ORO)

In order to address the suboptimality issue of HOP, 

optimistic rollout (ORO) approach makes a subtle 

modification to the rollout mechanism [19]. Both algorithms 

perform N number of rollouts to compute cost estimates to 

select the next action. However, ORO executes the optimistic 

policy to assign the distance traveled as the rollout cost. In 

other words, in ORO rollouts, the underlying deterministic 

subgraph is hidden to the agent (whereas in HOP, it is 

revealed to the agent, hence the deterministic shortest path 

calculations). In practice, the agent traverses the 

deterministic subgraph while following the optimistic policy, 

and it re-plans the path whenever a blocked edge is 

encountered. ORO selects successor edges which give the 

minimum optimistic policy cost until the termination node is 

reached.

D. Blind UCT (UCTB)

Introduced by Kocsis and C. Szepesvari [20], UCT (Upper 

Confidence Bounds Applied to Trees) has shown success in 

sequential decision making problems ranging from 

multi-armed bandit problems to general Markov Decision 

Processes [26], [28], including CTP [19]. UCT follows the 

logic of the previous algorithms and calculates a cost estimate 

by averaging the cost of N rollouts. Similar to ORO, in every 

rollout, the underlying subgraph is hidden to the agent. 

However, how the algorithm chooses the next action during 

the rollouts is quite different from the previous algorithms. 

Let b denote the initial belief state of the agent prior to its s, t

traversal. Starting from the belief state b,  ibbb ,...,, 1

is called a belief sequence consisting of a particular order of 

belief states. In each rollout, a belief state is added to the 

sequence until the agent reaches the termination node.

The critical part is how UCT selects a b amongst the 

alternative successor states
nbb ,...,1

. This is where the 
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fundamental difference between the previous rollout-based 

algorithms and UCT reveals itself. In HOP and ORO, each 

rollout is an independent simulation whereas in UCT, 

rollouts affect each other to allow exploiting the 

graph-specific information. In simple terms, to select the next 

action, UCT biases the selection towards successors that (1) 

produce low cost estimates and (2) remain unexplored in the 

previous rollouts. This trade-off between exploitation and 

exploration is balanced with respect to what is called the UCT 

Formula below:

 
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In the above expression,


i denotes the sequence  that is extended with the 

belief state 
ib

 ),( iCost  is the cost of traversing from  to 
i

 )(kR denotes the number of rollouts starting with 

among rollouts 1 through k, and

  kC is the average travel cost of rollouts  kR .

To avoid the case where 0kR that makes the UCT 

Formula approach to  , the algorithm starts the first m

rollouts with visiting each successor of  once. By selecting 

the
i that maximizes the UCT Formula, UCT optimizes the 

trade-off explained above.

E. Optimistic UCT (UCTO)

The UCT Algorithm explained above will be referred to as 

Blind UCT (UCTB) in the following sections. To improve 

solution quality and speed of convergence, UCTB is 

modified by incorporating the optimistic approach and the 

resulting algorithm is referred to as UCTO [19]. Specifically, 

UCTO operates as follows:

1) During the rollouts, it breaks ties for unvisited 

successors by picking the one that gives the lowest 

optimistic policy cost.

2) It defines  kR and  kC using M additional 

rollouts for the successor belief states while calculating 

the cost of belief states using the optimistic policy.

Thus, during the initial rollouts, OMT helps UCTO to 

select better paths earlier by sensing it during the additional 

M rollouts. A reasonable number of additional rollouts M is 

determined empirically, which is taken as 20 in our 

computational experiments.

IV. PENALTY-BASED ALGORITHMS

Introduced by Aksakalli and Ari [8], the notion of 

penalty-based algorithms for CTP refers to a heuristic 

framework that involves successive calculation of 

deterministic shortest paths during the agent's s, t traversal 

with respect to the edge weights:

 eFeew Ee

ePBA   '1)(:)(  (2)

where 1 is the indicator function and   0eF is an edge 

penalty function. The idea behind using a penalty function is 

to discourage the agent from traversing risky edges by 

assigning them additional weights. In particular, a 

penalty-based algorithm can be seen as an extension of 

Optimism that uses )(ewPBA instead of )(ewOMT in 

calculation of deterministic shortest paths within the NDR 

strategy. Likewise, Optimism can be thought of as a 

penalty-based algorithm where   0eF for all Ee .

Subsequent to a series of computational experiments, 

Aksakalli and Ari [8] advocates utilization of the following 

penalty function:

))(log(
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


 (3)

where  edt
denotes the distance from the edge e's middle 

point to t, hence the name “distance-to-termination” (DT). 

Observe that )(eF DTA specifically discourages the agent 

from traversing edges that have high blockage probabilities 

as well as edges that are far away from the termination node. 

The penalty-based algorithm that uses )(eF DTA as the penalty 

function shall be referred to as the DT Algorithm (DTA), 

which is the particular penalty-based algorithm used in our 

experiments in comparison against rollout-based ones.

V. COMPUTATIONAL EXPERIMENTS

Fig. 1. A Delaunay graph consisting of 20 nodes and 48 edges. Blocked 

edges are represented by bold edges.

For both graph types, blockage probabilities are sampled 

from Beta probability distribution parameterized via what we 

call sensor accuracy and denote by λ [18]. Specifically, in 

any CTP instance, for randomly chosen 50% of the edges, 

blockage probabilities are sampled from Beta(4 – λ, 4 + λ) 

(denoting unblocked edges in reality) and the blockage 

probabilities of the other 50% of the edges are sampled from 

Beta(4 + λ, 4 - λ) (this time denoting blocked edges in reality). 

The motivation for introducing the sensor accuracy 

parameter is to generate meaningful blockage probabilities,

which are obtained from sensors in practice. A real-life 

application of sensor-obtained blockage probabilities within 

a probabilistic path planning domain can be found in a U.S. 

This section empirically compares performance of the above 

six algorithms for CTP instances defined on two different 

graph types: 1) classical Delaunay graphs on the plane and 2) 

grid graphs, which are essentially 8-adjacency integer lattices. 

An example of a Delaunay graph consisting of 20 nodes and 48 

edges is shown in Fig. 1 whereas an example of a 10 ×10 grid 

graph is illustrated in Fig. 2.
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Navy minefield data set called the COBRA data [29].

Fig. 2. A CTP instance on a 10 ×10 grid graph. Blocked edges are 

represented by bold edges.

As λ approaches to 0 (lowest sensor accuracy), the sensor 

will render “useless” information about the blockage status of 

graph edges. On the other hand, as λ approaches to 4 (highest 

sensor accuracy), the sensor will render almost “perfect”

information [18]. For each graph size on both Delaunay and 

grid graphs, we consider two sensor accuracy levels: λ = 2 

and λ = 3, which we designate as low and high sensor 

accuracy, respectively. Probability density plots of the 

respective λ values are shown in Fig. 3 and Fig. 4.

Fig. 3. Blockage probability density plots for λ = 2 for the Beta distribution.

Fig. 4. Blockage probability density plots for λ = 3 for the Beta distribution.

For all parameter combinations, each algorithm is tested on 

a total of 900 instances for Delaunay graphs with 20 and 100 

realizations each from 30 different graphs. Due to high 

complexity and excessive run time requirements for larger 

problems, we perform 100 runs (10 realizations each from 10 

different graphs) for both Delaunay graphs with 250 nodes 

and 20 20 grid graphs. Each graph was modeled to consist 

of only stochastic edges. The computational experiments 

were performed on a PC with a quad-core 3.60 GHz 

processor and 16 GB of memory. All algorithms were 

implemented in C++.

At this point, a clarification is in order. Definition of CTP 

calls for minimization of expected s, t path length cost. 

However, for a given CTP instance, computation of this 

quantity for any algorithm is exponential in the number of 

stochastic edges and it is prohibitively expensive. Therefore, 

as in [19], we first sample what is called a “weather” from the 

probability distribution of the stochastic edges to determine 

the actual blockage status of these edges. Next, based on the 

outcome of this sampling procedure, we form a deterministic 

graph where some of these edges are blocked and the others 

are not. Finally, we execute the algorithm under 

consideration and find the actual travel cost of the s, t path.

A. Delaunay Graph Results

Experimental results on Delaunay graphs are summarized 

in Table I. We observe that regarding rollout-based 

algorithms, UCTO exhibits the best overall performance in 

general, which is in line with the results of [19].  For low 

sensor accuracy, i.e., for λ = 2, DTA outperforms all other 

algorithms, though not by a large margin in the case of 

rollout-based algorithms. On the other hand, for high sensor 

accuracy, that is, for λ = 3, superiority of DTA against OMT 

and rollout-based algorithms is more pronounced, indicating 

DTA's sensitivity to reliable sensor information. In all 

combinations considered, DTA outperformed OMT by up to

53.4% and UCTO by up to 8.1%. In particular, the cost of the 

policies found by DT was better than OMT and UCTO by 

38.6% and 4.2% respectively on the average.

In terms of run time, our results show that rollout-based 

policies do not scale well with large instances, which can be 

major advantage of penalty-based algorithms is that they 

scale relatively gracefully with the graph size2. In all of our 

tests, DTA ran extremely fast. In particular, whereas UCTO 

ran in 95.2 seconds on graphs with 250 nodes, DTA ran in 

merely 0.3 seconds, which is about a 320-fold computational 

advantage. Of course, this is in addition to a 4.2% 

improvement in solution quality of DTA over UCTO on the 

average.

B. Grid Graph Results

Grid graph results are shown in Table and Table for 

solution quality and execution time respectively. Despite the 

high memory capacity, UCTB failed to yield a solution for 

grid graphs, hence the “-” mark in the tables. Similar to 

2 With at most n successive deterministic shortest path computations, run 

time of DTA (as well as Optimism) can be seen to be O(n2logn) where n is the 

number of graph nodes.

For both graph types, we consider two parameters for the 

random CTP instances: graph size and sensor accuracy. We 

use three different graph s izes for Delaunay graphs: small 

graphs with 20 nodes, moderate graphs with 100 nodes, and 

large graphs with 250 nodes. For grid-based graphs, we 

consider two graph sizes: 10 ×10 lattices with 420 edges and 20

×20 lattices with 1640 edges. 

×

nodes as well as 10 10 grid graphs: 30 blockage probability ×

II IV

seen in both . 5 IIIFig . On the other hand,  one and  Table 



  

Delaunay graphs, DTA outperformed OMT by up to 23.7% 

and UCTO by up to 3.2%. On the average, the cost of the 

policies found by DTA was better than OMT by 20.9% and 

UCTO by 2.8% respectively. In terms of execution time, DT 

ran about 220 times faster than UCTO on 10x10 grid graphs 

and about 40 times faster on 20x20 grid graphs. In particular, 

on 20x20 grid graphs, DT ran in just 0.2 seconds on the 

average whereas UCTO completed in 117.5 seconds. 

Solution quality improvement of DTA was even higher with 

the high sensor accuracy. 
 

   

      

        

 

 

 

 

          

          

          

          

          

          

         

         

         

 

TABLE II: AVERAGE COST OF ALGORITHMS FOR GRID GRAPHS. LOWEST ALGORITHM COST FOR EACH PARAMETER COMBINATION IS DENOTED IN BOLD. 

LAST TWO COLUMNS SHOW HOW MUCH DT IS BETTER THAN OMT AND UCTO RESPECTIVELY IN PERCENTAGES 

λ Size OMT DT UCTO UCTB HOP ORO 

DT vs.  

OMT (%) 

DT vs.  

UCTO (%) 

2 10x10 16.1 13.7 14.0 - 13.9 14.1 17.9 2.2 

 20x20 31.3 25.9 26.6 - 26.7 26.4 20.7 2.9 

3 10x10 16.0 12.9 13.3 - 19.6 19.9 20.9 2.8 

 20x20 29.4 24.2 25.0 - 24.6 25.4 21.4 3.2 

Mean 23.2 19.2 19.7 - 19.6 19.9 20.9 2.8 

Median 22.8 18.9 19.5 - 19.4 19.8 21.1 2.8 

Std. Dev. 8.3 6.8 7.1 - 7.0 6.9 2.4 0.3 

 
TABLE III: RUNTIME AVERAGES (IN SECONDS) OF ALGORITHMS ON 

DELAUNAY GRAPHS 

Size OMT DT UCTO UCTB HOP ORO 

20 0.1 0.1 0.6 1.4 0.6 1.7 

100 0.1 0.2 18.5 104.5 10.5 51.5 

250 0.2 0.3 95.2 747.3 48.8 326.2 

 
TABLE IV: RUNTIME AVERAGES (IN SECONDS) OF ALGORITHMS ON GRID 

GRAPHS 

Size OMT DT UCTO UCTB HOP ORO 

10x10 0.0 0.0 11.6 - 9.1 45.1 

20x20 0.1 0.2 117.5 - 70.6 453.6 

 
Fig. 5. Average run time as a function of size on Delaunay graphs. 

 

VI. SUMMARY AND CONCLUSIONS 

This study provides a set of computational experiments to 

compare the penalty-based DT Algorithm against 

rollout-based algorithms for CTP on random problem 

instances defined on Delaunay and grid graphs. Our results 

indicate that DTA runs significantly faster than rollout-based 

algorithms while providing better policies in general. Run 

time advantages of DTA are even more pronounced as graph 

sizes get larger. As for solution quality, DTA outperformed 

all other algorithms in all combinations for both sensor 

accuracy levels in our tests, which we believe is quite 

remarkable especially taking into account how simple it is 

and how quickly it finds a solution.  

There is one particular issue regarding sensitivity of DTA's 

solution quality to sensor accuracy. As illustrated in the 

previous section, relative performance of DTA seems to 

increase as λ increases for λ = 2. However, in our limited 

experiments for lower values of λ, performance of DTA took 

a turn for the worse, this time sometimes being outperformed 

by even OMT, i.e., the Optimism Algorithm. We suspect that 

this behavior is related to the specific form of the DT penalty 

function that seems to require a good amount of separation 

between densities of blocked and unblocked edge 

probabilities. We leave it to future research to devise efficient 

methodologies for identification of better penalty functions 

for a given CTP instance in the case of poor sensor accuracy. 
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TABLE I: AVERAGE COST OF ALGORITHMS FOR DELAUNAY GRAPHS. LOWEST ALGORITHM COST FOR EACH PARAMETER COMBINATION IS DENOTED IN BOLD.

LAST TWO COLUMNS SHOW HOW MUCH DT IS BETTER THAN OMT AND UCTO RESPECTIVELY IN PERCENTAGES

λ Size OMT DT UCTO UCTB HOP ORO

DT vs. 

OMT (%)

DT vs. 

UCTO (%)

2 20 1938 1546 1551 2024 1593 1582 25.4 0.3

100 2543 1892 1954 3573 2147 2020 34.4 3.3

250 2554 1934 2010 4186 2247 2077 32.1 3.9

3 20 2035 1509 1540 2134 1562 1606 34.9 2.1

100 2630 1715 1854 3564 1899 1937 53.4 8.1

250 2634 1741 1870 3456 1842 1932 51.3 7.4

Mean 2389 1723 1797 3156 1882 1859 38.6 4.2

Median 2549 1728 1862 3510 1871 1935 34.6 3.6

Std. Dev. 316 174 203 874 280 212 11.2 3.0
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