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Abstract—Rotary machine fault classification from 

vibrations requires robust feature extraction and enhancement 

procedures for transient and steady-state fault signatures. 

Accurate fault pattern classification relies on the quality of 

features extracted from the fault patterns. Fourier transform 

(FT) and wavelet transform (WT) based methods have largely 

been used for extraction of these features. FT performs well 

with non-stationary vibrations to provide translation invariant 

spectral features which can readily be used as input for 

classifier but belittles the spectral amplitudes of time-domain 

transients because of unmatched window size. WT, in contrast, 

deals well with transient’s amplitude calculations from 

non-stationary vibrations because of signal decomposition into 

several frequency sub-bands but lacks in readily providing 

translation invariant features. As WT can better augment 

features and FT can readily provide translation-invariant 

spectral features suited for artificial neural network (ANN) 

classifier, therefore, this paper proposes a cascaded WT and FT 

based features extraction method for improved fault pattern 

recognition. The efficacy of proposed work is evaluated by 

comparing with existing methods. The results, under very poor 

SNR of -10dB, show that cascaded WT and FT based 

augmented and translation invariant features with ANN 

surpasses existing methods in classification accuracy under 

given conditions. 

 
Index Terms—Artificial neural network (ANN), bearing fault, 

machine health monitoring (MHM), multi resolution analysis 

(MRA). 
 

I. INTRODUCTION 

There are several causes of mechanical faults in rotary 

machines and vibration signals are the indicative of the 

majority of these faults. Therefore, vibration signals are 

among the best candidate for bearing faults and other 

machine health monitoring (MHM) purposes [1]. In a most 

common approach, as a first step, the vibrations are recorded 

and time segmented using a rectangular window. Depending 

upon the nature of the fault, duration of fault signatures varies 

from very short, transients, to very large, steady-state, 

relative to time segmented window length. These, time 

segmented vibrations are used to extract features for the 

training and testing of the classifier for fault classification [2]. 

Altogether, fault patterns classification is linked with robust 
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features extraction from time segmented transient and 

steady-state vibrations contents. Several feature extraction 

methods based on time, frequency and multi resolution 

analysis (MRA) [1]-[10] have been used for fault patterns 

classification. FT based techniques provide translation 

invariant spectral features and are among the most widely 

used feature extraction tool for MHM [1]-[5]. One of the 

major concerns of FT based techniques is that the accuracy of 

extracting constituent transient frequencies amplitudes 

information is limited by the length of the segmentation 

window relative to the duration of the transient signature [7]. 

In FT small duration transients, in time domain, are averaged 

over the entire segmentation window length to transform 

them into frequency domain and results in belittled spectral 

amplitudes calculation. Further, FT based methods perform 

poorly to locate transients on the time axis.  To subdue this 

deficiency, MRA (wavelet analysis (WA)) is used. In WA, 

vibration signals are decomposed into several nodes, each 

node covers a specific frequency sub band [6], [7]. Thus, 

most of the transients and steady-state vibration contents fall 

in different nodes and are discernible for augmented 

amplitude calculation for classification.  WA also provides 

high resolution, both, in time and frequency domains. But, 

wavelets are inherently translation-variant, which makes WT 

nodes contents time-moving and thus, vibration signal 

contents keep on changing their location in time domain 

window in their respective nodes. Using these contentsfor 

fault pattern classification often turns out to be tedious or 

leads to lesser accurate results [9]. To ease with fault 

classification with WA, statistical features from these nodes 

are calculated for classification purposes [6], [9]. These 

statistical features discard most of the time and 

multi-resolution information; and contain only a fraction of 

total information. In contrast, FT has the advantage of 

representing time moving vibration signals in the form of 

non-moving, translation invariant spectral features. These 

translation invariant patterns can be processed and used as 

direct input to a classifier for training and, thus, statistical 

features calculation can be avoided. It is obvious that WT and 

FT complement each other in localizing transients in time, 

augmented transients amplitude calculation and translation 

invariant features extraction. Thus in this paper, strengths of 

WT and FT are cascaded to complement each other to extract 

more suited features which are to be fed to a classifier for 

fault classification.  Thus, in this proposed method, time 

segmented vibrations are transformed to several nodes using 

WT. These nodes have translation variant but augmented 

information of transients and steady-state vibrations at 

different decomposition levels. These contents are then 

Translation Invariant Features from Cascaded Wavelet and 

Fourier Transforms for Bearing Fault Pattern Recognition 

Using Artificial Neural Network 

Muhammad Amar, Iqbal Gondal, Campbell Wilson, and Ahmet Sekercioglu 

International Journal of Machine Learning and Computing, Vol. 5, No. 1, February 2015

12DOI: 10.7763/IJMLC.2015.V5.475

mailto:iqbal.gondal@federation.edu.au
mailto:ahmet.sekercioglu@monash.edu


  

passed through FT to get translation invariant spectral feature 

set. This feature set is then fed to a suitable classifier for 

training and then testing purpose.   

ANNs, SVM, Fuzzy classifier, K-means clusters, Bayesian 

algorithms and statistical methods are among widely used 

classifier for MHM [2]-[5], [9], [11]-[21] in literature. 

Selection of an appropriate classifier depends upon diagnosis 

type, features dimensionality, and available training data sets.  

With cascaded WT and FT we have spectral contents over 

several decomposition levels and thus results in high 

dimensional features.  ANNs are known for their capabilities 

to learn high dimensional features with non-linear and 

complex patterns and have been used for many MHM 

techniques of prognosis, classification, function 

approximation, control filter and pattern recognition [2]-[5], 

[8], [9], [11], [12], [14], [15]. Because of high dimensionality 

of features and supporting translation invariant features, 

ANN has been used as a classifier in this paper. Results have 

shown that proposed solution of ANN classifier, based on 

cascaded WT and FT features, has surpassed existing 

solutions in classification accuracy and robustness. Fig. 1 

shows the framework of the proposed method. 
 

                

Fig. 1.  Framework of the proposed method. 

 

The remaining paper is organized as follows: Section II 

describes time segmentation of the vibration signal, Section 

III presents WT and FT based spectral features set extraction, 

Section IV introduces ANN architecture and training, Section 

V discusses experimental results and Section VI, finally, 

concludes the paper. 

 

II. TIME SEGMENTATION 

Continuously recorded vibration signal is, first divided 

into several time segments using a fixed rectangular window 

[10]. The diagnostic procedures are then applied to each of 

these segments. Let,   be the total number of training or test 

set vibration instances obtained with a window size of    

samples for a signal   of length   

     ⁄                                             (1) 

with  window size, from total  instances, time-domain 
contents of any vibration instance   of     are represented by 

   {  ( )}                                        (2) 

where                               
These time domain vibration segments are then used for 

augmented and translation invariant spectral features 

extraction using WT and FT.  The process is explained in the 

next section. 

 

III. WAVELET AND FOURIER TRANSFORMS 

Time segmented vibrations obtained in the previous 

section contain the information of machine health. The 

features representing nature of faults need to be extracted 

from these segments. In the proposed cascaded WT and FT 

method, first, WT is used to decompose these segments, 

containing transients and steady-state contents of time 

vibrations, into several frequency sub-bands using 

continuous wavelet transform (CWT) function. CWT uses a 

mother wavelet   , maximum scale   to transform time 

segment    into frequency sub-bands by computing 

coefficients   by 

 

        (       )                                 (3) 

where   is a     matrix. Where   is maximum scale level 

and   is time. Coefficients         calculated from a 

vibration segments using db5 mother wavelet are shown in 

Fig. 2. These coefficients contain transients and steady-state 

fault signatures, at several frequency sub-bands. These 

signatures have augmented amplitudes but these are 

translation-variant in their respective sub-band. To use these 

contents for ANN efficiently we need time-invariant features 

for better classification accuracy, therefore we will apply FT 

to these time variant coefficients at all levels to get 

translation-invariant spectral features 

   (  )     (  (  ))                            (4) 

   is a scale level and its value goes maximum to  . After 

transforming all the contents of sub-bands into frequency 

domain, the obtained spectral features are normalized as  

 ̅  (  )     (  )    (   (  ))                    (5) 

These normalized features for each scale level are 

calculated and are then combined to form training or test set  

 ̅  {  ̅ ( )  ̅ ( )  ̅ ( )    ̅ ( )                     (6) 

Each time segmented vibration is passed through (3)-(6) to 

get   training set examples for training of ANN. Feature set 

for window length 2048 and maximum scale level of 16 using 

db5 mother wavelet for some training samples of a vibration 

signal are shown in the Fig. 3. 

 
Fig. 2. Coefficients calculated by CWT function using db5 mother wavelet 

and maximum scale of 16. 
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Fig. 3. Feature set of some vibration segments of normal machine behavior 

with window length of 2048 and scale levels up to 16 using db5 mother 
wavelet. 

 

These spectral features are then used by ANN for training 

and diagnostic of the fault signals as discussed in the next 

section. 

 

IV. ARTIFICIAL NEURAL NETWORK (ANN) 

ANN classifiers are biologically inspired nonlinear 

empirical models [5]. A typical ANN design includes an 

input layer, hidden layers and an output layer. An ANN 

learns different classes by tuning the weights between the 

connected neurons in different layers. Number of input layer 

neurons is equal to the input features and the number of 

output neurons is equal to number of classes. Between output 

and input layers there can be one or more hidden layers with 

different number of neurons. Minimum number of hidden 

layers and number of neurons giving the required 

classification accuracy are preferred to reduce computational 

complexity. ANN can be trained using supervised or 

unsupervised learning depending upon nature of the problem 

and available data. In this paper supervised learning has been 

used as for each input features pattern (6) we have an 

associated target output. 

Before starting the training, the given data is split into 

training, validation and test tests. ANN is then trained by 

supervised learning using feed forward and back propagation 

algorithm. MSE is used to measure the learning of the 

training, testing and validation of ANN. The training of ANN 

using experimental dataset will be presented in the next 

section of experimental results and discussion. 

 

Fig. 4. Experimental setup adapted from [22]. 

 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experimental Setup 

The proposed method has been tested with publically 

available dataset. The experimental setup for recording the 

vibration data sets is shown in the Fig. 4 and details are 

available in [22]. Data have been collected using four 

different bearings including one normal and three having 

faults in their inner race, ball and outer race. 

Electro-discharge machining has been used for fault 

generation in the bearings of several intensities and these 

faulty bearings support the shaft of the motor with a load of 2 

HP. The vibration data of the machine, running at 1750 rpm, 

has been collected through accelerometers using a 

16-channel digital-audio-tape recorder and sampled at the 

rate of 12000 samples per second. 

The data collected from above experimental set up has 

been converted into time segmented vibrations with a 

window size of 2048 samples using (1) and (2). These, time 

segmented, vibrations were passed through the process 

explained in (3)-(6), using a maximum scale level of 16 and 

db5 mother wavelet, to get augmented and translation 

invariant spectral features training set for the ANN. To test 

the robustness of the proposed method, vibrations at several 

SNR levels need to be tested. Fig. 5 shows a spectral feature 

set of usual behavior of bearing over different sample 

numbers at SNR of -10dB.  
 

 

Fig. 5. Feature set of normal behavior vibration signal with window length of 

2048 and scale levels up to 16. 
 

 
Fig. 6. Trained neural network architecture. 

 

Based on training set obtained, the selection of ANN 

architecture and its training are discussed next. 

B. ANN Training 

Feature set obtained from experimentally recorded dataset 

for four vibration classes was randomly shuffled and divided 

into 70% training, 15% validation and 15% testing set.  Feed 

forward and back propagation algorithm has been used to 

train the ANN for different class features classification at 

SNR of 0dB. Each spectral feature set instance has 16400 

features and are the inputs of the ANN. The four target 

classes; normal, inner race fault, outer race fault and ball 

faults, are the output of the ANN. ANN with one hidden layer, 

having 16400 inputs and four outputs, has been studied with 

different number of hidden layer neurons. Increasing the 

number of hidden layer neurons increases the computational 

cost. Thus, minimum number of hidden layer neurons is 

preferred provided they can achieve required classification 

accuracy. More than three neurons in the hidden layer gave 
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the required accuracy. Thus four neurons, minimum number 

of neurons giving us required classification accuracy, in the 

hidden layer have been selected. The architecture of the 

selected ANN is shown in the Fig. 6. 

The curves for training, validation and testing of the ANN 

are shown in the Fig. 7. 

 
Fig. 7. Training curves of ANN. 

 

ANN has achieved a Mean Square Error (MSE) of 

         as shown by validation curve. After training, ANN 

was tested with different vibration signals from experimental 

setup with different faults and it was able to classify those 

vibrations into their respective classes with 100% accuracy 

with SNR= 0 dB. The classification accuracies of the ANN 

for test, train and validation set are shown in the Fig. 8 in the 

form of confusion matrix with percentages. 

 

Fig. 8. Confusion matrix for training, testing and validation sets. 

C. Classification Accuracy and Robustness 

Now we will discuss the classification accuracy of the 

trained ANN under adverse SNR conditions to validate the 

robustness of the cascaded WT and FT features based ANN 

classifier. Fig. 9 shows the confusion matrix of cascaded WT 

and FT based ANN classifier at SNR of -10dB. At this 

adverse SNR, proposed method still achieves 95.3% 

classification accuracy. 

 
Fig. 9. Confusion matrix of proposed classification tecchnique at -10 dB. 

 

For comparison with the existing work, Table I shows the 

comparison of well-established techniques for classification 

accuracies mentioned in [6] with worst case scenario of 

SNR= -10dB. 
 

TABLE I: CLASSIFICATION ACCURACY COMPARISON AT SNR = -10 DB [6]  

Scheme % Accuracy 

G. G. Yen [7] 33.33 

X. Lou [18] 33.33 

A. Malhi [19] 38.09 

S. Seker [20] 78.25 

F. Li [21] 86.00 

M. F. Yaqub [6] 91.23 

Cascaded WT and FT 95.30 

Table I shows that cascaded WT and FT based feature set 

and ANN classifier’s accuracy surpasses the existing best 

case technique by 4.07% at SNR= -10 dB. WT ability to 

augment and decompose transients and steady-state vibration 

signatures into several nodes, and time-invariant nature of FT 

spectral contents has helped to increase the classification 

accuracy even under low SNR. By increasing the scale level, 

the computational cost of the proposed techniques increases. 

Thus minimum number of scales is preferred, that is 16 in the 

proposed work to meet required classification accuracy. 

Though, this novel combination of cascaded WT and FT 

increases the computational cost but it helps in increased 

classification accuracy under low SNR. Further, to validate 

and generalize the improved robustness of the proposed 

method, results need to be compared using other datasets in 

future. 

 

VI. CONCLUSION 

In this paper an ANN classifier using cascaded WT and FT 

based features for bearing fault classification has been 

presented. Time segmented vibrations have been 

decomposed to several frequency sub-bands using WT to 

achieve augmented transients signatures which are then 

converted to spectral features using FT to get translation 

invariant features. These enhanced transients and steady-state 
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signatures amplitudes and translation invariant features, then, 

are used to train ANN classifier. Results have shown that 

ANN with cascaded WT and FT has achieved 95.30% 

classification accuracy at worst case of SNR= -10dB. In 

future, minimum scales selection for WT will be studied to 

reduce the computational cost ensuring the required 

classification accuracy. 
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