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Abstract—Accurate price forecasting is essential for
informed decision-making by stakeholders in the agricultural
sector, including farmers, traders, and policymakers. This
study explored the use of deep learning models to predict
market prices of four major agricultural commodities in
Thailand, including rice, corn, cassava, and sugarcane. We
evaluated and compared three network architectures across
multiple forecasting horizons on a dataset from the Thai
market. Overall, our findings suggested that the Long- and
Short-term Time-series network or LSTNet was the most
stable model, highlighting the advantage of capturing
relationships among multiple variables. The results essentially
pinpointed the strengths and limitations of each model,
emphasizing the need for careful model selection based on
characteristics of individual agricultural products.

Keywords—agricultural price forecasting, time series
prediction, deep learning, recurrent neural networks, long
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I. INTRODUCTION

Food and agricultural products are fundamental to
humans, supporting the health and well-being of populations
worldwide. They also drive economies, especially in
countries where agriculture is a major proportion of GDP
and employment like Thailand. In Thailand, the agricultural
sector accounts for nearly one-third of the country’s
workforce, yet its share of the national GDP remains
relatively small. The prediction of agricultural prices has
become an important research area due to the highly
dynamic and influenced by diverse factors of agricultural
markets. These factors include climate conditions, supply
chain volatility, demand fluctuations of all related products,
government policies, and global trade. Developing accurate
and reliable models for agricultural price forecasting ensures
economic stability and sustainable agricultural development.
In essence, it enables all stakeholders related to the entire
supply chain including farmers, policymakers, and market
participants to make informed decisions regarding
production, distribution, and investment.

Stakeholders can use prediction models to anticipate price
peaks and drops well in advance. This insight allows
farmers and traders to make strategic decisions about when
to buy, sell or store agricultural products. By providing early
warnings of desirable or unfavorable market conditions, the
prediction models enable agribusiness to implement risk
mitigation strategies. To support optimization of supply
chains, predictive analytics help in aligning production
schedules with market demand, minimizing storage costs,
and improving distribution planning. In addition,

doi: 10.18178/ijm1.2026.16.1.1185

policymakers and governments can implement timely
measures to stabilize markets by understanding potential
price shifts in advance. Agricultural policies and
interventions can support both producers and consumers
from price volatility. In conclusion, these stakeholders can
benefit from the price prediction system to enhance market
insights, support risk management associated with market
volatility, optimize resource allocation of supply chains, and
support policy formulations which further enhance overall
agricultural sustainability.

The integration of technology in agriculture applications
plays an important role in enhancing price prediction
accuracy and improving risk management strategies. With
rapid technological advancements, Artificial Intelligence
(AI), especially Machine Learning (ML) and Deep Learning
(DL) has revolutionized various applications in this era
including the agricultural sector. By leveraging large
amounts of relevant data, these data-driven models analyze
patterns and extract valuable insights. For price prediction,
these models help identify market trends, detect historical
price patterns, and forecast future price fluctuations. Unlike
traditional time series analysis, Al algorithms can process
and analyze diverse datasets to uncover complicated
relationships like temporal and inner-correlation patterns
within the data. Motivated by the need for accurate
agricultural price forecasting, this study proposed a deep
learning-based framework to predict the prices of key
agricultural commodities in Thailand, including rice, corn,
cassava, and sugarcane. To build the predictive model, daily
price data for these agricultural products were utilized as
response variables. The study systematically evaluated and
compared multiple deep learning models to determine their
effectiveness in forecasting future price trends. The
predictive capability of each model was assessed across
different time horizons, ranging from short-term of 1-day
ahead to long-term of 14-day ahead forecasts.

II. LITERATURE REVIEW

Agricultural prices naturally fluctuate due to various
complicated factors [1-3]. Some price forecasting methods
rely on qualitative analysis which aims to understand market
price trends based on diverse relevant factors. Experience
and expert judgement can be utilized to analyze the
relationship of these factors and predict the direction of
price movements. A majority of studies on agricultural price
prediction have focused on quantitative analysis. Market
price data was utilized with data-driven forecasting
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techniques to make numerical predictions of price changes.
The quantitative analysis includes diverse methods such as
regression analysis, traditional time series analysis, machine
learning and deep learning models. Hybrid methods, which
integrate multiple forecasting models, are also widely
proposed in previous studies [4-9]. For example, Ge
et al. [10] examined fluctuations in corn prices and
associated factors. Two forecasting models, including a
univariate nonlinear regression model using time as the
independent variable, and a multiple linear regression model
that incorporated production, consumption, import, and
export volumes as independent variables, were employed
and compared. The regression analysis benefited from its
simplicity and interpretability but might suffer from
capturing complicated relationships among factors. Several
time series analysis methods have also been proposed in
order to analyze historical price patterns over time.
Particularly, exponential smoothing, moving averages,
autoregressive models, and their combinations were utilized
to mainly capture temporal relationships [11, 12].

In recent years, more advanced approaches such as ML
and DL have gained significant attention from researchers
due to their superior performance in various domains. They
were designed to handle large and complicated patterns
within the data that traditional methods might miss.
Compared to ML, more advanced models like DL utilize
relatively more complex networks to process large and
diverse data structures, including time series data. Recurrent
Neural Networks (RNNs) and their variations, such as the
Gated Recurrent Unit (GRUs) and Long Short-Term
Memory (LSTMs), are a subset of DL specifically designed
to handle sequential data such as time series. Another class
of deep learning models, Convolutional Neural Networks
(CNNSs), is designed to capture spatial relationships within
the data. Several prior studies have compared LSTM to
traditional methods for price prediction [13]. Silva et al. [14]
compared LSTM with time series models and machine
learning methods for corn and sugar prices. Other studies
have evaluated LSTM against SARIMA and Holt-Winter’s
time series analysis for rice and arecanut price prediction
[15, 16]. Further demonstrating this trend, several LSTM
variants have been widely used for agricultural price
forecasting. Murugesan et al. experimented with various
LSTM architectures for predicting the prices of rice, wheat,
gram, banana, and groundnut while Jaiswal ef al. developed
a deep LSTM model for maize and palm oil price prediction
[17,18].

A combination of advanced techniques has been
integrated with DL architectures to improve their ability to
handle complex and dynamic data patterns. For instance,
Ouyang et al. utilized the Long- and Short-term Time-series
network (LSTNet) developed by Lai et al for 12
agricultural commodity futures price prediction [19, 20].
The results suggested that LSTNet offered a promising
approach for multivariate time series forecasting within the
challenging domain of agricultural commodity futures
markets, characterized by price data integrating both long-
and short-term information, as well as linear and non-linear
structures. More recently, Feng et al. introduced a BiGRU-

attention model optimized by the grey wolf optimizer while
Yang et al. relied on a multi-module wavelet transform-
based fusion forecasting model to predict corn prices [21,
22].

III. MATERIALS AND METHODS

The objective of this study was to develop a predictive
model for forecasting agricultural market prices in advance.
As a case study, we collected daily price data for 4
important agricultural products having high economic
impact in Thailand, including rice, corn, cassava, and
sugarcane. This study followed a structured approach,
starting with data collection and preprocessing. We then
conducted exploratory data analysis to preliminary observe
trends, seasonal patterns, and pronounced correlations
within the historical price data. The core methodology
focused on deep learning-based time series forecasting,
where we treated the agricultural price as the target variable.
Each model underwent hyperparameter tuning to optimize
performance. To evaluate prediction performance, we
experimented with different forecasting horizons, ranging
from short-term of 1-day ahead to 14-day forecasts. All
models were assessed using a widely accepted evaluation
metric, ensuring their reliability and effectiveness in real-
world applications.

A. Data Collection and Data Preparation

This study analyzed the historical prices of key Thai
agricultural products: rice, corn, cassava, and sugarcane.
Price data, recorded in Thai Baht, were obtained from the
Ministry of Commerce’s public data repository. This data,
compiled from various statistical records and sample groups
selected by the Department of Internal Trade, serves as
reference points for economic analysis. The dataset spans
from January 2009 to July 2023, comprising of 5,321 data
points.

Due to the presence of missing values, data imputation
was performed using a sequential approach to effectively
utilize  temporal relationships.  Specifically, linear
interpolation was first applied to estimate values between
known data points, followed by backward fill to address
initial missing entries, and finally forward fill to handle any
remaining gaps at the end of the series. Fig. 1 visualizes the
time series price data after preprocessing for each product.
A clear upward trend is noticeable across all four products
after 2020, suggesting the influence of potential external
factors. Rice and cassava prices exhibit greater volatility
while sugarcane prices show less fluctuations. In contrast,
corn prices demonstrate a more structured upward trend
with modest fluctuations.

Specifically, the price of rice declined from 2012 to 2016,
remained relatively stable for a while, and began an upward
trend around 2020 with a sharp rise in 2022-2023. Cassava
prices are also highly volatile, with peaks observed around
2011, 2018, and 2023. Corn prices show a long-term upward
trend, accelerating sharply after 2020 and peaking around
2023 before a slight decline. Sugarcane prices experienced
fluctuations, with dips around 2015-2016 and 2019,
followed by a steady increase after 2020, reaching peaks in
2023.
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Fig. 1. Daily prices for rice, corn, cassava, and sugarcane.

B.  Model Development

We implemented separate GRUs and LSTMs for each
individual product. Both models were selected due to their
ability to capture temporal dependencies and mitigate the
vanishing gradient problem commonly encountered in
traditional RNNs. In essence, GRUs and LSTMs employ
gating mechanisms to control the information flow of the
networks. GRUs with simpler structures of update and reset
gates typically offer better computational efficiency. In
contrast, LSTMs utilize input, forget, and output gates,
which often enable them to capture long-term dependencies.
Hence, LSTMs generally work well for long sequence data
while GRUs are effective with less complicated data having
moderate length. Each of these models was trained using
only individual product price as input. In addition, we
implemented LSTNet, a hybrid model designed to leverage
both local short-term and long-term dependencies in
multivariate time-series forecasting. LSTNet incorporates a
Conv2D layer to detect short-term local patterns among
multiple product prices, while its LSTM component
captures long-term temporal relationships. Unlike GRUs and
LSTMs which were trained on a single product price,
LSTNet was trained using the prices of all four products
simultaneously. It generated a multivariate output that
predicted all prices at once.

For model development and evaluation, the dataset was
divided into three subsets: training (60%), validation (20%),
and testing (20%). The training data was used to fit the
models, while the validation set was specifically included to
fine-tune hyperparameters and prevent overfitting. The final
models were evaluated on the held-out testing data to assess
their generalization performance. Dividing data into three
subsets reduces the amount of data, which can potentially
lead to a loss of information. In contrast, a two-part split
(train and test) preserves more data for training with a cost
of not having a dedicated wvalidation set for tuning
hyperparameters. This can lead to suboptimal model’s
overfitting to the test set. This three-partition split was

employed in our study to ensure the model’s generalizability
by enabling proper hyperparameter tuning without
compromising the integrity of the final evaluation. To
systematically evaluate short-term and long-term forecasting
capabilities, we experimented with different forecasting
horizons, ranging from 1-day ahead to 14-day ahead
predictions using a rolling-horizon approach. In practice,
longer forecasting horizons present greater challenges which
often lead to increased prediction errors. However, longer
forecasting horizons provide users with early insights,
supporting  proactive  decision-making for relevant
stakeholders.

To ensure a consistent and interpretable assessment, all
experimented models were evaluated using mean absolute
percentage error (MAPE) as the main performance metric.
MAPE was specifically chosen due to its intuitive
interpretation and ease of communication. It expresses the
prediction error as a percentage of the actual values, making
it easier for users to understand and compare across
experimented models with different forecasting horizons. It
is scale-independent and directly comparable across
different agricultural products with varying price values.
This characteristic makes MAPE particularly useful for our
practical applications. To analyze how model accuracy
progresses over different timeframes, MAPE was computed
separately for each forecasting horizon. This approach
enables us to observe error trends over time, providing
insights into how forecasting accuracy decreases as the
prediction window extends.

IV. RESULT AND DISCUSSION

A set of experiments was conducted using three different
network architectures and a range of forecasting horizons.
Individual GRUs and LSTMs were trained on each
agricultural price product whereas LSTNet was trained on
all four product prices. We carefully fine-tune models’
hyperparameters to achieve desirable performance.
Particularly, 2-layer stacked networks with 64 units were
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utilized for both GRUs and LSTMs. The LSTNet
architecture follows the framework proposed in [20],
comprising two main branches: a CNN-LSTM branch and
an autoregressive branch. The CNN-LSTM branch consists
of a Conv2D layer (100 filters with a kernel size of 6x16)
followed by an LSTM layer (100 units) and a skip-LSTM
layer (5 units). The outputs of the CNN-LSTM branch are
combined with those of the autoregressive branch to
produce the final prediction.

Table 1. An average mape of experimented models

Model Rice Corn Cassava Sugarcane
GRUs (0.17.,624 .3) ¢! .21.,2;3) (0.16',84?.0) (7})? 36 36.9)
LSTMs | .12',93.5) a .31',02.5) a .i',4 f.z) a 8218 ,'257.0)
LSTNet .23',029.7) a 23231 0) (0.17',4 21.0) a 1%31,'8323.1)

* (minimum, maximum)

forecasting performance in terms of MAPE, averaged across
all forecasting horizons for all agricultural products. MAPE
was selected as the primary measure of accuracy, with lower
values indicating better predictive performance. We also
reported the minimum and maximum values (shown in
parentheses below the average value) to reflect the
variability of model accuracy across forecasting horizons. In
addition, Fig. 2 illustrates the trend of MAPE from 1-day to
14-day ahead predictions, providing deeper insights into
how model performance evolves with longer forecasting
horizons. This temporal trend highlights the changes of
model performance as the prediction window extends. This
offers a more comprehensive understanding of model
robustness. While MAPE is particularly suitable for our
comparative analysis, future work could incorporate
additional evaluation metrics such as within-tolerance
accuracy, direction-of-change accuracy to reflect the
probability of correctly forecasting value. to support
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Fig. 2. MAPE across all forecasting horizons.

According to Table 1 showing the average MAPE for
each model, LSTMs clearly underperformed across all
agricultural products, exhibiting the highest MAPE values.
In contrast, GRUs and LSTNet demonstrated comparable
average MAPE values, with slight variations across crops. A
more granular analysis, shown in Fig. 2, highlights MAPE
trends across different forecasting horizons ranging from 1-
day to 14-day ahead predictions. Considering all four
agricultural products, LSTNet consistently delivered the
most stable price forecasts, with slight exceptions in the case
of sugarcane. This could be attributed to the relatively low-
price fluctuations of sugarcane compared to the other crops.
GRUs generally yielded lower MAPE values, aligning with
the average MAPE reported in Table 1. However, they

exhibited significant volatility across different forecasting
horizons, particularly for corn and cassava. On the other
hand, LSTMs tended to produce the least desirable results,
suffering from both high MAPE values and obvious
fluctuations over time.H#n terms of computational time, the
more complex LSTNet required a relatively longer training
duration, taking 14.06 minutes per forecasting horizon,
whereas GRUs and LSTMs required 8.38 and 8.75 min,
respectively. #

Among all four crops, the models demonstrated the most
reliable performance when forecasting rice prices. GRUs
achieved the lowest MAPE across all forecasting horizons,
making them the most effective model for rice price
prediction. LSTMs and LSTNet followed in performance,
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with LSTNet exhibiting a stable but slightly higher error. In
essence, the error increased in a steady manner for all three
models as the forecasting horizon increased. For corn price
forecasting, LSTNet was the most stable model, maintaining
relatively low to medium MAPE values across all horizons.
LSTMs, on the other hand, struggled considerably with
stability. Noticeable error spikes could also be observed at
specific horizons. While GRUs were more stable than
LSTMs, they still exhibited greater error fluctuations than
LSTNet, making them less reliable for corn price prediction.
In essence, LSTNet consistently offered robust performance
for corn price forecasting, with minimal variability across
time.

In the case of cassava price forecasting, similar trends of
MAPE were observed compared to those of corn prices.
Both GRUs and LSTMs exhibited sharp fluctuations in
MAPE, particularly in the mid-to-late forecasting horizons.
This indicates challenges of both models in long-term
predictions. The nature of cassava prices with sudden spikes,
potentially contributes to the difficulty in achieving stable
forecasts by considering individual prices alone. LSTNet
proved to be the most reliable model, as it maintained a
smoother and more stable error trend while achieving
relatively lower MAPE values for longer forecasting
horizons. For sugarcane prices, all three models exhibited an
increasing error trend with some degree of fluctuation. They
all struggled to provide high accuracy, as indicated by the
highest MAPE among all crops. LSTNet initially maintained
a steady error increase at shorter forecasting horizons but
experienced more variability in later horizons. Both GRUs
and LSTMs yielded slight variations in MAPE trends across
different forecasting periods. Forecasting sugarcane prices is
considerably challenging especially when the horizon
extends.

According to contributions of our study, we utilized a
unique dataset covering the historical prices of four major
agricultural products in Thailand. To the best of our
knowledge, this dataset has not been extensively explored in
previous studies. Our study consequently provided insights
into price trends and volatility in the Thai agricultural
market. Second, we conducted a comparison of multiple
deep learning models, including GRUs, LSTMs, and
LSTNet, to evaluate their effectiveness in time series
forecasting for agricultural commodities. This highlights
model-specific strengths and limitations for real-world price
prediction. We also explored the application of LSTNet in
multi-step forecasting setting by employing a rolling horizon
approach. However, there is room for further improvement.
External economic and environmental factors, such as
weather conditions, global market trends, and economic
indicators, were excluded from the current analysis due to
limitations in data consistency and temporal coverage.
Future work could incorporate these external variables to
further enhance model performance and capture broader
market dynamics [23-25]. Experimenting advanced models
with enhanced techniques may yield better performance
such as decomposition techniques [26-29]. Further
validation with rolling/expanding backtests or evaluation on
an external dataset coupled with a significance testing would
ensure reliability of the overall framework, encompassing
both data preprocessing and model development. Lastly,

enhancing model interpretability through explainable Al
techniques such as permutation importance would help non-
technical users gain deeper insights into the key factors
influencing forecasting trends [30].

V. CONCLUSION

This study systematically evaluated the performance of
deep learning mdoels — LSTMs, GRUs, and LSTNet — for
multi-step agricultural price forecasting. The dataset for four
Thai commodities including rice, corn, cassava, and
sugarcane ranging from 2009 to 2023 was utilized. The
results demonstrate that LSTNet consistently yields the most
stable and reliable forecasts due to its capability to capture
complex and interdependence among commodity prices. For
LSTNet, Convolutional layers learn short-term local patterns
while LSTM-based components capture long-term temporal
relationships prior to further combining with autoregressive
part to learn linear patterns. GRU models generally
outperformed LSTMs, although both recurrent architectures
exhibited increased volatility for certain horizons,
highlighting the sensitivity of sequential models to specific
temporal patterns. Among all crops, sugarcane was the most
challenging commodity, suggesting that model performance
relied on data volume and their volatility. These findings
highlight the need to tailor forecasting models to the
characteristics of each commodity. Future work should
consider refining model architectures, adding advanced
techniques, incorporating additional factors, further
validating and including interpretability of the model.
Overall, the study provides a methodological foundation for
developing robust, data-driven price forecasting systems that
can support informed decision-making for stakeholders in
Thailand’s agricultural sector.
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