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Abstract—Accurate price forecasting is essential for 

informed decision-making by stakeholders in the agricultural 
sector, including farmers, traders, and policymakers. This 
study explored the use of deep learning models to predict 
market prices of four major agricultural commodities in 
Thailand, including rice, corn, cassava, and sugarcane. We 
evaluated and compared three network architectures across 
multiple forecasting horizons on a dataset from the Thai 
market. Overall, our findings suggested that the Long- and 
Short-term Time-series network or LSTNet was the most 
stable model, highlighting the advantage of capturing 
relationships among multiple variables. The results essentially 
pinpointed the strengths and limitations of each model, 
emphasizing the need for careful model selection based on 
characteristics of individual agricultural products.    
 

Keywords—agricultural price forecasting, time series 
prediction, deep learning, recurrent neural networks, long 
short-term memory  
 

I. INTRODUCTION 

Food and agricultural products are fundamental to 
humans, supporting the health and well-being of populations 
worldwide. They also drive economies, especially in 
countries where agriculture is a major proportion of GDP 
and employment like Thailand. In Thailand, the agricultural 
sector accounts for nearly one-third of the country’s 
workforce, yet its share of the national GDP remains 
relatively small. The prediction of agricultural prices has 
become an important research area due to the highly 
dynamic and influenced by diverse factors of agricultural 
markets. These factors include climate conditions, supply 
chain volatility, demand fluctuations of all related products, 
government policies, and global trade. Developing accurate 
and reliable models for agricultural price forecasting ensures 
economic stability and sustainable agricultural development. 
In essence, it enables all stakeholders related to the entire 
supply chain including farmers, policymakers, and market 
participants to make informed decisions regarding 
production, distribution, and investment.  

Stakeholders can use prediction models to anticipate price 
peaks and drops well in advance. This insight allows 
farmers and traders to make strategic decisions about when 
to buy, sell or store agricultural products. By providing early 
warnings of desirable or unfavorable market conditions, the 
prediction models enable agribusiness to implement risk 
mitigation strategies. To support optimization of supply 
chains, predictive analytics help in aligning production 
schedules with market demand, minimizing storage costs, 
and improving distribution planning. In addition, 

policymakers and governments can implement timely 
measures to stabilize markets by understanding potential 
price shifts in advance. Agricultural policies and 
interventions can support both producers and consumers 
from price volatility. In conclusion, these stakeholders can 
benefit from the price prediction system to enhance market 
insights, support risk management associated with market 
volatility, optimize resource allocation of supply chains, and 
support policy formulations which further enhance overall 
agricultural sustainability. 

The integration of technology in agriculture applications 
plays an important role in enhancing price prediction 
accuracy and improving risk management strategies. With 
rapid technological advancements, Artificial Intelligence 
(AI), especially Machine Learning (ML) and Deep Learning 
(DL) has revolutionized various applications in this era 
including the agricultural sector. By leveraging large 
amounts of relevant data, these data-driven models analyze 
patterns and extract valuable insights. For price prediction, 
these models help identify market trends, detect historical 
price patterns, and forecast future price fluctuations. Unlike 
traditional time series analysis, AI algorithms can process 
and analyze diverse datasets to uncover complicated 
relationships like temporal and inner-correlation patterns 
within the data. Motivated by the need for accurate 
agricultural price forecasting, this study proposed a deep 
learning-based framework to predict the prices of key 
agricultural commodities in Thailand, including rice, corn, 
cassava, and sugarcane. To build the predictive model, daily 
price data for these agricultural products were utilized as 
response variables. The study systematically evaluated and 
compared multiple deep learning models to determine their 
effectiveness in forecasting future price trends. The 
predictive capability of each model was assessed across 
different time horizons, ranging from short-term of 1-day 
ahead to long-term of 14-day ahead forecasts. 

II. LITERATURE REVIEW 

Agricultural prices naturally fluctuate due to various 
complicated factors [1–3]. Some price forecasting methods 
rely on qualitative analysis which aims to understand market 
price trends based on diverse relevant factors. Experience 
and expert judgement can be utilized to analyze the 
relationship of these factors and predict the direction of 
price movements. A majority of studies on agricultural price 
prediction have focused on quantitative analysis. Market 
price data was utilized with data-driven forecasting 
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techniques to make numerical predictions of price changes. 
The quantitative analysis includes diverse methods such as 
regression analysis, traditional time series analysis, machine 
learning and deep learning models. Hybrid methods, which 
integrate multiple forecasting models, are also widely 
proposed in previous studies [4–9]. For example, Ge  
et al. [10] examined fluctuations in corn prices and 
associated factors. Two forecasting models, including a 
univariate nonlinear regression model using time as the 
independent variable, and a multiple linear regression model 
that incorporated production, consumption, import, and 
export volumes as independent variables, were employed 
and compared. The regression analysis benefited from its 
simplicity and interpretability but might suffer from 
capturing complicated relationships among factors. Several 
time series analysis methods have also been proposed in 
order to analyze historical price patterns over time. 
Particularly, exponential smoothing, moving averages, 
autoregressive models, and their combinations were utilized 
to mainly capture temporal relationships [11, 12].  

In recent years, more advanced approaches such as ML 
and DL have gained significant attention from researchers 
due to their superior performance in various domains. They 
were designed to handle large and complicated patterns 
within the data that traditional methods might miss. 
Compared to ML, more advanced models like DL utilize 
relatively more complex networks to process large and 
diverse data structures, including time series data. Recurrent 
Neural Networks (RNNs) and their variations, such as the 
Gated Recurrent Unit (GRUs) and Long Short-Term 
Memory (LSTMs), are a subset of DL specifically designed 
to handle sequential data such as time series. Another class 
of deep learning models, Convolutional Neural Networks 
(CNNs), is designed to capture spatial relationships within 
the data. Several prior studies have compared LSTM to 
traditional methods for price prediction [13]. Silva et al. [14] 
compared LSTM with time series models and machine 
learning methods for corn and sugar prices. Other studies 
have evaluated LSTM against SARIMA and Holt-Winter’s 
time series analysis for rice and arecanut price prediction 
[15, 16]. Further demonstrating this trend, several LSTM 
variants have been widely used for agricultural price 
forecasting. Murugesan et al. experimented with various 
LSTM architectures for predicting the prices of rice, wheat, 
gram, banana, and groundnut while Jaiswal et al. developed 
a deep LSTM model for maize and palm oil price prediction 
[17, 18].  

A combination of advanced techniques has been 
integrated with DL architectures to improve their ability to 
handle complex and dynamic data patterns. For instance, 
Ouyang et al. utilized the Long- and Short-term Time-series 
network (LSTNet) developed by Lai et al. for 12 
agricultural commodity futures price prediction [19, 20]. 
The results suggested that LSTNet offered a promising 
approach for multivariate time series forecasting within the 
challenging domain of agricultural commodity futures 
markets, characterized by price data integrating both long- 
and short-term information, as well as linear and non-linear 
structures. More recently, Feng et al. introduced a BiGRU-

attention model optimized by the grey wolf optimizer while 
Yang et al. relied on a multi-module wavelet transform-
based fusion forecasting model to predict corn prices [21, 
22]. 

III. MATERIALS AND METHODS 

The objective of this study was to develop a predictive 
model for forecasting agricultural market prices in advance. 
As a case study, we collected daily price data for 4 
important agricultural products having high economic 
impact in Thailand, including rice, corn, cassava, and 
sugarcane. This study followed a structured approach, 
starting with data collection and preprocessing. We then 
conducted exploratory data analysis to preliminary observe 
trends, seasonal patterns, and pronounced correlations 
within the historical price data. The core methodology 
focused on deep learning-based time series forecasting, 
where we treated the agricultural price as the target variable. 
Each model underwent hyperparameter tuning to optimize 
performance. To evaluate prediction performance, we 
experimented with different forecasting horizons, ranging 
from short-term of 1-day ahead to 14-day forecasts. All 
models were assessed using a widely accepted evaluation 
metric, ensuring their reliability and effectiveness in real-
world applications. 

A. Data Collection and Data Preparation 

This study analyzed the historical prices of key Thai 
agricultural products: rice, corn, cassava, and sugarcane. 
Price data, recorded in Thai Baht, were obtained from the 
Ministry of Commerce’s public data repository. This data, 
compiled from various statistical records and sample groups 
selected by the Department of Internal Trade, serves as 
reference points for economic analysis. The dataset spans 
from January 2009 to July 2023, comprising of 5,321 data 
points. 

Due to the presence of missing values, data imputation 
was performed using a sequential approach to effectively 
utilize temporal relationships. Specifically, linear 
interpolation was first applied to estimate values between 
known data points, followed by backward fill to address 
initial missing entries, and finally forward fill to handle any 
remaining gaps at the end of the series. Fig. 1 visualizes the 
time series price data after preprocessing for each product. 
A clear upward trend is noticeable across all four products 
after 2020, suggesting the influence of potential external 
factors. Rice and cassava prices exhibit greater volatility 
while sugarcane prices show less fluctuations. In contrast, 
corn prices demonstrate a more structured upward trend 
with modest fluctuations. 

Specifically, the price of rice declined from 2012 to 2016, 
remained relatively stable for a while, and began an upward 
trend around 2020 with a sharp rise in 2022–2023. Cassava 
prices are also highly volatile, with peaks observed around 
2011, 2018, and 2023. Corn prices show a long-term upward 
trend, accelerating sharply after 2020 and peaking around 
2023 before a slight decline. Sugarcane prices experienced 
fluctuations, with dips around 2015–2016 and 2019, 
followed by a steady increase after 2020, reaching peaks in 
2023. 
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Fig. 1. Daily prices for rice, corn, cassava, and sugarcane. 

 
B. Model Development 

We implemented separate GRUs and LSTMs for each 
individual product. Both models were selected due to their 
ability to capture temporal dependencies and mitigate the 
vanishing gradient problem commonly encountered in 
traditional RNNs. In essence, GRUs and LSTMs employ 
gating mechanisms to control the information flow of the 
networks. GRUs with simpler structures of update and reset 
gates typically offer better computational efficiency. In 
contrast, LSTMs utilize input, forget, and output gates, 
which often enable them to capture long-term dependencies. 
Hence, LSTMs generally work well for long sequence data 
while GRUs are effective with less complicated data having 
moderate length. Each of these models was trained using 
only individual product price as input.  In addition, we 
implemented LSTNet, a hybrid model designed to leverage 
both local short-term and long-term dependencies in 
multivariate time-series forecasting. LSTNet incorporates a 
Conv2D layer to detect short-term local patterns among 
multiple product prices, while its LSTM component 
captures long-term temporal relationships. Unlike GRUs and 
LSTMs which were trained on a single product price, 
LSTNet was trained using the prices of all four products 
simultaneously. It generated a multivariate output that 
predicted all prices at once.  

For model development and evaluation, the dataset was 
divided into three subsets: training (60%), validation (20%), 
and testing (20%). The training data was used to fit the 
models, while the validation set was specifically included to 
fine-tune hyperparameters and prevent overfitting.  The final 
models were evaluated on the held-out testing data to assess 
their generalization performance. Dividing data into three 
subsets reduces the amount of data, which can potentially 
lead to a loss of information. In contrast, a two-part split 
(train and test) preserves more data for training with a cost 
of not having a dedicated validation set for tuning 
hyperparameters. This can lead to suboptimal model’s 
overfitting to the test set. This three-partition split was 

employed in our study to ensure the model’s generalizability 
by enabling proper hyperparameter tuning without 
compromising the integrity of the final evaluation. To 
systematically evaluate short-term and long-term forecasting 
capabilities, we experimented with different forecasting 
horizons, ranging from 1-day ahead to 14-day ahead 
predictions using a rolling-horizon approach. In practice, 
longer forecasting horizons present greater challenges which 
often lead to increased prediction errors. However, longer 
forecasting horizons provide users with early insights, 
supporting proactive decision-making for relevant 
stakeholders. 

To ensure a consistent and interpretable assessment, all 
experimented models were evaluated using mean absolute 
percentage error (MAPE) as the main performance metric. 
MAPE was specifically chosen due to its intuitive 
interpretation and ease of communication. It expresses the 
prediction error as a percentage of the actual values, making 
it easier for users to understand and compare across 
experimented models with different forecasting horizons. It 
is scale-independent and directly comparable across 
different agricultural products with varying price values. 
This characteristic makes MAPE particularly useful for our 
practical applications. To analyze how model accuracy 
progresses over different timeframes, MAPE was computed 
separately for each forecasting horizon. This approach 
enables us to observe error trends over time, providing 
insights into how forecasting accuracy decreases as the 
prediction window extends. 

IV. RESULT AND DISCUSSION 

A set of experiments was conducted using three different 
network architectures and a range of forecasting horizons. 
Individual GRUs and LSTMs were trained on each 
agricultural price product whereas LSTNet was trained on 
all four product prices. We carefully fine-tune models’ 
hyperparameters to achieve desirable performance. 
Particularly, 2-layer stacked networks with 64 units were 
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utilized for both GRUs and LSTMs. The LSTNet 
architecture follows the framework proposed in [20], 
comprising two main branches: a CNN-LSTM branch and 
an autoregressive branch. The CNN-LSTM branch consists 
of a Conv2D layer (100 filters with a kernel size of 6×16) 
followed by an LSTM layer (100 units) and a skip-LSTM 
layer (5 units). The outputs of the CNN-LSTM branch are 
combined with those of the autoregressive branch to 
produce the final prediction. 

 
Table 1. An average mape of experimented models 

Model Rice Corn Cassava Sugarcane 

GRUs 
1.64 

(0.7, 2.3) 
2.24 

(1.1, 3.3) 
1.89 

(0.6, 4.0) 
19.66 

(7.0, 33.9) 

LSTMs 
1.90 

(1.2, 2.5) 
3.09 

(1.1, 4.5) 
2.48 

(1.4, 4.3) 
28.85 

(18.1, 37.0) 

LSTNet 
2.09 

(1.3, 2.7) 
2.21 

(1.3, 3.0) 
1.41 

(0.7, 2.0) 
21.82 

(11.3, 33.1) 
* (minimum, maximum) 

Table 1 illustrates a comparison of the model’s 

forecasting performance in terms of MAPE, averaged across 
all forecasting horizons for all agricultural products. MAPE 
was selected as the primary measure of accuracy, with lower 
values indicating better predictive performance. We also 
reported the minimum and maximum values (shown in 
parentheses below the average value) to reflect the 
variability of model accuracy across forecasting horizons. In 
addition, Fig. 2 illustrates the trend of MAPE from 1-day to 
14-day ahead predictions, providing deeper insights into 
how model performance evolves with longer forecasting 
horizons. This temporal trend highlights the changes of 
model performance as the prediction window extends. This 
offers a more comprehensive understanding of model 
robustness. While MAPE is particularly suitable for our 
comparative analysis, future work could incorporate 
additional evaluation metrics such as within-tolerance 
accuracy, direction-of-change accuracy to reflect the 
probability of correctly forecasting value. to support 
particular applications. 

 

 
Fig. 2. MAPE across all forecasting horizons. 

 
According to Table 1 showing the average MAPE for 

each model, LSTMs clearly underperformed across all 
agricultural products, exhibiting the highest MAPE values. 
In contrast, GRUs and LSTNet demonstrated comparable 
average MAPE values, with slight variations across crops. A 
more granular analysis, shown in Fig. 2, highlights MAPE 
trends across different forecasting horizons ranging from 1-
day to 14-day ahead predictions. Considering all four 
agricultural products, LSTNet consistently delivered the 
most stable price forecasts, with slight exceptions in the case 
of sugarcane. This could be attributed to the relatively low-
price fluctuations of sugarcane compared to the other crops. 
GRUs generally yielded lower MAPE values, aligning with 
the average MAPE reported in Table 1. However, they 

exhibited significant volatility across different forecasting 
horizons, particularly for corn and cassava. On the other 
hand, LSTMs tended to produce the least desirable results, 
suffering from both high MAPE values and obvious 
fluctuations over time.�In terms of computational time, the 
more complex LSTNet required a relatively longer training 
duration, taking 14.06 minutes per forecasting horizon, 
whereas GRUs and LSTMs required 8.38 and 8.75 min, 
respectively. �

Among all four crops, the models demonstrated the most 
reliable performance when forecasting rice prices. GRUs 
achieved the lowest MAPE across all forecasting horizons, 
making them the most effective model for rice price 
prediction. LSTMs and LSTNet followed in performance, 
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with LSTNet exhibiting a stable but slightly higher error. In 
essence, the error increased in a steady manner for all three 
models as the forecasting horizon increased. For corn price 
forecasting, LSTNet was the most stable model, maintaining 
relatively low to medium MAPE values across all horizons. 
LSTMs, on the other hand, struggled considerably with 
stability. Noticeable error spikes could also be observed at 
specific horizons. While GRUs were more stable than 
LSTMs, they still exhibited greater error fluctuations than 
LSTNet, making them less reliable for corn price prediction. 
In essence, LSTNet consistently offered robust performance 
for corn price forecasting, with minimal variability across 
time. 

In the case of cassava price forecasting, similar trends of 
MAPE were observed compared to those of corn prices. 
Both GRUs and LSTMs exhibited sharp fluctuations in 
MAPE, particularly in the mid-to-late forecasting horizons. 
This indicates challenges of both models in long-term 
predictions. The nature of cassava prices with sudden spikes, 
potentially contributes to the difficulty in achieving stable 
forecasts by considering individual prices alone. LSTNet 
proved to be the most reliable model, as it maintained a 
smoother and more stable error trend while achieving 
relatively lower MAPE values for longer forecasting 
horizons. For sugarcane prices, all three models exhibited an 
increasing error trend with some degree of fluctuation. They 
all struggled to provide high accuracy, as indicated by the 
highest MAPE among all crops. LSTNet initially maintained 
a steady error increase at shorter forecasting horizons but 
experienced more variability in later horizons. Both GRUs 
and LSTMs yielded slight variations in MAPE trends across 
different forecasting periods. Forecasting sugarcane prices is 
considerably challenging especially when the horizon 
extends. 

According to contributions of our study, we utilized a 
unique dataset covering the historical prices of four major 
agricultural products in Thailand. To the best of our 
knowledge, this dataset has not been extensively explored in 
previous studies. Our study consequently provided insights 
into price trends and volatility in the Thai agricultural 
market. Second, we conducted a comparison of multiple 
deep learning models, including GRUs, LSTMs, and 
LSTNet, to evaluate their effectiveness in time series 
forecasting for agricultural commodities. This highlights 
model-specific strengths and limitations for real-world price 
prediction. We also explored the application of LSTNet in 
multi-step forecasting setting by employing a rolling horizon 
approach. However, there is room for further improvement. 
External economic and environmental factors, such as 
weather conditions, global market trends, and economic 
indicators, were excluded from the current analysis due to 
limitations in data consistency and temporal coverage. 
Future work could incorporate these external variables to 
further enhance model performance and capture broader 
market dynamics [23–25]. Experimenting advanced models 
with enhanced techniques may yield better performance 
such as decomposition techniques [26–29]. Further 
validation with rolling/expanding backtests or evaluation on 
an external dataset coupled with a significance testing would 
ensure reliability of the overall framework, encompassing 
both data preprocessing and model development. Lastly, 

enhancing model interpretability through explainable AI 
techniques such as permutation importance would help non-
technical users gain deeper insights into the key factors 
influencing forecasting trends [30].  

V. CONCLUSION 

This study systematically evaluated the performance of 
deep learning mdoels – LSTMs, GRUs, and LSTNet – for 
multi-step agricultural price forecasting. The dataset for four 
Thai commodities including rice, corn, cassava, and 
sugarcane ranging from 2009 to 2023 was utilized. The 
results demonstrate that LSTNet consistently yields the most 
stable and reliable forecasts due to its capability to capture 
complex and interdependence among commodity prices. For 
LSTNet, Convolutional layers learn short-term local patterns 
while LSTM-based components capture long-term temporal 
relationships prior to further combining with autoregressive 
part to learn linear patterns. GRU models generally 
outperformed LSTMs, although both recurrent architectures 
exhibited increased volatility for certain horizons, 
highlighting the sensitivity of sequential models to specific 
temporal patterns. Among all crops, sugarcane was the most 
challenging commodity, suggesting that model performance 
relied on data volume and their volatility. These findings 
highlight the need to tailor forecasting models to the 
characteristics of each commodity. Future work should 
consider refining model architectures, adding advanced 
techniques, incorporating additional factors, further 
validating and including interpretability of the model. 
Overall, the study provides a methodological foundation for 
developing robust, data-driven price forecasting systems that 
can support informed decision-making for stakeholders in 
Thailand’s agricultural sector. 
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