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Abstract—Aerosol Optical Depth (AOD) is a key parameter 
in atmospheric science. Accurate AOD prediction plays a 
crucial role for environmental management, air quality 
assessment, and understanding the earth climate change. It also 
serves as a direct indicator of particulate matter pollution, 
which poses significant health risks. This study addresses the 
need for precise AOD forecasting by implementing SwinLSTM, 
a multi-step spatiotemporal deep learning model. A 6-hour 
forecasting horizon was selected to align with practical 
applications,   with   lookback   periods   of  12  and  24 h.   Both 
lookback periods yielded comparable model performance, as 
evidenced by the following metrics: Mean Absolute Error of 
0.04, Root Mean Square Error of 0.08, Structural Similarity 
Index of 0.97, and Peak Signal-to-Noise Ratio ranging from 44.4 
to 44.95. By enhancing our understanding of AOD and its 
contributing factors, we can develop more effective strategies to 
mitigate the negative impacts of air pollution and protect 
human health and the environment. Additionally, AOD 
forecasting can aid in understanding the impact of atmospheric 
particles on the Earth’s climate. 

Keywords—aerosol optical depth prediction, air pollution, 
climate change, spatiotemporal deep learning, SwinLSTM 
model  

I. INTRODUCTION

Aerosol Optical Depth (AOD) is a measure of how much 
light is blocked by particles suspended in the atmosphere. 
These particles, known as aerosols, include dust, smoke, sea 
salt, and pollutants. AOD has important applications in 
climate studies, air quality monitoring, and visibility 
assessments. It plays a key role in influencing Earth’s energy 
balance and climate change. High AOD levels are often 
associated with poor air quality, leading to hazy conditions 
and reduced visibility. Air quality, particularly Particulate 
Matter (PM2.5), is a critical global issue. PM2.5, consisting 
of particles less than 2.5 micrometers in diameter, poses 
severe risks to public health and environmental sustainability. 
A large portion of the world’s population lives in areas where 
air quality fails to meet safety standards.  Air pollution is a 
major cause of premature deaths, particularly in various low- 
and middle-income countries. Thailand also faces challenges 
related to air pollution. Addressing AOD and PM emissions 
is crucial for improving public health and environmental 
sustainability. 

Addressing air pollution requires a multifaceted approach, 
combining stringent air quality regulations with heightened 
public awareness and engagement. Implementing robust 
policies to limit emissions from industries, vehicles, and 
other major sources is crucial for mitigating air pollution at 
its root. Additionally, public education campaigns can play a 
key role by informing individuals about the health risks 

associated with poor air quality and encouraging behavioral 
changes that reduce exposure. These campaigns also promote 
sustainable practices to improve long-term air quality. The 
development of effective monitoring, forecasting, and 
mitigation strategies is also crucial for protecting both human 
health and the environment. Forecasting models enable 
timely interventions, such as public health advisories and 
traffic restrictions, by predicting future air quality. 

Artificial Intelligence (AI) is driving transformative 
changes across multiple sectors, including healthcare, finance, 
education and environmental science. Its ability to analyze 
vast amounts of data, recognize patterns, and make highly 
accurate predictions offers opportunities for innovation and 
efficiency. AI has become a powerful tool for addressing 
complex environmental challenges, such as air pollution 
prediction [1]. AI-powered models can develop precise 
predictions of air quality by analyzing historical data and 
current conditions, enabling early warnings and proactive 
measures. Moreover, AI can be integrated with real-time 
monitoring systems to provide continuous updates on air 
quality conditions. This allows authorities to track pollution 
levels, identify hotspots, and issue timely alerts to the public. 
AI models used in these applications range from traditional 
machine learning algorithms to advanced deep learning 
techniques. Recent advancements of deep learning include 
Recurrent Neural Networks (RNNs), Convolutional Neural 
Networks (CNNs), Graph Neural Networks (GNNs) and 
other neural networks [2].  

In recent years, researchers have conducted extensive 
studies to predict air quality concentrations using a variety of 
data sources. These studies often incorporated satellite-based 
information, meteorological variables, land use data, and 
other relevant factors. Many studies have focused on the use 
of satellite-derived AOD, which plays a key role in 
addressing various environmental challenges, such as air 
quality, climate change, and disaster management. Since 
AOD is closely correlated with PM2.5, it serves as an 
important proxy for estimating PM2.5 concentrations [3]. 
AOD affects visibility, which is crucial for transportation, 
aviation, and outdoor activities. Accurate AOD predictions 
can help optimize these activities and minimize risks. 
Additionally, AOD measurements can pinpoint sources of air 
pollution, including industrial emissions, vehicle exhaust, 
and natural events like wildfires. Accurate AOD predictions 
are also crucial for understanding and modeling the impacts 
of aerosols on climate change. AOD data enhances climate 
prediction models by improving our ability to model aerosol 
behavior. This potentially offers deeper insights into future 
climate trends. 
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In this study, we developed a multi-step air pollution 
prediction model that incorporates the spatiotemporal 
relationships between air quality and various environmental 
factors. The objective of our model was to predict AOD 
values at multiple future time steps for a specified geographic 
region in Thailand as our case study. Due to the limited 
availability of ground-level PM2.5 data in Thailand, we 
focused on training the model using more comprehensive 
satellite-based AOD information. For this purpose, we 
selected the SwinLSTM model, an architecture combining 
SwinTransformer blocks with a simplified LSTM, as the 
foundation for our prediction model [4]. It was originally 
designed for next-frame prediction in image sequences. Due 
to its input format, the SwinLSTM is well-suited for our 
grid-level AOD data. This model structure allowed us to 
effectively capture both spatial and temporal dependencies, 
improving the accuracy of AOD predictions across multiple 
time steps. 

II. LITERATURE REVIEW 
Atmospheric aerosols play a crucial role in air quality, 

environmental pollution, climate change and human health 
[5–7]. Prior studies have explored various methods to predict 
AOD levels. Wang et al. employed multiple instance 
regression to forecast AOD, treating it as a collection of 
labeled instances from neighboring pixels [8]. Li et al. 
proposed nonlinear principal component analysis combined 
with geographically and temporally weighted regression for 
AOD prediction [9]. In addition, tree-based and multivariate 
linear regression models have been developed using climatic 
parameters [10]. More recently, Kou et al. introduced a 
geospatial-temporal heterogeneity embedded graph neural 
network to predict AOD at multiple sites [11]. They also 
integrated geographically and temporally weighted 
regression with a graph attention network to capture 
spatiotemporal patterns. 

An alternative approach to regression-based methods 
involved utilizing support vector machines and multi-layer 
feed-forward neural networks with error back-propagation 
algorithms for AOD estimation [12]. With the advancement 
of Global Navigation Satellite System (GNSS) technology, 
Aliyu and Botai incorporated GNSS-derived Precipitable 
Water Vapor (PWV) into their AOD model [13]. They 
observed a correlation coefficient of -0.64 between AOD and 
PWV. Similarly, Zhao et al. proposed an adaptive AOD 
forecasting model using PWV data driven from GNSS [14].  

Another related area of research with our work involved 
estimating missing AOD data [15]. Olcese et al. developed an 
automated method that utilized AOD data from other nearby 
stations, artificial neural networks, and air mass trajectories 
[16]. Instead of relying on simple artificial neural networks, 
Li et al. advanced this approach by employing a more 
sophisticated deep learning technique. They employed 
bootstrap aggregating of autoencoder-based residual deep 
networks, to robustly impute AOD and subsequently estimate 
PM2.5 levels [17]. A random forest model has also been used 
to generate high-resolution daily AOD estimates with full 
coverage [18]. More recently, Long et al. introduced a 
satellite-based AOD filling method using hourly level-3 
Himawari-8 AOD products and random forest models [19]. 

III. MATERIALS AND METHODS 

A. Study Area and Data Collection 
This study focused on the central region of Thailand, 

including the Bangkok Metropolitan Area. To accurately 
predict air quality in this region, we integrated a variety of 
data sources. These included high-resolution satellite 
imagery from Himawari 8, a geostationary satellite operated 
by the Japan Meteorological Agency [20], and two reanalysis 
datasets including MERRA-2 [21] and ERA-5 [22]. 
Himawari 8 provided real-time weather data with 5 km×5 km 
resolution, including cloud cover and atmospheric conditions. 
This information was essential for understanding the factors 
influencing air pollution. MERRA-2 was developed by 
NASA’s Global Modeling and Assimilation Office which 
offered a spatial resolution of 0.5 degrees×0.625 degrees. 
Additionally, ERA-5 is a high-resolution atmospheric 
reanalysis dataset from the European Centre for 
Medium-Range Weather Forecasts. It has a resolution of 
11,132 m×11,132 m and offers detailed atmospheric 
information. 

For the data collection process, AOD data was directly 
downloaded from the Himawari-8 SFTP server under 
clear-sky conditions. Although Himawari-8 typically 
provides hourly AOD data, there can be major data gaps due 
to factors such as extended cloud cover or elevated surface 
reflectance. To address these gaps, we adopted a method like 
Liu et al. and supplemented the Himawari-8 data with 
MERRA-2 AOD data [23]. By integrating Himawari-8 and 
MERRA-2 data, we created a complete and continuous 
hourly AOD data for the region of interest. In addition to 
AOD, meteorological parameters, including precipitation, 
shortwave radiation, surface pressure, temperature, wind 
direction (u-component and v-component), and leaf area 
index, were obtained from the ERA5 dataset. This 
comprehensive dataset, combining hourly AOD and various 
meteorological parameters from multiple satellite sources. It 
provided a robust foundation for analyzing spatiotemporal 
patterns across the study region. Particularly, all collected 
variables were mapped to the central region of Thailand, 
resulting in a spatial resolution of 8×32×32 (C×H×W), where 
C represents the channels, H the height, and W the width. 

B. Methodology 
This study approached air pollution prediction as a 

spatiotemporal forecasting problem. It focused on predicting 
future events or conditions based on both spatial 
(location-based) and temporal (time-based) data. Our 
objective was to develop a model capable of accurately 
predicting AOD levels across the entire region of interest 
over multiple future time steps. To enhance model 
interpretability and training efficiency, we applied 
channel-wise normalization. This involved scaling the values 
within each channel to the range of 0 to 1. Training samples 
were constructed to predict AOD for a 6-hour forecasting 
horizon. To capture temporal dependencies, an experiment 
was conducted to evaluate the impact of different lookback 
periods. Specifically, we explored using 12-hour and 24-hour 
lookback windows to determine the suitable time frame for 
incorporating historical data into the prediction model. For 
model development, the entire dataset was divided into three 
subsets: training (2016–2022), validation (2022), and testing 
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(2023). This structured approach provided a solid foundation 
for developing a robust multi-step AOD prediction model. 

To address the spatiotemporal nature of air pollution 
prediction, we selected SwinLSTM-D, a model renowned for 
its performance on such data. To further improve the model’s 
robustness, we utilized OpenSTL, a bootstrapping technique 
within the PyTorch Lightning framework. For training, we 
employed Mean Absolute Error (MAE) as the loss function, 
focusing specifically on AOD prediction. This approach 
ensured that the model converged effectively on the target 
variable. By carefully selecting SwinLSTM-D and 
incorporating bootstrapping techniques, we aimed to capture 
the complex spatiotemporal relationships inherent in air 
pollution data. This approach was designed to optimize the 
model’s performance for accurate AOD predictions.  

C. Evaluation Metrics 
To further assess the model’s performance, we used a 

combination of pixel-wise error metrics and Image Quality 
Assessment (IQA) metrics. For pixel-wise errors, we 
calculated Root Mean Square Error (RMSE) and mean 
absolute error (MAE) to quantify the differences between 
predicted and actual AOD values at the individual pixel level. 
For the IQA metrics, Structural Similarity Index (SSIM) and 
Peak Signal-to-Noise Ratio (PSNR) were employed to assess 
the overall quality of the predicted AOD images. 

IV. RESULT AND DISCUSSION 
After training multi-step spatiotemporal deep learning 

models to forecast AOD, we selected the best-performing 
model based on its validation loss. Particularly, the models 
underwent a rigorous training and evaluation process. The 
initial training phase utilized the training dataset to learn the 
underlying patterns. This was followed by hyperparameter 
tuning on the validation set to optimize performance. 
Subsequently, the fine-tuned model with optimized 
parameters was assessed on the held-out test set.  

We evaluated the model’s performance with the pixel-wise 
error metrics, and IQA metrics. For the pixel-wise error 
metrics, RMSE penalizes larger errors more severely due to 
the squaring operation. It is therefore often used in 
applications where large errors have serious consequences 
like ours. MAE is often used in applications where the 
absolute magnitude of the error is more important than the 
direction (positive or negative). For RMSE and MAE, we 
calculated grid-wise averages across samples and timesteps 
to obtain a comprehensive assessment of the model’s 
performance. For the IQA metrics, SSIM considers three 
factors: luminance, contrast, and structural similarity. It 
calculates a similarity index between 0 and 1, where 1 
indicates perfect similarity. PSNR measures the ratio of 
maximum possible signal power to the power of the noise. A 
higher PSNR indicates a better signal-to-noise ratio. Table 1 
summarizes the evaluation results for both lookback periods 
(12-hour and 24-hour) on the training, validation, and testing 
datasets. 

While the model exhibited comparable performance on 
both the training and validation sets, a slight decrease in 
performance was observed on the test set. However, these 
differences were relatively minor. This suggests that the 
model has a strong ability to generalize to unseen data. The 
absence of significant overfitting is a positive indicator of the 

model’s robustness. To further bolster our confidence in the 
model’s performance and ensure its applicability to 
real-world scenarios, incorporating an external test dataset 
would be beneficial. As more data becomes available, 
conducting additional evaluations on this external set can 
provide valuable insights into the model’s generalizability 
and potential limitations. 

 
Table 1. Evaluation metrics based on train, validation, and test data 

(Lookback, 
Forecasting 

horizon) 

Evaluation 
metrics Train Validate Test 

(12, 6) 

MAE 0.0354 0.0390 0.0409 
RMSE 0.0704 0.0768 0.0827 
SSIM 0.9731 0.9715 0.9655 
PSNR 44.9768 44.3350 44.4414 

(24, 6) 

MAE 0.0339 0.0392 0.0402 
RMSE 0.0678 0.0788 0.0829 
SSIM 0.9741 0.9714 0.9663 
PSNR 45.5572 44.6839 44.9508 

 
We selected a 6-hour forecasting horizon to align with the 

practical application of the model as an early warning system. 
A 6-hour prediction window allows for sufficient time to 
implement preventive measures based on the forecasted 
AOD values. To determine an appropriate lookback period, 
we experimented with 12-hour and 24-hour windows. While 
a longer lookback period provides the model with more 
historical information, it can also lead to increased risk of 
overfitting. As shown in Table 1, the differences in 
evaluation metrics between the 12-hour and 24-hour 
lookback periods were minimal. This indicates that adding 
more historical data did not essentially improve the model’s 
performance. The 12-hour lookback period model may be 
preferred due to its smaller size and reduced computational 
demands. This model presented a balance between capturing 
historical trends and mitigating the risk of overfitting. 
Nonetheless, further research into the potential advantages of 
longer lookback periods in specific scenarios could be 
beneficial. 

To comprehensively assess the model’s performance at 
each forecast horizon within the 6 future time steps, we 
calculated all evaluation metrics for each predicted step. 
These metrics provided insights into the model’s accuracy, 
precision, and overall predictive capability capturing 
pixel-wise errors and IQA metrics at different points in the 
future. Fig. 1 visually represents the distribution of these 
metrics across 6 forecast steps. These values were averaged 
across all grids in the region. 

The model demonstrated its strongest performance at the 
initial forecasting horizon. However, a gradual decline in 
accuracy was observed as the prediction horizon extended 
into the future. This trend is intuitively understandable, as 
forecasting AOD values over longer periods becomes 
inherently more challenging. This potentially due to the 
increasing complexity and uncertainty associated with future 
atmospheric conditions. While the model’s accuracy may 
diminish slightly with longer forecasting horizons, the ability 
to provide predictions for multiple future time steps remains 
valuable for real-world applications. This trade-off between 
accuracy and forecasting horizon allows decision-makers to 
make informed policy interventions based on anticipated 
AOD levels, even when predictions are subject to some 
degree of uncertainty. 
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To further observe the model performance, we visualized 
the real value compared to the predicted AOD values across 
grids in the region of interest. Fig. 2 represents a specific time 
point selected as an example. It illustrates this comparison 
using a color gradient from blue (lowest AOD) to red (highest 
AOD). The figure is arranged from the earliest prediction 
point on the left to the latest prediction point on the right. The 
color scale is based on the minimum and maximum AOD 
values in the ground truth data. While there are some 
differences between actual and predicted values, the overall 
trend can be captured effectively, and a strong correlation is 
evident between the two. This provides a clear visual 
representation of the model’s ability to accurately predict 
AOD levels across the region, with only minor variations. 

 
Fig. 1. Evaluation metrics across 6 forecasting horizons. 

 

 

 
Fig. 2. An example of the real (top) and the predicted AOD (bottom). 

 
The dataset employed in this study was derived from 

satellite-based observations centered on the central region of 
Thailand. To our knowledge, this research represents a 
pioneering effort in applying spatiotemporal deep learning 
techniques to AOD forecasting within this specific 
geographical context. The quality and availability of the 
AOD and meteorological data are important to the model’s 
performance. Inaccuracies or biases in the data can introduce 
errors in the predictions. Additionally, limited access to 
high-quality data can hinder the model’s training and 
evaluation. Due to the limited availability of comparable 
studies in the same area of interest, we were unable to 
conduct a thorough comparison with other widely used AOD 
prediction models in the scope of this study. Instead, we 
focused our attention on the SwinLSTM model, which was 
well-suited for our dataset. Future research should involve an 
in-depth comparison of the model with other state-of-the-art 
AOD forecasting approaches, with a specific focus on 
real-time capabilities. A broader comparison would provide a 
more complete understanding of its relative strengths and 
weaknesses. 

While the SwinLSTM model demonstrates promising 
capabilities, its computational demands can be substantial, 
particularly for large datasets or real-time applications. In 
addition, the model’s performance may exhibit regional 
variations due to differences in geographical features, 
meteorological conditions, and land use patterns. 
Furthermore, the model’s ability to generalize across 

different time periods can be influenced by factors such as 
climate change, human activities, and other environmental 
variables. As more data becomes available, we intend to 
expand our research to encompass other regions and diverse 
time periods, thereby enhancing the model’s applicability 
and generalizability. 

As depicted in Fig. 2, the model’s performance exhibited a 
decline with increasing prediction time. This presents a 
potential challenge for practical applications, especially with 
long-term forecast requirements. To mitigate this limitation, 
future research could explore alternative model development 
strategies. For instance, one-point prediction models, which 
predict a single step ahead at a time, might demonstrate 
superior accuracy compared to multi-step prediction models. 
This potential advantage of one-point prediction models 
stems from the fact that their loss functions focus on a single 
output value, while multi-step prediction models consider 
multiple output values simultaneously. This can lead to a 
more concentrated focus on accuracy for the prediction step 
in one-point models. A rolling window approach, where the 
model predicts one step ahead and uses its own forecast as 
input for the next prediction, could be another avenue to 
explore. This iterative process allows for promising accuracy 
for long-term predictions. Additionally, investigating more 
sophisticated models could be a promising direction for 
enhancing the model’s performance. These models should be 
specifically designed for long-term forecasting and 
incorporate temporal dependencies or seasonal patterns. 
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V. CONCLUSION 
This study introduced a spatiotemporal deep learning 

model for accurate AOD forecasting in the central region of 
Thailand. The model integrated historical satellite-based 
AOD data along with relevant meteorological parameters, 
including precipitation, shortwave radiation, surface pressure, 
temperature, wind direction, and leaf area index. The 
proposed framework demonstrated promising performance 
when evaluated using pixel-wise error and IQA metrics. This 
was achieved by effectively capturing both spatial and 
temporal patterns within the diverse data sources. Although 
challenges related to data quality and computational 
resources were encountered, the results highlighted the 
potential of deep learning approaches for AOD forecasting.  

Future research should focus on overcoming the 
limitations of this study by improving data quality, increasing 
computational efficiency, and extending the model’s 
applicability to other regions and time periods. A 
comprehensive comparison with other state-of-the-art AOD 
prediction models would provide valuable insights into the 
relative performance of the proposed framework. Refining 
the model development process through advanced training 
strategies and incorporating more sophisticated models is 
another promising direction. Moreover, exploring methods to 
quantify uncertainty in predictions could further enhance the 
model’s utility. This provides decision-makers with more 
reliable and actionable insights. The development of accurate 
AOD forecasting models is essential for better understanding 
and mitigating the harmful effects of air pollution on both 
human health and the environment. Continued advancements 
in these models can support more informed policy decisions. 
They can also aid in disaster management and contribute to 
efforts to combat climate change. 
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