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Abstract—Aerosol Optical Depth (AOD) is a key parameter
in atmospheric science. Accurate AOD prediction plays a
crucial role for environmental management, air quality
assessment, and understanding the earth climate change. It also
serves as a direct indicator of particulate matter pollution,
which poses significant health risks. This study addresses the
need for precise AOD forecasting by implementing SwinLSTM,
a multi-step spatiotemporal deep learning model. A 6-hour
forecasting horizon was selected to align with practical
applications, with lookback periods of 12 and 24 h. Both
lookback periods yielded comparable model performance, as
evidenced by the following metrics: Mean Absolute Error of
0.04, Root Mean Square Error of 0.08, Structural Similarity
Index of 0.97, and Peak Signal-to-Noise Ratio ranging from 44.4
to 44.95. By enhancing our understanding of AOD and its
contributing factors, we can develop more effective strategies to
mitigate the negative impacts of air pollution and protect
human health and the environment. Additionally, AOD
forecasting can aid in understanding the impact of atmospheric
particles on the Earth’s climate.
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I. INTRODUCTION

Aerosol Optical Depth (AOD) is a measure of how much
light is blocked by particles suspended in the atmosphere.
These particles, known as aerosols, include dust, smoke, sea
salt, and pollutants. AOD has important applications in
climate studies, air quality monitoring, and visibility
assessments. It plays a key role in influencing Earth’s energy
balance and climate change. High AOD levels are often
associated with poor air quality, leading to hazy conditions
and reduced visibility. Air quality, particularly Particulate
Matter (PM2.5), is a critical global issue. PM2.5, consisting
of particles less than 2.5 micrometers in diameter, poses

severe risks to public health and environmental sustainability.

A large portion of the world’s population lives in areas where
air quality fails to meet safety standards. Air pollution is a
major cause of premature deaths, particularly in various low-
and middle-income countries. Thailand also faces challenges
related to air pollution. Addressing AOD and PM emissions
is crucial for improving public health and environmental
sustainability.

Addressing air pollution requires a multifaceted approach,
combining stringent air quality regulations with heightened
public awareness and engagement. Implementing robust
policies to limit emissions from industries, vehicles, and
other major sources is crucial for mitigating air pollution at
its root. Additionally, public education campaigns can play a
key role by informing individuals about the health risks
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associated with poor air quality and encouraging behavioral
changes that reduce exposure. These campaigns also promote
sustainable practices to improve long-term air quality. The
development of effective monitoring, forecasting, and
mitigation strategies is also crucial for protecting both human
health and the environment. Forecasting models enable
timely interventions, such as public health advisories and
traffic restrictions, by predicting future air quality.

Artificial Intelligence (Al) is driving transformative
changes across multiple sectors, including healthcare, finance,
education and environmental science. Its ability to analyze
vast amounts of data, recognize patterns, and make highly
accurate predictions offers opportunities for innovation and
efficiency. Al has become a powerful tool for addressing
complex environmental challenges, such as air pollution
prediction [1]. Al-powered models can develop precise
predictions of air quality by analyzing historical data and
current conditions, enabling early warnings and proactive
measures. Moreover, Al can be integrated with real-time
monitoring systems to provide continuous updates on air
quality conditions. This allows authorities to track pollution
levels, identify hotspots, and issue timely alerts to the public.
Al models used in these applications range from traditional
machine learning algorithms to advanced deep learning
techniques. Recent advancements of deep learning include
Recurrent Neural Networks (RNNs), Convolutional Neural
Networks (CNNs), Graph Neural Networks (GNNs) and
other neural networks [2].

In recent years, researchers have conducted extensive
studies to predict air quality concentrations using a variety of
data sources. These studies often incorporated satellite-based
information, meteorological variables, land use data, and
other relevant factors. Many studies have focused on the use
of satellite-derived AOD, which plays a key role in
addressing various environmental challenges, such as air
quality, climate change, and disaster management. Since
AOQOD is closely correlated with PM2.5, it serves as an
important proxy for estimating PM2.5 concentrations [3].
AOD affects visibility, which is crucial for transportation,
aviation, and outdoor activities. Accurate AOD predictions
can help optimize these activities and minimize risks.
Additionally, AOD measurements can pinpoint sources of air
pollution, including industrial emissions, vehicle exhaust,
and natural events like wildfires. Accurate AOD predictions
are also crucial for understanding and modeling the impacts
of aerosols on climate change. AOD data enhances climate
prediction models by improving our ability to model aerosol
behavior. This potentially offers deeper insights into future
climate trends.
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In this study, we developed a multi-step air pollution
prediction model that incorporates the spatiotemporal
relationships between air quality and various environmental
factors. The objective of our model was to predict AOD
values at multiple future time steps for a specified geographic
region in Thailand as our case study. Due to the limited
availability of ground-level PM2.5 data in Thailand, we
focused on training the model using more comprehensive
satellite-based AOD information. For this purpose, we
selected the SwinLSTM model, an architecture combining
SwinTransformer blocks with a simplified LSTM, as the
foundation for our prediction model [4]. It was originally
designed for next-frame prediction in image sequences. Due
to its input format, the SwinLSTM is well-suited for our
grid-level AOD data. This model structure allowed us to
effectively capture both spatial and temporal dependencies,
improving the accuracy of AOD predictions across multiple
time steps.

II. LITERATURE REVIEW

Atmospheric aerosols play a crucial role in air quality,
environmental pollution, climate change and human health
[5-7]. Prior studies have explored various methods to predict
AOD levels. Wang et al. employed multiple instance
regression to forecast AOD, treating it as a collection of
labeled instances from neighboring pixels [8]. Li ef al
proposed nonlinear principal component analysis combined
with geographically and temporally weighted regression for
AOD prediction [9]. In addition, tree-based and multivariate
linear regression models have been developed using climatic
parameters [10]. More recently, Kou et al. introduced a
geospatial-temporal heterogeneity embedded graph neural
network to predict AOD at multiple sites [11]. They also
integrated geographically and temporally weighted
regression with a graph attention network to capture
spatiotemporal patterns.

An alternative approach to regression-based methods
involved utilizing support vector machines and multi-layer
feed-forward neural networks with error back-propagation
algorithms for AOD estimation [12]. With the advancement
of Global Navigation Satellite System (GNSS) technology,
Aliyu and Botai incorporated GNSS-derived Precipitable
Water Vapor (PWYV) into their AOD model [13]. They
observed a correlation coefficient of -0.64 between AOD and
PWV. Similarly, Zhao et al. proposed an adaptive AOD
forecasting model using PWV data driven from GNSS [14].

Another related area of research with our work involved
estimating missing AOD data [15]. Olcese ef al. developed an
automated method that utilized AOD data from other nearby
stations, artificial neural networks, and air mass trajectories
[16]. Instead of relying on simple artificial neural networks,
Li et al advanced this approach by employing a more
sophisticated deep learning technique. They employed
bootstrap aggregating of autoencoder-based residual deep
networks, to robustly impute AOD and subsequently estimate
PM2.5 levels [17]. A random forest model has also been used
to generate high-resolution daily AOD estimates with full
coverage [18]. More recently, Long et al. introduced a
satellite-based AOD filling method using hourly level-3
Himawari-8 AOD products and random forest models [19].
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III. MATERIALS AND METHODS

A. Study Area and Data Collection

This study focused on the central region of Thailand,
including the Bangkok Metropolitan Area. To accurately
predict air quality in this region, we integrated a variety of
data sources. These included high-resolution satellite
imagery from Himawari 8, a geostationary satellite operated
by the Japan Meteorological Agency [20], and two reanalysis
datasets including MERRA-2 [21] and ERA-5 [22].
Himawari 8 provided real-time weather data with 5 kmx5 km
resolution, including cloud cover and atmospheric conditions.
This information was essential for understanding the factors
influencing air pollution. MERRA-2 was developed by
NASA’s Global Modeling and Assimilation Office which
offered a spatial resolution of 0.5 degreesx0.625 degrees.
Additionally, ERA-5 is a high-resolution atmospheric
reanalysis dataset from the European Centre for
Medium-Range Weather Forecasts. It has a resolution of
11,132 mx11,132 m and offers detailed atmospheric
information.

For the data collection process, AOD data was directly
downloaded from the Himawari-8 SFTP server under
clear-sky conditions. Although Himawari-8 typically
provides hourly AOD data, there can be major data gaps due
to factors such as extended cloud cover or elevated surface
reflectance. To address these gaps, we adopted a method like
Liu et al. and supplemented the Himawari-8 data with
MERRA-2 AOD data [23]. By integrating Himawari-8 and
MERRA-2 data, we created a complete and continuous
hourly AOD data for the region of interest. In addition to
AOD, meteorological parameters, including precipitation,
shortwave radiation, surface pressure, temperature, wind
direction (u-component and v-component), and leaf area
index, were obtained from the ERAS5 dataset. This
comprehensive dataset, combining hourly AOD and various
meteorological parameters from multiple satellite sources. It
provided a robust foundation for analyzing spatiotemporal
patterns across the study region. Particularly, all collected
variables were mapped to the central region of Thailand,
resulting in a spatial resolution of 8x32x32 (CxHxW), where
C represents the channels, H the height, and W the width.

B. Methodology

This study approached air pollution prediction as a
spatiotemporal forecasting problem. It focused on predicting
future events or conditions based on both spatial
(location-based) and temporal (time-based) data. Our
objective was to develop a model capable of accurately
predicting AOD levels across the entire region of interest
over multiple future time steps. To enhance model
interpretability and training efficiency, we applied
channel-wise normalization. This involved scaling the values
within each channel to the range of 0 to 1. Training samples
were constructed to predict AOD for a 6-hour forecasting
horizon. To capture temporal dependencies, an experiment
was conducted to evaluate the impact of different lookback
periods. Specifically, we explored using 12-hour and 24-hour
lookback windows to determine the suitable time frame for
incorporating historical data into the prediction model. For
model development, the entire dataset was divided into three
subsets: training (2016-2022), validation (2022), and testing
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(2023). This structured approach provided a solid foundation
for developing a robust multi-step AOD prediction model.

To address the spatiotemporal nature of air pollution
prediction, we selected SwinLSTM-D, a model renowned for
its performance on such data. To further improve the model’s
robustness, we utilized OpenSTL, a bootstrapping technique
within the PyTorch Lightning framework. For training, we
employed Mean Absolute Error (MAE) as the loss function,
focusing specifically on AOD prediction. This approach
ensured that the model converged effectively on the target
variable. By carefully selecting SwinLSTM-D and
incorporating bootstrapping techniques, we aimed to capture
the complex spatiotemporal relationships inherent in air
pollution data. This approach was designed to optimize the
model’s performance for accurate AOD predictions.

C. Evaluation Metrics

To further assess the model’s performance, we used a
combination of pixel-wise error metrics and Image Quality
Assessment (IQA) metrics. For pixel-wise errors, we
calculated Root Mean Square Error (RMSE) and mean
absolute error (MAE) to quantify the differences between
predicted and actual AOD values at the individual pixel level.
For the IQA metrics, Structural Similarity Index (SSIM) and
Peak Signal-to-Noise Ratio (PSNR) were employed to assess
the overall quality of the predicted AOD images.

IV. RESULT AND DISCUSSION

After training multi-step spatiotemporal deep learning
models to forecast AOD, we selected the best-performing
model based on its validation loss. Particularly, the models
underwent a rigorous training and evaluation process. The
initial training phase utilized the training dataset to learn the
underlying patterns. This was followed by hyperparameter
tuning on the validation set to optimize performance.
Subsequently, the fine-tuned model with optimized
parameters was assessed on the held-out test set.

We evaluated the model’s performance with the pixel-wise
error metrics, and IQA metrics. For the pixel-wise error
metrics, RMSE penalizes larger errors more severely due to
the squaring operation. It is therefore often used in
applications where large errors have serious consequences
like ours. MAE is often used in applications where the
absolute magnitude of the error is more important than the
direction (positive or negative). For RMSE and MAE, we
calculated grid-wise averages across samples and timesteps
to obtain a comprehensive assessment of the model’s
performance. For the IQA metrics, SSIM considers three
factors: luminance, contrast, and structural similarity. It
calculates a similarity index between 0 and 1, where 1
indicates perfect similarity. PSNR measures the ratio of
maximum possible signal power to the power of the noise. A
higher PSNR indicates a better signal-to-noise ratio. Table 1
summarizes the evaluation results for both lookback periods
(12-hour and 24-hour) on the training, validation, and testing
datasets.

While the model exhibited comparable performance on
both the training and validation sets, a slight decrease in
performance was observed on the test set. However, these
differences were relatively minor. This suggests that the
model has a strong ability to generalize to unseen data. The
absence of significant overfitting is a positive indicator of the
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model’s robustness. To further bolster our confidence in the
model’s performance and ensure its applicability to
real-world scenarios, incorporating an external test dataset
would be beneficial. As more data becomes available,
conducting additional evaluations on this external set can
provide valuable insights into the model’s generalizability
and potential limitations.

Table 1. Evaluation metrics based on train, validation, and test data

(Lookback, Evaluation
Forecasting . Train  Validate Test
. metrics
horizon)
MAE 0.0354 0.0390 0.0409
(12, 6) RMSE 0.0704 0.0768 0.0827
’ SSIM 0.9731 0.9715 0.9655
PSNR 449768 443350 44.4414
MAE 0.0339 0.0392 0.0402
(24, 6) RMSE 0.0678 0.0788 0.0829
’ SSIM 0.9741 0.9714 0.9663
PSNR 45.5572  44.6839  44.9508

We selected a 6-hour forecasting horizon to align with the
practical application of the model as an early warning system.
A 6-hour prediction window allows for sufficient time to
implement preventive measures based on the forecasted
AOD values. To determine an appropriate lookback period,
we experimented with 12-hour and 24-hour windows. While
a longer lookback period provides the model with more
historical information, it can also lead to increased risk of
overfitting. As shown in Table 1, the differences in
evaluation metrics between the 12-hour and 24-hour
lookback periods were minimal. This indicates that adding
more historical data did not essentially improve the model’s
performance. The 12-hour lookback period model may be
preferred due to its smaller size and reduced computational
demands. This model presented a balance between capturing
historical trends and mitigating the risk of overfitting.
Nonetheless, further research into the potential advantages of
longer lookback periods in specific scenarios could be
beneficial.

To comprehensively assess the model’s performance at
each forecast horizon within the 6 future time steps, we
calculated all evaluation metrics for each predicted step.
These metrics provided insights into the model’s accuracy,
precision, and overall predictive capability capturing
pixel-wise errors and IQA metrics at different points in the
future. Fig. 1 visually represents the distribution of these
metrics across 6 forecast steps. These values were averaged
across all grids in the region.

The model demonstrated its strongest performance at the
initial forecasting horizon. However, a gradual decline in
accuracy was observed as the prediction horizon extended
into the future. This trend is intuitively understandable, as
forecasting AOD values over longer periods becomes
inherently more challenging. This potentially due to the
increasing complexity and uncertainty associated with future
atmospheric conditions. While the model’s accuracy may
diminish slightly with longer forecasting horizons, the ability
to provide predictions for multiple future time steps remains
valuable for real-world applications. This trade-off between
accuracy and forecasting horizon allows decision-makers to
make informed policy interventions based on anticipated
AOD levels, even when predictions are subject to some
degree of uncertainty.
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To further observe the model performance, we visualized
the real value compared to the predicted AOD values across
grids in the region of interest. Fig. 2 represents a specific time
point selected as an example. It illustrates this comparison
using a color gradient from blue (lowest AOD) to red (highest
AOD). The figure is arranged from the earliest prediction
point on the left to the latest prediction point on the right. The
color scale is based on the minimum and maximum AOD
values in the ground truth data. While there are some
differences between actual and predicted values, the overall
trend can be captured effectively, and a strong correlation is
evident between the two. This provides a clear visual
representation of the model’s ability to accurately predict
AOD levels across the region, with only minor variations.

RMSE
—e— 12-period look-back
—e— 24-period look-back

SSIM PSNR

2 4 6 2 4 6

Timestep (Hour)

Fig. 1. Evaluation metrics across 6 forecasting horizons.
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Fig. 2. An example of the real (top) and the predicted AOD (bottom).

The dataset employed in this study was derived from
satellite-based observations centered on the central region of
Thailand. To our knowledge, this research represents a
pioneering effort in applying spatiotemporal deep learning
techniques to AOD forecasting within this specific
geographical context. The quality and availability of the
AOD and meteorological data are important to the model’s
performance. Inaccuracies or biases in the data can introduce
errors in the predictions. Additionally, limited access to
high-quality data can hinder the model’s training and
evaluation. Due to the limited availability of comparable
studies in the same area of interest, we were unable to
conduct a thorough comparison with other widely used AOD
prediction models in the scope of this study. Instead, we
focused our attention on the SwinLSTM model, which was
well-suited for our dataset. Future research should involve an
in-depth comparison of the model with other state-of-the-art
AOD forecasting approaches, with a specific focus on
real-time capabilities. A broader comparison would provide a
more complete understanding of its relative strengths and
weaknesses.

While the SwinLSTM model demonstrates promising
capabilities, its computational demands can be substantial,
particularly for large datasets or real-time applications. In
addition, the model’s performance may exhibit regional
variations due to differences in geographical features,
meteorological conditions, and land use patterns.
Furthermore, the model’s ability to generalize across
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different time periods can be influenced by factors such as
climate change, human activities, and other environmental
variables. As more data becomes available, we intend to
expand our research to encompass other regions and diverse
time periods, thereby enhancing the model’s applicability
and generalizability.

As depicted in Fig. 2, the model’s performance exhibited a
decline with increasing prediction time. This presents a
potential challenge for practical applications, especially with
long-term forecast requirements. To mitigate this limitation,
future research could explore alternative model development
strategies. For instance, one-point prediction models, which
predict a single step ahead at a time, might demonstrate
superior accuracy compared to multi-step prediction models.
This potential advantage of one-point prediction models
stems from the fact that their loss functions focus on a single
output value, while multi-step prediction models consider
multiple output values simultaneously. This can lead to a
more concentrated focus on accuracy for the prediction step
in one-point models. A rolling window approach, where the
model predicts one step ahead and uses its own forecast as
input for the next prediction, could be another avenue to
explore. This iterative process allows for promising accuracy
for long-term predictions. Additionally, investigating more
sophisticated models could be a promising direction for
enhancing the model’s performance. These models should be
specifically designed for long-term forecasting and
incorporate temporal dependencies or seasonal patterns.
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V. CONCLUSION

This study introduced a spatiotemporal deep learning
model for accurate AOD forecasting in the central region of
Thailand. The model integrated historical satellite-based
AOD data along with relevant meteorological parameters,
including precipitation, shortwave radiation, surface pressure,
temperature, wind direction, and leaf area index. The
proposed framework demonstrated promising performance
when evaluated using pixel-wise error and IQA metrics. This
was achieved by effectively capturing both spatial and
temporal patterns within the diverse data sources. Although
challenges related to data quality and computational
resources were encountered, the results highlighted the
potential of deep learning approaches for AOD forecasting.

Future research should focus on overcoming the
limitations of this study by improving data quality, increasing
computational efficiency, and extending the model’s
applicability to other regions and time periods. A
comprehensive comparison with other state-of-the-art AOD
prediction models would provide valuable insights into the
relative performance of the proposed framework. Refining
the model development process through advanced training
strategies and incorporating more sophisticated models is
another promising direction. Moreover, exploring methods to
quantify uncertainty in predictions could further enhance the
model’s utility. This provides decision-makers with more
reliable and actionable insights. The development of accurate
AOD forecasting models is essential for better understanding
and mitigating the harmful effects of air pollution on both
human health and the environment. Continued advancements
in these models can support more informed policy decisions.
They can also aid in disaster management and contribute to
efforts to combat climate change.
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