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Abstract—Malware remains a persistent and growing threat in 
the digital space, making it essential for the development of 
accurate and efficient detection techniques. This study 
proposes a hybrid deep learning model that combines 
Convolutional Neural Networks (CNNs), Autoencoders (AEs), 
and Vision Transformers (ViTs) for malware classification 
using Portable Executable (PE) header metadata, evaluated 
using the ClaMP_Integrated-5184 dataset. In the Proposed 
Architecture, the CNN component extracts local spatial 
features, the Autoencoder compresses and denoises the feature 
space, and the Vision Transformer captures global 
dependencies for robust classification. The results show that the 
model achieved a classification accuracy of 98% and an F1-
score of 98%, outperforming benchmark and state-of-the-art 
models. Findings highlight the effectiveness of hybrid deep 
learning architectures in static malware detection and 
demonstrate a promising approach for enhancing real-time 
malware detection systems. 
 

Keywords—CNN, Autoencoders, Vision Transformer, 
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I.  INTRODUCTION 

Malicious software poses a significant threat to 
individuals and organizations, resulting in substantial data 
breaches and financial losses [1]. As highlighted by Signes-
Pont et al. [2], the rapid development of new malware 
variants, driven by the growth of the Internet, has escalated 
cyber threats beyond our current ability to manage them 
effectively. Traditional malware detection techniques, such 
as signature-based and heuristic methods, are increasingly 
inadequate, especially against advanced malware that 
employs polymorphic and metamorphic techniques to evade 
detection [3]. 

The emergence of Artificial Intelligence (AI) and 
Machine Learning (ML) has opened new avenues in 
malware detection, offering dynamic and adaptive 
approaches that learn from large-scale datasets. AI-based 
systems have shown promise in detecting complex threats 
and improving classification accuracy [4]. Notably, hybrid 
models that combine different deep learning techniques have 
gained particular attention for their ability to exploit 
complementary strengths. For example, in the medical 
domain, autoencoder-based models have been shown to 
effectively learn feature representations from imbalanced 
datasets, improving diagnostic accuracy across diseases such 
as chronic kidney disease and cervical cancer [5]. Similarly, 
in network security, Kipongo et al. [6] developed a hybrid 

intrusion detection framework for Software-Defined Wireless 
Sensor Networks (SDWSN) by integrating blockchain, 
reinforcement learning, and a modified honeycomb 
architecture. Their study highlights how hybridization across 
paradigms can simultaneously address multiple challenges, 
such as energy efficiency, latency, and intrusion detection 
accuracy. 

This study thereby proposes a hybrid malware classification 
model that integrates Convolutional Neural Networks (CNNs), 
Autoencoders (AEs), and Vision Transformers (ViTs). The 
CNN component captures local spatial patterns in Portable 
Executable (PE) metadata, the AE compresses and denoises 
the feature space, and the ViT enhances the model’s ability to 
capture long-range dependencies. The ClaMP_Integrated-
5184 dataset was employed for model evaluation; it comprises 
over 5,000 samples of benign and malicious PE files described 
by 70 static header features. 

Ultimately, this work contributes to the growing body of 
research on intelligent malware detection systems by 
demonstrating how a synergistic deep learning architecture 
can address limitations in traditional approaches. By 
improving classification accuracy and model generalizability, 
this study supports the development of more resilient 
cybersecurity solutions. 

The rest of this paper is organized as follows: Section II 
reviews related works, Section III outlines the proposed 
methodology, Section IV presents the experimental results, 
and Section V concludes the study and suggests directions for 
future research. 

II.  RELATED WORKS 

Γιαπαντζής [7] proposed a model in for detecting malicious 
Windows executable files using an Extremely Lightweight 
Convolutional Neural Network (XLCNN), the detection 
method was based on extracting and analysing the metadata 
contained in these files. From the experiments carried out, it 
was found that the size and architecture of the feed-forward 
neural network in combination with the size of its input is one 
of the most important factors of XLCNN for classification 
problem, after the evaluation of the model, the proposed model 
had a recall of 97.88%, precision of 94.54%, F1-Score of 
96.08 % and an accuracy of 95.07%.  

Xing et al. [8] employed the use of AEs for malware 
detection. The model integrates a grayscale image 
representation of malware with an autoencoder-based deep 
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learning framework. It assesses the effectiveness of the 
grayscale imaging technique by analyzing the AE's 
reconstruction error and leverages the AE’s dimensionality 
reduction capabilities for distinguishing malware from 
benign applications. Using an Android-specific dataset, the 
proposed detection system achieved a 96% accuracy and a 
consistent F1-score of approximately 96%, surpassing the 
performance of several conventional machine learning 
detection methods. 

Farnoush Manavi and Ali Hamzeh [9] proposed a 
malware detection model for the detection of ransomware in 
PE headers using CNN. The model was evaluated on two 
types of opcode datasets, one for static features and the other 
for dynamic features. For the static features, the model 
achieved a precision of 93.40%, recall of 93.33%, F1-Score 
of 93.34% and accuracy of 93.33%. For the Dynamic 
features, it achieved a precision of 94.99%, a recall of 
95.11%, an F1-Score of 95.00% and an accuracy of 95.11%. 

Gupta et al. [10] proposed the use of an Artificial Neural 
Network (ANN) for the classification and identification of 
malware for its analysis. The findings of these authors 
showed that the proposed model classifies malware with a 
good accuracy on training and testing data of 90.07% and 
90.80%, respectively. 

Islam et al. [11] in their paper carried out the multi-
classification of malware in Android devices by employing 
a dynamic analysis from the given dynamic features, 
different models like the Support Vector Machine(SVM), 
Random Forest (RF), Decision Tree (DT), Logistic 
Regression (LR), Multi-Level Perceptrons (MLP) and others 
were employed and evaluated against the CCCS-CIC-
AndMal-2020 dataset, and the best accuracy gotten among 
their chosen models was 95%. 

Wasoye et al. [12] integrated the Binary Transformation 
and Lightweight Signatures (BTLS) into ML algorithms for 
the detection and classification of ransomware, which is a 
type of malware. The model allows for the extraction of both 
static and dynamic features, and on evaluation, it gave an 
accuracy of 96.5% for a combined feature-based 
classification. 

Nabofa-Ebiaredoh et al. [5] applied sparse AEs with 
Softmax regression for medical diagnosis, achieving robust 
performance on chronic disease datasets despite imbalanced 
class distributions. Their results reinforce the utility of AEs 
in extracting high-quality latent representations for 
downstream classification tasks.  

Kipongo et al. [6] presented a hybrid intrusion detection 
system in SDWSN environments, combining blockchain 
technology, reinforcement learning, and a modified 
honeycomb architecture to improve security, energy 
efficiency, and intrusion detection accuracy. highlighting the 
growing trend toward hybrid architectures that integrate 
complementary paradigms to overcome multi-faceted 
challenges. 

The Hybrid Autoencoder–Hybrid ResNet-LSTM (HAE-
HRL) model was proposed by Xue et al. [13] to enhance 
detection capabilities by combining feature selection with 
advanced classification. In this framework, a CNN-GRU 
based AE is first employed for dimensionality reduction and 
optimal feature subset selection, which helps eliminate 

redundant information and improve learning efficiency. The 
selected features are then passed to a ResNet-LSTM hybrid 
classifier, which captures both spatial and sequential patterns 
in the data for binary and multiclass classification. When 
evaluated on benchmark intrusion detection datasets such as 
NSL-KDD, UNSW-NB15, and CICIDS-2018, the HAE-HRL 
achieved high detection rates, with accuracies of 95.7%, 
94.9%, and 96.7% respectively. 

A framework proposed by Beg et al. [14] integrated AE-
based dimensionality reduction, CNN feature extraction, and 
Gradient Boosted Decision Trees (GBDT) to achieve an F1-
score of 0.95, while incorporating GAN-based adversarial 
training to improve robustness and Variational Autoencoders 
(VAEs) for semi-supervised learning to leverage unlabeled 
data. The model further employed LSTMs with attention for 
temporal malware analysis, enhancing zero-day attack 
detection. 

A. Research Gap 

Γιαπαντζής demonstrated the effectiveness of XLCNN for 
metadata-based detection with high recall and precision, yet 
the model is limited to local feature extraction within static 
files. Similarly, Xing et al. employed autoencoder-based 
grayscale imaging for Android malware and achieved strong 
accuracy, but their method relied heavily on dimensionality 
reduction without capturing global dependencies. Manavi and 
Hamzeh applied CNNs on opcode-based PE headers for 
ransomware detection, but their model still treated static and 
dynamic features separately, limiting generalization. Gupta et 
al. explored ANN-based classification but achieved only 
moderate performance compared to hybrid deep learning 
frameworks. In broader contexts, Xue et al. proposed the 
HAE–HRL intrusion detection model combining CNN-GRU 
autoencoders with ResNet-LSTM classifiers, while Beg et al. 
integrated autoencoders, CNNs, GBDTs, and GANs for robust 
malware analysis. These hybrid approaches highlight the 
effectiveness of combining paradigms, yet none explicitly 
explore the integration of CNNs, AEs, and Transformer-based 
attention mechanisms in malware classification. 

To address the gaps observed, our study proposes a hybrid 
CNN–AE–ViT architecture tailored for PE header metadata. 
The CNN component captures local structural patterns, the 
autoencoder compresses features into robust latent 
representations, and the Vision Transformer models long-
range global dependencies across the feature space. Unlike 
existing works that focus on either static or dynamic features 
in isolation, our unified pipeline synergizes these 
complementary paradigms to improve both accuracy and 
generalization. By demonstrating state-of-the-art performance 
on the ClaMP_Integrated-5184 dataset, this study shows how 
the hybridization of CNNs, autoencoders, and Transformers 
can overcome the limitations of prior approaches while 
providing a pathway for interpretable and scalable malware 
detection systems. 

III. METHODOLOGY 
This section describes the methodology proposed for the 

integration of different models and techniques to develop a 
hybrid malware classification model using features derived 
from the ClaMP_Integrated-5184 dataset sourced from 
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Kaggle. The model integrated three deep learning techniques, 
CNN, Autoencoders, and ViT, to capture local patterns 
within the data, perform feature compression, and model 
global dependencies, respectively. This section highlights 
the data preprocessing steps, the development of the model’s 
architecture, and the evaluation metrics. 

A. Research Design 

This research adopts a quantitative and experimental 
approach focusing on the integration, development, and 
evaluation of the proposed hybrid deep learning model. The 
experiment follows a supervised learning framework where 
the model trains to classify portable and executable files as 
either benign or malicious based on PE header metadata. 

B. Dataset Description 

The dataset used is the publicly available 
ClaMP_Integrated-5184.csv, containing over 5,184 samples 
of PE files characterized by a variety of features extracted 
from their headers. The dataset consists of over 70 static 
features extracted from PE header metadata. These features 
are not raw byte sequences but engineered attributes derived 
from file structure, header fields, import/export tables, and 
entropy-based indicators. 

During data cleaning, we filtered out redundant and low-
variance features, and categorical fields were label-encoded.      
Results indicated that metadata-related fields such as 
SizeOfCode, NumberOfSections, and Entropy, contributed 
most significantly to classification, aligning with prior 
malware analysis literature. 

C. Data Preprocessing 

Firstly, the data cleaning process involoved dropping all 
missing values to maintain integrity and consistency in 
training, then label encoding was applied to the categorical 
variables to transform them into a numerical form suitable 
for neural network input. Then the encoded values were 
normalized using MinMaxScaler to ensure they lie between 
0 and 1, improving model convergence. 

Since the model included CNN and ViT techniques, the 
features were reshaped into a 3D structure, 
(samples×features×1), to mimic a sequence input for deep 
learning. 

Furthermore, in the data preprocessing phase, the 
preprocessed data was split into training (70%), validation 
(15%), and testing (15%) sets using a stratified sampling 
approach to preserve the class distribution across all subsets. 

D. Model Architecture 
The proposed model is a hybrid of CNN, Autoencoder, 

and Vision Transformer components. Table 1 below 
describes the model’s parameters and their connections 
through the pipeline. The following list outlines its main 
features: 

 

 
Fig. 1. CNN-AE-ViT Model’s Architecture. 

1) CNN block 

A CNN block is employed to capture local feature 
interactions within the malware features, 2 Conv1D layers 
with 64 filters and a kernel size of 3, using the swish activation 
function, and MaxPooling1D layers to reduce spatial 
dimensions and emphasize dominant features. 

2) Autoencoder module 

The CNN output is passed through an autoencoder-like 
structure to learn compressed representations. Adding 
additional Conv1D and MaxPooling1D layers to mimic the 
encoder behavior further compacted the representation of 
input features. 

3) Transformer Encoder (ViT) 

To capture global dependencies across features, a dense 
projection is performed on the encoded features. Positional 
encoding is added using an Embedding layer and a Multi-Head 
Attention block with residual connections and Layer 
Normalization for processing these features, and finally, a 
feed-forward network refines the attention outputs. 

4) Feature fusion and classification 

Features from all three branches (CNN, Autoencoder, and 
ViT) are then concatenated and passed through a dense layer 
with swish activation with Dropout layers (0.4 and 0.3) to 
prevent overfitting, and a final sigmoid activation Dense layer 
for the output of our binary classification. 

Table 1. The CNN-Autoencoder-VIT model parameters and their connections 
Layer (type) Output Shape Param Connected To 

CNN Layer 
InputLayer [(None, 69, 1)] 0 [0] 
Conv1D(1) (None, 69, 64) 256 [‘InputLayer[0][0]’] 

MaxPooling1D(1) (None, 34, 64) 0 [‘Conv1D[0][0]’] 

Conv1D(2) (None, 34, 64) 12352 [‘MaxPooling1D (1)[0][0]’] 
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Autoencoder 
Conv1D(3) (None, 34, 64) 12352 [‘Conv1D(2)[0][0]] 

MaxPooling1D(2) (MaxPooling1D(1)(None, 17, 64) 0 [‘Conv1D(3)[0][0]’]) 
Transformer Encoder (ViT) 

Dense(1) (None, 17, 64) 4160 [‘MaxPooling1D(2) [0][0]’] 
TFOpLambda (None, 17, 64) 0 [‘Dense(1)[0][0]’] 

MultiHeadAttention (None, 17, 64) 33216 
[‘TFOpLambda[0][0]’, 
‘TFOpLambda[0][0]’] 

Add(1) (None, 17, 64) 0 [‘MultiHeadAttention[0][0]] 
LayerNormalization(1) (None, 17, 64) 128 [‘Add(1)[0][0]’] 

Dense(2) (None, 17, 128) 8320 [‘LayerNormalization(1)[0][0] 
Dense(3) (None, 17, 64) 8256 [‘Dense(2)[0][0]’] 

Add(2) (None, 17, 64) 0 
[‘LayerNormalization(1)[0][0]’, 

Dense(3)[0][0]] 
LayerNormalization(2) (None, 17, 64) 128 [‘Add(2)[0][0]’] 

Flatten(1) (None, 2176) 0 [‘Conv1D(3)[0][0]’] 
Flatten(2) (None, 1088) 0 [‘MaxPooling1D(2)[0][0]’] 

GlobalAveragePooling1D (None, 64) 0 [‘LayerNormalization(2)[0][0]’] 
Feature Fusion and Classification 

Concatenate (None, 3328) 0 
['Flatten(1)[0][0]',            
'Flatten(2)[0][0]',            

'GlobalAveragePooling1D[0][0]'] 
Dense(4) (None, 128) 426112 [‘Concatenate[0][0]’] 

Dropout(1) (None,128) 0 [‘Dense(4)[0][0]’] 
Dense(5) (None,)   
Dense(5) (None, 64) 8256 ['Dropout[1][0][0]'] 

Dropout(2) (None, 64) 0 [‘Dense[5][0][0]’] 
Dense(6) (None, 1) 65 [‘Dropout(2)[0][0]’] 

Notes: Total params: 513,601; Trainable params: 513,601; Non-trainable params: 0 

 
E. Model Compilation and Training 

Binary cross-entropy was used due to the binary nature of 
the classification task. Utilizing the AdamW optimizer for 
training due to its adaptive learning rate and regularization 
capabilities. 

The training configuration initially consisted of 20 Epochs 
followed by 30 additional fine-tuning epochs. This setup was 
later just streamlined to a total of just 30 epochs with a batch 
size of 32, and the final evaluation was performed on the 
held-out test dataset. 

F. Evaluation Metrics 

To assess its effectiveness, the proposed model was tested 
on an independent validation set using evaluation metrics 
such as accuracy, precision, recall, and F1-score. These 
metrics were used to measure the model’s overall 
performance and its ability to identify malware across 
different classes accurately: 
Accuracy: 

The ratio of correctly classified samples to the total 
number of samples in the evaluation dataset: 
 

FPFNTNTP

TNTP
Accuracy




             (1) 

 

Recall (Sensitivity): 
The ratio of correctly classified positive samples to all 

samples assigned to the positive class: 
 

FNTP

TP
call


Re                   (2) 

Precision: 
The ratio of correctly classified samples to all samples 

assigned to that class: 

FPTP

TP
ecision


Pr                  (3) 

F1-Score: 

The harmonic mean of precision and recall, penalizing 
extreme values of either metric 

callecision

callecision
F

RePr

RePr
21




              (4) 

 

where: 
TP is True Positive 
TN is True Negative 
FP is False Positive 
FN is False Negative. 
This section gives an explanatory dive into how the 

modelling and use of a hybrid use of three techniques for 
malware classification. The integration of CNN, Autoencoder, 
and Vision Transformer components enabled the model to 
effectively extract, compress, and learn complex feature 
representations from static PE metadata.  

IV. RESULT AND DISCUSSION 

This section analyzes the empirical performance of the 
proposed hybrid CNN-Autoencoder-ViT model applied to the 
ClaMP_Integrated-5184 dataset. The results affirm the 
hypothesis that integrating complementary deep learning 
paradigms can substantially improve malware classification 
performance. 

A. Training and Validation Performance 

Training and validation over 30 epochs using the AdamW 
optimizer and binary cross-entropy loss demonstrates high 
stability and convergence. As shown in Table 2, the model 
achieved a consistent F1-score of 98% for both classes, 
indicating a robust balance between precision and recall. 
These results signify that the model not only minimizes false 
positives but also excels in identifying malicious samples, 
which is critical in cybersecurity applications where 
undetected threats can have severe consequences. 

The model’s learning dynamics, visualized in Fig. 2, show 
a steady improvement in accuracy and a corresponding 
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reduction in loss, demonstrating effective generalization 
with no signs of overfitting. This contrasts with many 
existing models that tend to either overfit on malware 
patterns or fail to generalize due to limited representation 
capability. 
 

Table 2. CNN-AE-VIT classification report 
Class/Metrics Precision Recall F1-Score 

Benign(0) 98% 98% 98% 
Malware(1) 98% 98% 98% 

 
Fig. 2 shows the trend of accuracy and loss during training, 

highlighting strong generalization without signs of 
overfitting or underfitting. 

B. Confusion Matrix 
The confusion matrix shown in Fig. 3 and Table 3 presents 

the high true positive and true negative counts, thus 
reflecting the model's precision in detection with minimal 
misclassifications. 
 

 
Fig. 3. Confusion matrix table of the proposed model’s predictions. 

 
Table 3. Confusion matrix of the proposed model’s predictions 

 Predicted Benign Predicted Malware 
Actual Benign 243 6 

Actual Malware 5 267 
 

These minimal error rates validate the model’s real-world 
applicability, where false positives can lead to unnecessary 
disruptions and false negatives can leave systems vulnerable 
to threats. The ability to correctly distinguish between 
classes with such high reliability confirms the model's 
practical deployment potential in enterprise-grade malware 
detection systems. 

B. Training History of Proposed Model  

 

 
Fig. 4. Training history plot of proposed model. 

 

The training history graph, shown in Fig. 4, illustrates the 
progression of both training and validation accuracy and loss 

across 30 epochs. From the plot, it is evident that the model 
experienced steady and consistent learning, with the training 
accuracy starting strongly above the 90% accuracy range and 
the validation accuracy converging closely. This convergence 
indicates that the model generalized well to unseen data and 
did not overfit. Additionally, the training and validation loss 
curves both show a sharp decline in the early epochs, followed 
by a plateau, suggesting early convergence and stability in 
learning. The absence of significant divergence between the 
training and validation metrics confirms that the regularization 
techniques (e.g., Dropout and AdamW optimizer) were 
effective in mitigating overfitting. 

D. Ablation Study on Baseline Models 

To validate the rationale for combining CNN, AE, and ViT, 
we conducted an ablation study in which four baseline models 
were trained independently: CNN-only, AE-only, CNN+AE, 
and CNN+ViT before evaluating the proposed hybrid 
CNN+AE+ViT model. The CNN-only baseline captured local 
spatial dependencies and hierarchical representations of PE 
header metadata. In contrast, the AE-only baseline learned 
compressed latent representations and reduced redundancy but 
lacked discriminative strength. Combining CNN with AE 
improved generalization by uniting hierarchical feature 
extraction with dimensionality reduction, whereas CNN+ViT 
leveraged both convolutional features and global attention to 
address long-range dependencies. The hybrid CNN+AE+ViT 
model integrated the strengths of all three approaches: CNN 
for local feature learning, AE for compression and redundancy 
reduction, and ViT for global contextualization. As shown in 
Fig. 5, while CNN and AE alone achieved a good performance, 
the hybrid model consistently delivered the highest precision, 
recall, and F1-score. Furthermore, the confidence interval 
analysis presented in Fig. 6 confirms the robustness of these 
results, demonstrating that the hybrid’s superior performance 
is statistically consistent across evaluation metrics, thereby 
validating the necessity of incorporating all three components. 

 

 
Fig. 5. Ablation study result. 

 

 
Fig. 6. Ablation study confidence interval bar plot. 

 

E. Comparison of the Proposed Model with the State of the 
Art and Existing Models 

Compared to standalone classifiers and deep learning 
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models like CNN, ANN, and a variety of similar models, the 
proposed hybrid model achieved a superior accuracy and F1-
score of 98%. This validates the usefulness of integrating 

handcrafted deep features (Autoencoder-ViT) with CNNs’ 
strong feature extraction and classification ability (Table 4). 

 
Table 4. Comparison of proposed model with existing models 

Author and Year Methodology Malware Type Result 
(Γιαπαντζής, 
2022) 

Detection of malware using 
XLCNN 

malicious files in Windows 
executable files. 

proposed model had a recall of 97.88, precision of of 
94.54, F1-Score of 96.08 and an accuracy of 95.07. 

Xing et al. 
(2022) 

detection of malwares using 
autoencoders 

Malicious files in android 
software/APK 

An accuracy of 96% was achieved alongside an F1-
score of about 96% 

Farnoush 
Manavi & Ali 
Hamzeh, (2022) 

detection of ransomware in PE 
headers using CNN 

Ransomware in PE Headers using 
static and dynamic features 

For the Static features, they had Precision of 93.40%, 
recall of 93.33%, F1-Score of 93.34% and Accuracy of 
93.33% then for the Dynamic features, Precision of 
94.99%, Recall of 95.11%, F1-Score of 95.00% and an 
Accuracy of 95.11%. 

Gupta et al. 
(2022) 

ANN for the classification and 
identification of malware. 

 Accuracy for the train and test datasets is 90.07% and 
90.80%, respectively. 

Beg et al. (2024) integrated autoencoder-based 
dimensionality reduction, CNN 
feature extraction, and Gradient 
Boosted Decision Trees (GBDT) to 
achieve an F1-score of 0.95 

malware Achieved an F1-score of 95%. 

Xue et al. (2025) Hybrid Autoencoder–Hybrid 
ResNet-LSTM (HAE-HRL) 

intrusion detection malware 
datasets such as NSL-KDD, 
UNSW-NB15, and CICIDS-2018, 

With Accuracies of 95.7%, 94.9%, and 96.7% 
respectively. 

Proposed Model CNN-AE-ViT hybrid Model Static Features of Different 
Malware PE Files 

Accuracy of 98% and an F1-Score of 98%. 

 
V.  CONCLUSION 

This study has demonstrated the effectiveness of a hybrid 
deep learning architecture combining CNN, Autoencoders, 
and ViT for malware classification using static PE header 
features. The results of the evaluation of the proposed model 
show that this integrated model significantly outperforms 
state of the art and single-paradigm models in accuracy, 
recall, and precision. 

By leveraging CNNs for local feature learning, 
Autoencoders for latent space compression, and ViTs for 
sequence-level dependencies, the model effectively bridges 
the limitations seen in previous research. The 98% 
classification accuracy and low false classification rates 
underscore the potential of hybrid architectures in 
developing next-generation cybersecurity tools. 

Furthermore, the study affirms the feasibility of using 
purely static features with deep learning methods to detect 
complex malware, offering a lightweight and scalable 
alternative to more computationally intensive dynamic 
analysis methods. 

Future Work: While the current model focuses on static 
PE header features, future works should explore the 
integration of dynamic behavior-based features, real-time 
deployment scenarios, expanding the model to multi-class 
malware classification, and the integration of Interpretability 
frameworks (e.g., SHAP or LIME) for understanding model 
decisions. 

Ultimately, this work contributes meaningfully to the 
evolution of intelligent malware detection systems and lays 
a foundation for further innovation in hybrid AI-based 
cybersecurity models. 
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