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Abstract—Malware remains a persistent and growing threat in
the digital space, making it essential for the development of
accurate and efficient detection techniques. This study
proposes a hybrid deep learning model that combines
Convolutional Neural Networks (CNNs), Autoencoders (AEs),
and Vision Transformers (ViTs) for malware classification
using Portable Executable (PE) header metadata, evaluated
using the ClaMP_Integrated-5184 dataset. In the Proposed
Architecture, the CNN component extracts local spatial
features, the Autoencoder compresses and denoises the feature
space, and the Vision Transformer captures global
dependencies for robust classification. The results show that the
model achieved a classification accuracy of 98% and an F1-
score of 98%, outperforming benchmark and state-of-the-art
models. Findings highlight the effectiveness of hybrid deep
learning architectures in static malware detection and
demonstrate a promising approach for enhancing real-time
malware detection systems.

Keywords—CNN, Autoencoders, Vision Transformer,
malware detection, PE Headers, static malware classification

1. INTRODUCTION

Malicious software poses a significant threat to
individuals and organizations, resulting in substantial data
breaches and financial losses [1]. As highlighted by Signes-
Pont et al. [2], the rapid development of new malware
variants, driven by the growth of the Internet, has escalated
cyber threats beyond our current ability to manage them
effectively. Traditional malware detection techniques, such
as signature-based and heuristic methods, are increasingly
inadequate, especially against advanced malware that
employs polymorphic and metamorphic techniques to evade
detection [3].

The emergence of Artificial Intelligence (AI) and
Machine Learning (ML) has opened new avenues in
malware detection, offering dynamic and adaptive
approaches that learn from large-scale datasets. Al-based
systems have shown promise in detecting complex threats
and improving classification accuracy [4]. Notably, hybrid
models that combine different deep learning techniques have
gained particular attention for their ability to exploit
complementary strengths. For example, in the medical
domain, autoencoder-based models have been shown to
effectively learn feature representations from imbalanced
datasets, improving diagnostic accuracy across diseases such
as chronic kidney disease and cervical cancer [5]. Similarly,
in network security, Kipongo et al. [6] developed a hybrid
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intrusion detection framework for Software-Defined Wireless
Sensor Networks (SDWSN) by integrating blockchain,
reinforcement learning, and a modified honeycomb
architecture. Their study highlights how hybridization across
paradigms can simultaneously address multiple challenges,
such as energy efficiency, latency, and intrusion detection
accuracy.

This study thereby proposes a hybrid malware classification
model that integrates Convolutional Neural Networks (CNNs),
Autoencoders (AEs), and Vision Transformers (ViTs). The
CNN component captures local spatial patterns in Portable
Executable (PE) metadata, the AE compresses and denoises
the feature space, and the ViT enhances the model’s ability to
capture long-range dependencies. The ClaMP_Integrated-
5184 dataset was employed for model evaluation; it comprises
over 5,000 samples of benign and malicious PE files described
by 70 static header features.

Ultimately, this work contributes to the growing body of
research on intelligent malware detection systems by
demonstrating how a synergistic deep learning architecture
can address limitations in traditional approaches. By
improving classification accuracy and model generalizability,
this study supports the development of more resilient
cybersecurity solutions.

The rest of this paper is organized as follows: Section II
reviews related works, Section III outlines the proposed
methodology, Section IV presents the experimental results,
and Section V concludes the study and suggests directions for
future research.

II. RELATED WORKS

IMomavting [7] proposed a model in for detecting malicious
Windows executable files using an Extremely Lightweight
Convolutional Neural Network (XLCNN), the detection
method was based on extracting and analysing the metadata
contained in these files. From the experiments carried out, it
was found that the size and architecture of the feed-forward
neural network in combination with the size of its input is one
of the most important factors of XLCNN for classification
problem, after the evaluation of the model, the proposed model
had a recall of 97.88%, precision of 94.54%, F1-Score of
96.08 % and an accuracy of 95.07%.

Xing et al. [8] employed the use of AEs for malware
detection. The model integrates a grayscale image
representation of malware with an autoencoder-based deep
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learning framework. It assesses the effectiveness of the
grayscale imaging technique by analyzing the AE's
reconstruction error and leverages the AE’s dimensionality
reduction capabilities for distinguishing malware from
benign applications. Using an Android-specific dataset, the
proposed detection system achieved a 96% accuracy and a
consistent F1-score of approximately 96%, surpassing the
performance of several conventional machine learning
detection methods.

Farnoush Manavi and Ali Hamzeh [9] proposed a
malware detection model for the detection of ransomware in
PE headers using CNN. The model was evaluated on two
types of opcode datasets, one for static features and the other
for dynamic features. For the static features, the model
achieved a precision of 93.40%, recall of 93.33%, F1-Score
of 93.34% and accuracy of 93.33%. For the Dynamic
features, it achieved a precision of 94.99%, a recall of
95.11%, an F1-Score of 95.00% and an accuracy of 95.11%.

Gupta et al. [10] proposed the use of an Artificial Neural
Network (ANN) for the classification and identification of
malware for its analysis. The findings of these authors
showed that the proposed model classifies malware with a
good accuracy on training and testing data of 90.07% and
90.80%, respectively.

Islam et al. [11] in their paper carried out the multi-
classification of malware in Android devices by employing
a dynamic analysis from the given dynamic features,
different models like the Support Vector Machine(SVM),
Random Forest (RF), Decision Tree (DT), Logistic
Regression (LR), Multi-Level Perceptrons (MLP) and others
were employed and evaluated against the CCCS-CIC-
AndMal-2020 dataset, and the best accuracy gotten among
their chosen models was 95%.

Wasoye et al. [12] integrated the Binary Transformation
and Lightweight Signatures (BTLS) into ML algorithms for
the detection and classification of ransomware, which is a
type of malware. The model allows for the extraction of both
static and dynamic features, and on evaluation, it gave an
accuracy of 96.5% for a combined feature-based
classification.

Nabofa-Ebiaredoh et al. [5] applied sparse AEs with
Softmax regression for medical diagnosis, achieving robust
performance on chronic disease datasets despite imbalanced
class distributions. Their results reinforce the utility of AEs
in extracting high-quality latent representations for
downstream classification tasks.

Kipongo et al. [6] presented a hybrid intrusion detection
system in SDWSN environments, combining blockchain
technology, reinforcement learning, and a modified
honeycomb architecture to improve security, energy
efficiency, and intrusion detection accuracy. highlighting the
growing trend toward hybrid architectures that integrate
complementary paradigms to overcome multi-faceted
challenges.

The Hybrid Autoencoder—Hybrid ResNet-LSTM (HAE-
HRL) model was proposed by Xue et al. [13] to enhance
detection capabilities by combining feature selection with
advanced classification. In this framework, a CNN-GRU
based AE is first employed for dimensionality reduction and
optimal feature subset selection, which helps eliminate

redundant information and improve learning efficiency. The
selected features are then passed to a ResNet-LSTM hybrid
classifier, which captures both spatial and sequential patterns
in the data for binary and multiclass classification. When
evaluated on benchmark intrusion detection datasets such as
NSL-KDD, UNSW-NB135, and CICIDS-2018, the HAE-HRL
achieved high detection rates, with accuracies of 95.7%,
94.9%, and 96.7% respectively.

A framework proposed by Beg et al. [14] integrated AE-
based dimensionality reduction, CNN feature extraction, and
Gradient Boosted Decision Trees (GBDT) to achieve an F1-
score of 0.95, while incorporating GAN-based adversarial
training to improve robustness and Variational Autoencoders
(VAEs) for semi-supervised learning to leverage unlabeled
data. The model further employed LSTMs with attention for
temporal malware analysis, enhancing zero-day attack
detection.

A. Research Gap

TlNomovting demonstrated the effectiveness of XLCNN for
metadata-based detection with high recall and precision, yet
the model is limited to local feature extraction within static
files. Similarly, Xing et al. employed autoencoder-based
grayscale imaging for Android malware and achieved strong
accuracy, but their method relied heavily on dimensionality
reduction without capturing global dependencies. Manavi and
Hamzeh applied CNNs on opcode-based PE headers for
ransomware detection, but their model still treated static and
dynamic features separately, limiting generalization. Gupta et
al. explored ANN-based classification but achieved only
moderate performance compared to hybrid deep learning
frameworks. In broader contexts, Xue et al. proposed the
HAE-HRL intrusion detection model combining CNN-GRU
autoencoders with ResNet-LSTM classifiers, while Beg et al.
integrated autoencoders, CNNs, GBDTs, and GANSs for robust
malware analysis. These hybrid approaches highlight the
effectiveness of combining paradigms, yet none explicitly
explore the integration of CNNs, AEs, and Transformer-based
attention mechanisms in malware classification.

To address the gaps observed, our study proposes a hybrid
CNN-AE-VIiT architecture tailored for PE header metadata.
The CNN component captures local structural patterns, the
autoencoder compresses features into robust latent
representations, and the Vision Transformer models long-
range global dependencies across the feature space. Unlike
existing works that focus on either static or dynamic features
in isolation, our wunified pipeline synergizes these
complementary paradigms to improve both accuracy and
generalization. By demonstrating state-of-the-art performance
on the ClaMP_Integrated-5184 dataset, this study shows how
the hybridization of CNNs, autoencoders, and Transformers
can overcome the limitations of prior approaches while
providing a pathway for interpretable and scalable malware
detection systems.

III. METHODOLOGY

This section describes the methodology proposed for the
integration of different models and techniques to develop a
hybrid malware classification model using features derived
from the ClaMP_Integrated-5184 dataset sourced from
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Kaggle. The model integrated three deep learning techniques,
CNN, Autoencoders, and ViT, to capture local patterns
within the data, perform feature compression, and model
global dependencies, respectively. This section highlights
the data preprocessing steps, the development of the model’s
architecture, and the evaluation metrics.

A.  Research Design

This research adopts a quantitative and experimental
approach focusing on the integration, development, and
evaluation of the proposed hybrid deep learning model. The
experiment follows a supervised learning framework where
the model trains to classify portable and executable files as
either benign or malicious based on PE header metadata.

B.  Dataset Description

The dataset wused is the publicly available
ClaMP_Integrated-5184.csv, containing over 5,184 samples
of PE files characterized by a variety of features extracted
from their headers. The dataset consists of over 70 static
features extracted from PE header metadata. These features
are not raw byte sequences but engineered attributes derived
from file structure, header fields, import/export tables, and
entropy-based indicators.

During data cleaning, we filtered out redundant and low-
variance features, and categorical fields were label-encoded.
Results indicated that metadata-related fields such as
SizeOfCode, NumberOfSections, and Entropy, contributed
most significantly to classification, aligning with prior
malware analysis literature.

C. Data Preprocessing

Firstly, the data cleaning process involoved dropping all
missing values to maintain integrity and consistency in
training, then label encoding was applied to the categorical
variables to transform them into a numerical form suitable
for neural network input. Then the encoded values were
normalized using MinMaxScaler to ensure they lie between
0 and 1, improving model convergence.

Since the model included CNN and ViT techniques, the
features were reshaped into a 3D  structure,
(samplesxfeaturesx1), to mimic a sequence input for deep
learning.

Furthermore, in the data preprocessing phase, the
preprocessed data was split into training (70%), validation
(15%), and testing (15%) sets using a stratified sampling
approach to preserve the class distribution across all subsets.

D. Model Architecture

The proposed model is a hybrid of CNN, Autoencoder,
and Vision Transformer components. Table 1 below
describes the model’s parameters and their connections
through the pipeline. The following list outlines its main
features:

PE Header Metadata

l Preprocessing

( CNN Block N (__AutoEncoder Block |\  (Vision Transformer Block )
o)

Y
o Dense Projection

NS

‘:‘&*‘
& v
Multi-Head Attention
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A 4

GlobalAveragePooling

ey
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@

Fusion Block

Concatenate([CNN Flatten, AE Flatten, ViT Output])

Classification Layer

Dense(128) + Dropout
Dense(64) + Dropout

Output(Benign/Malware)

Fig. 1. CNN-AE-ViT Model’s Architecture.

1) CNN block

A CNN block is employed to capture local feature
interactions within the malware features, 2 ConvlD layers
with 64 filters and a kernel size of 3, using the swish activation
function, and MaxPoolinglD layers to reduce spatial
dimensions and emphasize dominant features.

2)  Autoencoder module

The CNN output is passed through an autoencoder-like
structure to learn compressed representations. Adding
additional ConvlD and MaxPooling1D layers to mimic the
encoder behavior further compacted the representation of
input features.

3)  Transformer Encoder (ViT)

To capture global dependencies across features, a dense
projection is performed on the encoded features. Positional
encoding is added using an Embedding layer and a Multi-Head
Attention block with residual connections and Layer
Normalization for processing these features, and finally, a
feed-forward network refines the attention outputs.

4)  Feature fusion and classification

Features from all three branches (CNN, Autoencoder, and
ViT) are then concatenated and passed through a dense layer
with swish activation with Dropout layers (0.4 and 0.3) to
prevent overfitting, and a final sigmoid activation Dense layer
for the output of our binary classification.

Table 1. The CNN-Autoencoder-VIT model parameters and their connections

Layer (type) | Output Shape | Param | Connected To
CNN Layer
InputLayer [(None, 69, 1)] 0 [0]
Conv1D(1) (None, 69, 64) 256 [‘InputLayer[0][0]’]
MaxPooling1D(1) (None, 34, 64) 0 [‘Conv1DJ[0][0]’]
Conv1D(2) (None, 34, 64) 12352 [‘MaxPooling1D (1)[0][0]’]
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Autoencoder
ConvlD(3) (None, 34, 64) 12352 [‘Conv1D(2)[0][0]]
MaxPooling1D(2) (MaxPooling1D(1)(None, 17, 64) 0 [‘Conv1D(3)[0][0]’])
Transformer Encoder (ViT)
Dense(1) (None, 17, 64) 4160 [‘MaxPooling1D(2) [0][0]’]
TFOpLambda (None, 17, 64) 0 [‘Dense(1)[0][0]’]
MultiHeadAttention (None, 17, 64) 33216 [ TTFF g}f’LL;ﬁﬂ’;;[[OO]][[OO]], ;
Add(1) (None, 17, 64) 0 [‘MultiHeadAttention[0][0]]
LayerNormalization(1) (None, 17, 64) 128 [*‘Add(1)[0][0]’]
Dense(2) (None, 17, 128) 8320 [‘LayerNormalization(1)[0][0]
Dense(3) (None, 17, 64) 8256 [‘Dense(2)[0][0]’]
‘LayerNormalization(1)[0][0]’,
Add(2) (None, 17, 64) 0 [‘Lay Donso(h{0] [0(]])[ 1[0]
LayerNormalization(2) (None, 17, 64) 128 [*‘Add(2)[0][0]’]
Flatten(1) (None, 2176) 0 [‘Conv1D(3)[0][0]’]
Flatten(2) (None, 1088) 0 [‘MaxPooling1 D(2)[0][0]’]
GlobalAveragePooling1 D (None, 64) 0 [‘LayerNormalization(2)[0][0]’]
Feature Fusion and Classification
['Flatten(1)[0][0]',
Concatenate (None, 3328) 0 'Flatten(2)[0][0]',
'GlobalAveragePooling1D[0][0]']
Dense(4) (None, 128) 426112 [‘Concatenate[0][0]’]
Dropout(1) (None,128) 0 [‘Dense(4)[0][0]°]
Dense(5) (None,)
Dense(5) (None, 64) 8256 ['Dropout[1][0][0]']
Dropout(2) (None, 64) 0 [‘Dense[5][0][0]’]
Dense(6) (None, 1) 65 [‘Dropout(2)[0][0]’]

Notes: Total params: 513,601; Trainable params: 513,601; Non-trainable params: 0

E.  Model Compilation and Training

Binary cross-entropy was used due to the binary nature of
the classification task. Utilizing the AdamW optimizer for
training due to its adaptive learning rate and regularization
capabilities.

The training configuration initially consisted of 20 Epochs
followed by 30 additional fine-tuning epochs. This setup was
later just streamlined to a total of just 30 epochs with a batch
size of 32, and the final evaluation was performed on the
held-out test dataset.

F.  Evaluation Metrics

To assess its effectiveness, the proposed model was tested
on an independent validation set using evaluation metrics
such as accuracy, precision, recall, and Fl-score. These
metrics were used to measure the model’s overall
performance and its ability to identify malware across
different classes accurately:

Accuracy:

The ratio of correctly classified samples to the total

number of samples in the evaluation dataset:

TP +TN (1)

Accuracy =
TP+TN + FN + FP

Recall (Sensitivity):
The ratio of correctly classified positive samples to all
samples assigned to the positive class:

Recall=———
TP+ FN

Precision:
The ratio of correctly classified samples to all samples
assigned to that class:
Precision = P (3)
TP+ FP
Fl1-Score:

The harmonic mean of precision and recall, penalizing
extreme values of either metric

Fle2e Precision e Re call 4)

Precision +Recall

where:

TP is True Positive

TN is True Negative

FP is False Positive

FN is False Negative.

This section gives an explanatory dive into how the
modelling and use of a hybrid use of three techniques for
malware classification. The integration of CNN, Autoencoder,
and Vision Transformer components enabled the model to
effectively extract, compress, and learn complex feature
representations from static PE metadata.

IV. RESULT AND DISCUSSION

This section analyzes the empirical performance of the
proposed hybrid CNN-Autoencoder-ViT model applied to the
ClaMP_Integrated-5184 dataset. The results affirm the
hypothesis that integrating complementary deep learning
paradigms can substantially improve malware classification
performance.

A.  Training and Validation Performance

Training and validation over 30 epochs using the AdamW
optimizer and binary cross-entropy loss demonstrates high
stability and convergence. As shown in Table 2, the model
achieved a consistent Fl-score of 98% for both classes,
indicating a robust balance between precision and recall.
These results signify that the model not only minimizes false
positives but also excels in identifying malicious samples,
which is critical in cybersecurity applications where
undetected threats can have severe consequences.

The model’s learning dynamics, visualized in Fig. 2, show
a steady improvement in accuracy and a corresponding
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reduction in loss, demonstrating effective generalization
with no signs of overfitting. This contrasts with many
existing models that tend to either overfit on malware
patterns or fail to generalize due to limited representation
capability.

Table 2. CNN-AE-VIT classification report

Class/Metrics Precision Recall F1-Score
Benign(0) 98% 98% 98%
Malware(1) 98% 98% 98%

Fig. 2 shows the trend of accuracy and loss during training,
highlighting strong generalization without signs of
overfitting or underfitting.

B. Confusion Matrix

The confusion matrix shown in Fig. 3 and Table 3 presents
the high true positive and true negative counts, thus
reflecting the model's precision in detection with minimal
misclassifications.

Confusion Matrix

Actual

0 1
Predicted
Fig. 3. Confusion matrix table of the proposed model’s predictions.

Table 3. Confusion matrix of the proposed model’s predictions

Predicted Benign Predicted Malware
Actual Benign 243 6
Actual Malware 5 267

These minimal error rates validate the model’s real-world
applicability, where false positives can lead to unnecessary
disruptions and false negatives can leave systems vulnerable
to threats. The ability to correctly distinguish between
classes with such high reliability confirms the model's
practical deployment potential in enterprise-grade malware
detection systems.

B. Training History of Proposed Model

Training Accuracy & Loss

14+ T —e— Train Accuracy
2 —s Val Accuracy
/3 === Train Loss

i —-= Val Loss

12 ‘/'
1.0

0.8

vaiue

0.6

i
041 L

0.2 < LS

0.0

Epochs
Fig. 4. Training history plot of proposed model.

The training history graph, shown in Fig. 4, illustrates the
progression of both training and validation accuracy and loss

across 30 epochs. From the plot, it is evident that the model
experienced steady and consistent learning, with the training
accuracy starting strongly above the 90% accuracy range and
the validation accuracy converging closely. This convergence
indicates that the model generalized well to unseen data and
did not overfit. Additionally, the training and validation loss
curves both show a sharp decline in the early epochs, followed
by a plateau, suggesting early convergence and stability in
learning. The absence of significant divergence between the
training and validation metrics confirms that the regularization
techniques (e.g., Dropout and AdamW optimizer) were
effective in mitigating overfitting.

D.  Ablation Study on Baseline Models

To validate the rationale for combining CNN, AE, and ViT,
we conducted an ablation study in which four baseline models
were trained independently: CNN-only, AE-only, CNN+AE,
and CNN+VIT before evaluating the proposed hybrid
CNN+AE+ViT model. The CNN-only baseline captured local
spatial dependencies and hierarchical representations of PE
header metadata. In contrast, the AE-only baseline learned
compressed latent representations and reduced redundancy but
lacked discriminative strength. Combining CNN with AE
improved generalization by uniting hierarchical feature
extraction with dimensionality reduction, whereas CNN+ViT
leveraged both convolutional features and global attention to
address long-range dependencies. The hybrid CNN+AE+ViT
model integrated the strengths of all three approaches: CNN
for local feature learning, AE for compression and redundancy
reduction, and ViT for global contextualization. As shown in
Fig. 5, while CNN and AE alone achieved a good performance,
the hybrid model consistently delivered the highest precision,
recall, and Fl-score. Furthermore, the confidence interval
analysis presented in Fig. 6 confirms the robustness of these
results, demonstrating that the hybrid’s superior performance
is statistically consistent across evaluation metrics, thereby
validating the necessity of incorporating all three components.

Accuracy Precision Recall F1
CNN Only 0.90 0.95 0.86 0.9
AE Only 0.91 .88 0.96 0.92
CNN+AE 0.83 0.83 0.86 0.84
CNN+ViT 0.90 0.88 0.94 0.91
Hybrid (CNN+AE+ViT) 0.98 0.97 0.98 0.98

Fig. 5. Ablation study result.

Ablation Study with 95% Confidence Intervals

== CNN Only
4 AE Only

m— CNN+AE

m— CNN+VIT

= Hybrid (CNN+AE+VIT)

Precision Recall F1

Accuracy

Fig. 6. Ablation study confidence interval bar plot.

E. Comparison of the Proposed Model with the State of the
Art and Existing Models

Compared to standalone classifiers and deep learning
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models like CNN, ANN, and a variety of similar models, the
proposed hybrid model achieved a superior accuracy and F1-
score of 98%. This validates the usefulness of integrating

handcrafted deep features (Autoencoder-ViT) with CNNs’
strong feature extraction and classification ability (Table 4).

Table 4. Comparison of proposed model with existing models

Author and Year  Methodology Malware Type Result

(Tomavting, Detection of malware wusing malicious files in Windows proposed model had a recall of 97.88, precision of of
2022) XLCNN executable files. 94.54, F1-Score of 96.08 and an accuracy of 95.07.
Xing et al. detection of malwares using Malicious files in android An accuracy of 96% was achieved alongside an F1-
(2022) autoencoders software/APK score of about 96%

Farnoush detection of ransomware in PE  Ransomware in PE Headers using  For the Static features, they had Precision of 93.40%,
Manavi & Ali headers using CNN static and dynamic features recall of 93.33%, F1-Score of 93.34% and Accuracy of

Hamzeh, (2022)

93.33% then for the Dynamic features, Precision of
94.99%, Recall of 95.11%, F1-Score of 95.00% and an
Accuracy of 95.11%.

ANN for the classification and
identification of malware.

Gupta et al
(2022)

Accuracy for the train and test datasets is 90.07% and
90.80%, respectively.

Beg et al. (2024)  integrated autoencoder-based  malware
dimensionality —reduction, CNN
feature extraction, and Gradient
Boosted Decision Trees (GBDT) to

achieve an F1-score of 0.95

Achieved an F1-score of 95%.

Xue et al. (2025)  Hybrid Autoencoder—Hybrid

ResNet-LSTM (HAE-HRL)

intrusion
datasets

detection
such

With Accuracies of 95.7%,
respectively.

malware 94.9%, and 96.7%

as NSL-KDD,

UNSW-NBIS, and CICIDS-2018,

Proposed Model =~ CNN-AE-ViT hybrid Model Static

Features

of Different Accuracy of 98% and an F1-Score of 98%.

Malware PE Files

V. CONCLUSION

This study has demonstrated the effectiveness of a hybrid
deep learning architecture combining CNN, Autoencoders,
and ViT for malware classification using static PE header
features. The results of the evaluation of the proposed model
show that this integrated model significantly outperforms
state of the art and single-paradigm models in accuracy,
recall, and precision.

By leveraging CNNs for local feature learning,
Autoencoders for latent space compression, and ViTs for
sequence-level dependencies, the model effectively bridges
the limitations seen in previous research. The 98%
classification accuracy and low false classification rates
underscore the potential of hybrid architectures in
developing next-generation cybersecurity tools.

Furthermore, the study affirms the feasibility of using
purely static features with deep learning methods to detect
complex malware, offering a lightweight and scalable
alternative to more computationally intensive dynamic
analysis methods.

Future Work: While the current model focuses on static
PE header features, future works should explore the
integration of dynamic behavior-based features, real-time
deployment scenarios, expanding the model to multi-class
malware classification, and the integration of Interpretability
frameworks (e.g., SHAP or LIME) for understanding model
decisions.

Ultimately, this work contributes meaningfully to the
evolution of intelligent malware detection systems and lays
a foundation for further innovation in hybrid Al-based
cybersecurity models.
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