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Abstract—Melanoma, a severe kind of skin cancer, requires 

early identification to enhance patient outcomes. This paper 

describes a unique approach to melanoma diagnosis that 

combines image processing techniques with deep learning 

methodologies. This paper provides a method for analyzing 

skin lesion photos that uses a mix of color, texture, and form 

factors, followed by classification using a convolutional neural 

network. Using a publicly accessible collection of skin lesion 

photos, this method obtained a 93% accuracy in differentiating 

between malignant and benign lesions. These positive findings 

suggest that this study approach has the potential to 

considerably benefit dermatologists in the early detection of 

melanoma, improving treatment outcomes and patient survival.

Keywords—dermatology, melanoma, skin cancer, machine 

learning, Gaussian mixture model, backpropagation neural 
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I. INTRODUCTION

Melanoma, a kind of skin cancer, develops when 

melanocytes, the skin’s pigment-producing cells, start to 

grow uncontrolled. Cancer develops when the body’s cells 

begin to proliferate uncontrollably, and these malignant cells 

can spread to other organs [1]. Although melanoma is far 

less prevalent than other forms of skin cancer, it is more 

hazardous since it has a high risk of spreading to other 

regions of the body if misdiagnosed and not treated. 

Melanomas can grow anywhere on the skin, although men 

and women are more likely to acquire them on their trunks 

(chest and backs). Other common places are the neck and 

face. Melanoma is less likely to develop in these typical 

sites in people with darkly pigmented skin, although it can 

still arise on the hands, feet, or beneath the nails. Melanoma 

can also form in the mouth, genitalia, anal region, and eyes, 

but this is less frequent [1]. 

Skin cancers are divided into three types: basal cell 

carcinoma, squamous cell carcinoma, and melanoma. 

Traditionally, clinicians utilize a biopsy to diagnose skin 

cancer. However, with improvements in Artificial 

Intelligence (AI), it is possible to design a simpler approach, 

such as a smartphone application, to detect skin cancer more 

easily. Melanoma, the deadliest kind of skin cancer, can be 

both benign and malignant. Previous study by [2] used a 

Convolutional Neural Network (CNN) for melanoma 

detection but struggled to effectively categorize benign and 

malignant moles, with an 89.63% accuracy rate in 

identifying malignant moles.  

Similarly, [3] had problems with erroneous predictions 

and finding skin lesions [4] used CNNs to discriminate 

between benign and malignant moles, with an accuracy of 

81.89% on the validation set, which is insufficient for real-

time applications. 

Patients may experience discomfort and worry throughout 

the biopsy procedure for identifying skin cancer, which can 

take up to 2 to 3 weeks. Biopsies are tiny surgeries that 

cause localized pain for a few days. The major objective is 

to assist people get accurate and speedy skin diagnostics in a 

simple and cost-effective manner. 

This study aims to diagnose melanoma by analyzing skin 

images using image processing and CNNs. Previous studies, 

such as [2], indicate a need for improved classification of 

benign and malignant moles. This research seeks to enhance 

this classification accuracy. Accurate differentiation 

between benign and malignant melanoma is crucial as the 

former is non-cancerous and slow-growing, while the latter 

is cancerous, aggressive, and potentially fatal. The process 

includes image acquisition, preprocessing, segmentation, 

and classification to determine if the melanoma is benign or 

malignant. 

II. RELATED WORK

Recent advances in technology have enabled us to 

identify cancer cells using CNN, Image processing. Despite 

these advancements, there are challenges yet need to be 

addressed. Previous studies have shown that there are 

limitations. In this section, we review existing research and 

methodologies related to the detection of melanoma skin 

cancer, particularly focusing on the technologies and 

advantages and limitation of each approach. The papers 

provided restrictions as well as some extremely important 

insights that could be used to develop the model.  

According to [5] Gaussian Mixture Model (GMM) and 

Backpropagation Neural Network (BPN) have been 

explored in the context of melanoma detection. The 

equipment based on GMM and BPN has shown promise by 

demonstrating the capability to meet the demand for 

scheduled eradication of skin malignancy. This approach is 

designed for simplicity of operation and robust performance 

across various photographic situations. As [6] introduced a 

melanoma detection method based on the Faster-regional 

based convolutional neural network (RCNN) with fuzzy k-

means clustering (FKM). Their presented method has a 0.90 

in sensitivity whilst techniques like SFU-mial and CUMED 

has 0.915 and 0.911 respectively. Also their presented 

method has 0.971 in specificity whilst TMUteam and UiT-

Seg has 0.987 and 0.974. Their work stands out for its 

ability to outperform state-of-the-art lesion detection 

approaches in terms of accuracy. Notably, this superior 

performance is achieved with a relatively shallow network 

architecture. 

As [3] proposed InSiNet as a dedicated machine learning 

technique for melanoma detection. Their research involved 

extensive comparisons with various other machine learning 
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techniques and incorporated the use of multiple datasets. 

The method still has to be tested in huge datasets and .dicom 

format. Another issue is determining the location of skin 

lesions. There are few false predictions. 

The results of their study provide valuable insights into 

the effectiveness of InSiNet in the context of skin cancer 

detection.  

Recent study emphasizes the variety of approaches used 

in melanoma detection. For example, [7] compared the 

diagnosis accuracy of a deep learning convolutional neural 

network to dermatologists and discovered that the CNN 

performed similarly to human specialists in identifying 

melanoma using dermoscopic pictures. Similarly, [8] 

demonstrated that a deep CNN trained end-to-end using just 

photos and illness labels, with no feature extraction done 

manually, obtained performance equivalent to 

dermatologists. 

Codella et al. [9] conducted a detailed examination of 

several machine learning algorithms used to identify 

melanoma and shown the potential of ensemble learning 

approaches to increase classification accuracy. Furthermore, 

[10] investigated the use of generative adversarial networks

(GANs) to supplement training data for melanoma detection

models, resulting in better performance via synthetic data

creation.

According to [11], an extremely deep CNN for melanoma 

detection was developed, which used a fully convolutional 

residual network (FCRN) with 16 residual blocks for 

segmentation, resulting in better performance. The proposed 

strategy employed both SVM and softmax classifiers for 

classification. Their technique classified melanoma with 

85.5% accuracy using clustering and 82.8% without 

clustering. 

DeVries and Ramachandram [12] created a multi-scale 

CNN for skin cancer classification based on an Inception v3 

deep neural network trained on the ImageNet dataset. The 

pre-trained network was fine-tuned utilizing both coarse and 

high-scale input lesion image frequency scales to capture 

broad ambient signals as well as lesions’ form properties. 

The higher scale was also used to collect textual information 

on the lesion to distinguish it from other forms of skin 

lesions. 

Mahbod et al. [13] created a skin lesion classification 

approach that used pre-trained deep CNNs such as AlexNet, 

ResNet-18, and VGG16 to extract detailed characteristics. 

These characteristics were utilized to train a multi-class 

classification approach, and the classifiers’ results were 

combined for final classification. On the ISIC 2017 dataset, 

the suggested technique performed well with an area under 

the curve (AUC) of 97.55% for Seborrheic Keratosis (SK) 

and 83.83% for melanoma. 

Mendes and Silva [14] introduced a deep CNN 

architecture based on a pre-trained ResNet-152 for 

classifying skin lesions into 12 distinct kinds. The suggested 

technique includes training the network with a dataset of 

3797 lesion photos, followed by 29 iterations of 

augmentation utilizing scale and illumination conditions. 

The approach was very accurate in diagnosing hemangioma, 

pyogenic granuloma (PG), and Intraepithelial Carcinoma 

(IC) skin lesions, with an AUC value of 0.99. 

Dorj et al. [15] suggested a technique that used a pre-

trained deep CNN, AlexNet, for feature extraction and a 

coding SVM to classify four different types of skin lesion 

pictures. The method achieved high classification 

performance for squamous cell carcinoma (SCC), actinic 

keratosis (AK), and basal cell carcinoma (BCC), with the 

highest average sensitivity, accuracy, and efficiency ratings 

among the evaluated methods, at 95.1%, 98.9%, and 94.17%, 

respectively. 

Furthermore, Esteva et al. [8] demonstrated the usefulness 

of a deep CNN trained end-to-end using just photos and 

illness labels, with performance equivalent to dermatologists. 

Their technique proved that CNNs can equal human 

competence in identifying melanoma using dermoscopic 

pictures. This study [9] conducted a detailed examination of 

several machine learning algorithms used to identify 

melanoma, highlighting the potential of ensemble learning 

approaches to increase classification accuracy. Their 

findings indicate that merging various models can result in 

more robust performance. 

These studies demonstrate the substantial advances made 

in the field of melanoma detection utilizing deep learning 

and CNNs, while also highlighting areas for further study 

and development. The findings from these studies are 

critical for building more accurate and reliable melanoma 

detection algorithms.  

III. METHODOLOGY

In this section, we outline the methodology employed in 

the development of the melanoma skin cancer detection 

system. The methodology encompasses data acquisition, 

model development, libraries and tools utilized, and the 

selection of Integrated Development Environments (IDEs) 

to facilitate the project. 

A. Data Acquisition

To construct a robust melanoma skin cancer detection 

model, we obtained a comprehensive data set [16] from 

Kaggle. This data set comprises a total of 10,000 images, 

with 9,600 images designated for model training and 1,000 

images for evaluation. The data set is organized into two 

primary folders, “train” and “test,” each containing images 

representing both benign and malignant melanoma skin 

conditions. The selection of this data set was driven by its 

alignment with the specific requirements of this research. 

Further bolstering its suitability, Kaggle has conferred a 

usability grade of 7.5 on this data set, and it has been 

employed successfully in eight projects on the Kaggle 

platform. 

B. Model Development

The development of the deep learning model was carried 

out using Python, a versatile programming language widely 

acclaimed in the domains of data science and machine 

learning due to its rich ecosystem of libraries and ease of use 

[17]. Essential libraries such as NumPy, Pandas, 

TensorFlow, Keras, Scikit-learn and Matplotlib played 

pivotal roles in facilitating data manipulation, analysis, and 

the construction of intricate Convolutional Neural Network 

(CNN) models [18–22]. Python’s inherent cross-platform 

compatibility ensured seamless execution across diverse 

operating systems. 
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C. User Interface 

The user interface (UI) was realized through a 

combination of front-end and back-end technologies. The 

front-end design was crafted using HTML5 and CSS [23,24]. 

The back-end functionality was implemented through a 

stack comprising Flask 2.2.3, Pillow 9.5.0, Keras 2.12.0, 

NumPy 1.23.5, in conjunction with PHP, JavaScript, and 

MySQL [17, 25–30], enabling seamless user interactions 

with the deep learning model. 

D. IDE 

For the development of the CNN-based model, we 

harnessed the capabilities of Google Colaboratory (Google 

Colab) as the preferred integrated development environment 

(IDE). This cloud-based platform not only facilitated the 

loading of the dataset but also ensured the smooth execution 

of the model [31]. Additionally, the collaborative features of 

Google Colab allowed for team members to work jointly, 

promoting efficiency and teamwork. 

In tandem, we selected PyCharm as the IDE of choice for 

the creation of the internet application. The distinctive 

qualities of PyCharm, such as its powerful testing and 

debugging capabilities, cross-platform compatibility, 

seamless tool integration, intelligent coding tools, and 

vibrant community support environment, made it the best 

option for developing online applications [32]. These 

qualities were essential to the effective design and 

implementation of the online application for skin cancer 

screening. 

E. Testing and Evaluation 

For the purpose of training and evaluation, we adopted a 

conventional 80–20 split of the dataset, allocating 80% of 

the images for training the model and reserving the 

remaining 20% for testing. This division ensured a balanced 

representation of data for training and validation, facilitating 

a rigorous evaluation of the model’s generalization 

capabilities. 

The following metrics are taken into account in this study:  

1) Precision =
𝑇𝑃

(𝐹𝑃+𝑇𝑃)
  : How many estimates are accurate 

out of all the estimates 

2) Recall =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 : How many true positive classes are 

accurately classified  

3) F1 score =
2× Precision ×Recall

(Precision+Recall)
  : The computation of the 

harmonic mean through recall and accuracy. 

4) Accuracy  =
(𝑇𝑃+𝑇𝑁)

(TP+FP+TN+FN)
  : Overall effectiveness of 

the classifier. 

 
Table 1. Performance metrics of the model 

Class Precision Recall F1-Score Support 

0 

1 

0.95 

0.91 

0.93 

0.94 

0.94 

0.93 

500 

389 

Accuracy 

Macro Avg 

Weighted Avg 

 

0.93 

0.93 

 

0.93 

0.93 

0.93 

0.93 

0.93 

889 

889 

889 

 

Table 1 presents the performance metrics, including 

precision, recall, F1-score, and accuracy, used to evaluate 

the classification model’s effectiveness across different 

classes. The metrics provide insights into how well the 

model distinguishes between the two target classes. 

• Precision: For class 0 (benign melanoma) and class 1 

(malignant melanoma), the precision scores were 0.95 

and 0.91, respectively. These scores indicate the 

proportion of true positive predictions among all 

positive predictions. 

• Recall: The recall scores for class 0 and class 1 were 

0.93 and 0.94, respectively. These scores represent the 

proportion of true positives correctly identified by the 

model relative to all actual positives. 

• F1-score: For class 0 and class 1, the F1-scores were 

0.94 and 0.93, respectively. The F1-score is the 

harmonic mean of precision and recall, providing a 

balanced measure of a model’s accuracy. 

• Support: The support values denote the number of 

instances for each class (0 and 1) in the test dataset. 

• Accuracy: The overall accuracy of the model was 0.93, 

indicating the proportion of correctly classified 

instances among all instances in the test dataset. 

• Macro Average: The macro average of precision, recall, 

and F1-score was 0.93, reflecting a balanced 

performance assessment across both classes. 

• Weighted Average: The weighted average of precision, 

recall, and F1-score was 0.93, indicating an overall 

model performance score that considers class 

imbalances. 

IV. DISCUSSION 

In this section, we interpret the results of our melanoma 

skin cancer detection model and discuss their implications. 

Additionally, we compare this model’s performance to 

existing literature and benchmarks, shedding light on its 

effectiveness in the context of skin cancer detection. 

A. Model Performance and Implications 

The melanoma skin cancer detection model, built on a 

deep learning architecture using TensorFlow and Keras, has 

yielded promising results. With an overall accuracy of 93%, 

the model demonstrates a strong capability to classify both 

benign and malignant melanoma skin conditions accurately. 

The precision, recall, and F1-scores for both classes 

(benign and malignant) are notably high, indicating that this 

model excels in correctly identifying cases of melanoma. 

Specifically, the high precision values (0.95 for class 0 and 

0.91 for class 1) highlight the model’s accuracy in making 

positive predictions, while the equally high recall values 

(0.93 for class 0 and 0.94 for class 1) underscore its ability 

to capture a significant proportion of true positive cases. 

The F1-scores, representing the harmonic mean of 

precision and recall, provide a balanced measure of the 

model’s performance. This model achieves F1-scores of 

0.94 for class 0 and 0.93 for class 1, signifying a 

harmonious blend of precision and recall in its predictions. 

These results bear critical implications for melanoma 

detection in clinical practice. A model with such high 

precision and recall values can aid medical professionals in 

accurately diagnosing skin conditions, potentially reducing 

misdiagnoses and unnecessary treatments. 

When comparing these findings to previous research, the 

model performs exceptionally well. While prior research has 

shown that deep learning models can detect melanoma with 
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high accuracy [7, 8], the current model’s well-balanced high 

precision and recall rates represent an impressive 

contribution to the field. In clinical settings, where both 

false positives and false negatives can have serious 

repercussions, this balancing is especially crucial. 

 Overall, the model’s strong performance indicates how 

dermatologists and other healthcare professionals may 

benefit from it. Improved patient outcomes and increased 

diagnosis accuracy may result from integrating this 

technology into standard screening procedures, which might 

ultimately lead to more efficient melanoma care and 

treatment. 
 

 
Fig. 1. Graphs representing model accuracy and model loss. 

 

The Fig. 1 illustrate the training and validation accuracy 

and loss of the melanoma skin cancer detection model over 

50 epochs. The accuracy graph shows that the training 

accuracy (blue line) starts high and steadily increases, 

reaching near 1.0, indicating the model’s effective learning 

from the training data. The validation accuracy (orange line) 

stabilizes around 0.93, demonstrating the model’s strong 

generalization to unseen data. In the loss graph, the training 

loss (blue line) rapidly decreases and plateaus at a very low 

value, reflecting the model’s ability to minimize error on the 

training data. The validation loss (orange line) follows a 

similar pattern, stabilizing slightly higher than the training 

loss, which is indicative of a well-generalized model with 

minimal overfitting [33, 34]. These results underscore the 

model’s robustness and potential clinical applicability for 

melanoma detection. 

Table 2 outlines the selected hyperparameters for the 

melanoma skin cancer detection model. The model employs 

128 hidden layers with 64 neurons per layer, utilizing ReLU 

activation for hidden layers and Sigmoid activation for the 

output layer. The optimizer used is binary cross-entropy, 

with a training batch size of 32, a learning rate of 0.001, and 

the model is trained over 50 epochs. 
 

Table 2. Choices of hyper parameters 

Hyper parameter Value 

Number of hidden layers  128 

Number of neurons per layer  64 

Activation function for hidden layers  ReLU  

Activation function for output layer  Sigmoid 

Optimizer Loss function  Binary cross entropy 

Training batch size  32 

Learning rate  0.001 

Epochs 50 

 

The melanoma skin cancer detection model’s 

classification findings are displayed in Fig. 2. The output 

consists of a number of photos (12 images) of skin lesions 

with the labels “malignant” or “benign,” along with the 

model’s forecast. Predicted value is displayed outside and 

true value is displayed within parenthesis. The model 

properly classifies the instances in the first column as 

“malignant” with a high degree of confidence, indicating 

their effective identification. The benign examples are 

shown in the following columns. These are cases where the 

model correctly and consistently labels them as “benign.” 

This visual proof highlights the model’s resilience in 

distinguishing between benign and malignant skin lesions, 

exhibiting great precision and dependability in its forecasts. 

These findings are critical for clinical applications because 

they demonstrate how the model may help with early and 

accurate melanoma identification, which will lead to better 

patient outcomes and more successful treatment [7, 8]. 

 

 
Fig. 2. Output of the CNN model. 

 

B. Benchmark Comparison 

To provide context for our model’s performance, we 

compare it to existing literature and benchmarks: 

As [35] developed a skin cancer detection web app using 

the Flask framework and the fastai deep learning package, 

achieving an accuracy of 91.2% and an F1-score of 91.7% 

using the Kaggle MNIST HAM10000 dataset. Our model, 

with an accuracy of 93% and F1-scores of 0.94, outperforms 

this benchmark. 

A melanoma detection model using PyTorch presented by 

an anonymous contributor [36] on Kaggle achieved an F1 

score of 92% and testing accuracy of 91.9%. Our model 

demonstrates competitive performance, with an F1-score of 

0.93 and an accuracy of 93%. 

Another [37] Kaggle benchmark achieved a classification 
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accuracy of 90% in skin cancer classification. Our model 

surpasses this benchmark by achieving an accuracy of 93%, 

showcasing its effectiveness in distinguishing between 

benign and malignant skin conditions. 

In conclusion, our melanoma skin cancer detection model 

showcases strong performance, outperforming existing 

benchmarks and achieving high precision, recall, and F1-

scores. These results underscore its potential as a valuable 

tool for accurate and reliable skin cancer diagnosis, offering 

substantial benefits to healthcare professionals and patients 

alike. 

C. Social, Legal, Ethical, and Professional Issues  

In terms of early detection and prevention, the creation of 

an application for melanoma skin cancer detection offers 

significant advantages. It also poses a number of ethical, 

legal, social, and professional difficulties. Users’ social 

concerns about data security and privacy may call for strong 

security measures to secure sensitive data [38]. Legally, the 

application must follow open data collecting procedures and 

provide suitable disclaimers to reduce liability for incorrect 

diagnosis. Ethics dictate that user privacy must be protected, 

and the app should advise users to consult a doctor in order 

to avoid relying too much on technology [39, 40]. In order 

to guarantee project success and timely completion, 

professional team communication and project management 

are essential, making use of platforms like Git, GitHub, and 

frequent meetings [41, 42]. By addressing these issues, the 

project not only enhances the early detection of melanoma 

but also contributes to improving overall healthcare delivery 

through the integration of machine learning and artificial 

intelligence. 

D. Limitations 

Due to the complexity of the models and, in some 

circumstances, the volume of data, a computer with a lot of 

Memory and GPU was required to train the ML models. 

Due to the high resource utilization, running ML models 

takes a long time. The program must be tested with an 

internet connection since without one, the majority of the 

functionality will not function properly. 

E. Conclusions and Future enhancements 

As depicted in Fig. 3 the project offers a potent tool for 

the early detection of melanoma, which makes a substantial 

contribution to the field of medical diagnosis and therapy. 

The project improves early detection skills by enabling users 

to upload photos of their skin lesions and receive a diagnosis 

based on machine learning techniques. The accuracy of our 

model, achieving 93%, stands as a testament to its robust 

performance in distinguishing between benign and 

malignant lesions. This high accuracy not only surpasses 

several existing benchmarks but also emphasizes the 

model’s reliability in providing accurate diagnoses. 

Furthermore, the project helps users identify the best 

medical specialists for their treatment by recommending 

hospitals and doctors. This is especially important for 

disorders like melanoma, where early intervention can be 

critical to survival. In summary, this project offers a user-

friendly platform that has the potential to save lives and 

improve the quality of care for melanoma patients by 

utilizing the power of artificial intelligence and machine 

learning to improve healthcare outcomes. 

 

 
Fig. 3. User interface of the application developed. 

 

There are several enhancements that could be made to 

uplift functionalities and the marketability of the product. 

Including a function that enables users to monitor their skin 

health over time is one potential improvement to take into 

account. For each user, this may entail the creation of a skin 

health profile where they could upload pictures of any moles 

or other skin irregularities, note any changes or symptoms 

they had detected, and keep track of any doctor 

appointments or treatments they had. 

Also, could think about incorporating a skin cancer risk 

assessment tool that calculates a user’s likelihood of 

developing skin cancer based on their skin type, personal 

and family medical histories, and other risk factors. Users 

may be able to use this to determine their level of risk and 

take precautions against skin cancer, such as adopting safe 

sun exposure practices or scheduling routine skin 

examinations. 
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