
  

Somayeh Ghasedi and Amr R. Abdel-Dayem* 

School of Engineering and Computer Science, Laurentian University, Sudbury, Ontario, Canada 
Email: sghasedi@laurentian.ca (S.G.); aabdeldayem@laurentian.ca(A.R.A.-D.) 

*Corresponding author 
Manuscript received July 31, 2024; revised August 7, 2024; accepted September 25, 2024; published January 21, 2025 

 
Abstract—Nowadays, there are still significant challenges 

encountered in the accurate diagnosis of various eye diseases, 
such as Keratoconus (KCN) and cataracts. Early detection of 
Keratoconus is crucial in preventing its progression and 
ensuring the best treatment outcomes. Artificial Intelligence (AI) 
is being widely applied in ophthalmology through the training 
of deep learning networks for the early detection of eye diseases. 
This research presents a novel, integrated machine learning 
approach for diagnosing Keratoconus disease by combining 
feature extraction through Convolutional Neural Networks 
(CNN) with a Support Vector Machine (SVM) and Artificial 
Neural Network (ANN) for classification. Employing a multi-
objective genetic algorithm, the method optimizes feature 
selection, aiming to minimize both diagnostic error and the 
number of features. The study utilizes a dataset of 5,152 
ophthalmic images (1288 samples) categorized into Normal 
(476), Suspect (453), and Keratoconus (359) cases. Combining a 
Convolutional Neural Network (CNN) for feature selection with 
a Genetic Algorithm (GA) significantly improved diagnostic 
accuracy. Consequently, by focusing on the most relevant 
features of Keratoconus, the model achieved an impressive 98.63% 
accuracy for ANN classification with a genetic algorithm, and 
98.13% for SVM classification with a genetic algorithm. The 
accuracy of the algorithm exceeded that of when SVM and ANN 
were used without the genetic algorithm, which were 97.53% 
and 96.9% respectively, underscoring the benefit of combining 
Artificial Neural Networks (ANNs) with Genetic Algorithms 
(GAs) in KC diagnosis. Implementing this model can assist 
physicians in more accurate Keratoconus detection, providing 
better predictions regarding patients’ eye conditions, and 
offering timely treatment recommendations. 
 
Keywords—Keratoconus (KCN) eye disease, Convolutional 

Neural Networks (CNN), Support Vector Machine (SVM), 
Artificial Neural Network (ANN), Multi-objective Genetic 
Algorithm  

I. INTRODUCTION 
In recent years, Machine Learning (ML) and Artificial 

Intelligence (AI) have significantly impacted healthcare, 
advancing the diagnosis and treatment of various diseases. AI 
algorithms have been successfully employed in the early 
detection of cancer, improving the accuracy of breast cancer 
screenings [1, 2], predicting cardiovascular conditions [3, 4], 
and assisting in diagnosing neurodegenerative diseases such 
as Alzheimer’s [5–8]. These technologies enhance diagnostic 
precision, enabling clinicians to detect complex patterns in 
medical data that are often challenging for human 
interpretation. However, significant challenges remain in 
diagnosing various eye diseases, such as Keratoconus (KCN) 
and cataracts, with some patients unfortunately going blind 
due to delays in initiating their treatment. Accurate and early 
diagnosis of Keratoconus presents significant challenges, 
especially in detecting subclinical cases that show no visible 

signs or symptoms, making them difficult to distinguish from 
healthy eyes [9]. The diversity of patterns seen in topographic 
maps of Keratoconic eyes can be misinterpreted, 
necessitating the development of automatic quantitative 
image analysis and objective criteria for accurate 
identification [10]. Despite modern diagnostic tools, early 
stages of Keratoconus may still be misdiagnosed due to initial 
subtle symptoms, making accurate diagnosis time-consuming 
and demanding [11]. Timely intervention is crucial to 
mitigate the financial burden of treatment and prevent vision 
loss in severe cases [12]. Early detection can also avoid the 
need for complex interventions like corneal transplantation 
[13]. Improvements in Keratoconus detection techniques, 
particularly in early detection, can significantly enhance the 
management and prognosis of the condition [11]. The 
incorporation of Artificial Intelligence (AI), machine learning 
(ML), and Deep Learning (DL) technologies in ophthalmic 
settings shows promise for early detection and timely 
treatment of eye disorders [14]. However, challenges remain, 
including evaluating the reproducibility, accuracy, and 
reliability of these algorithms in clinical healthcare practice 
[14]. As AI, ML, and DL techniques advance, they may 
significantly contribute to the diagnostic and therapeutic 
progress in ophthalmology [14, 15]. Convolutional Neural 
Networks (CNNs) have emerged as effective tools for image 
recognition and classification, including the diagnosis of 
Keratoconus. Their direct feature extraction capabilities make 
them advantageous over other machine learning methods [15]. 
Machine learning algorithms, like CNNs, can be instrumental 
in identifying patterns and characteristics related to 
classification [16]. Despite recent advancements in AI, ML, 
and DL, challenges remain in diagnosing subclinical cases of 
Keratoconus, which often lack visible signs. This study aims 
to address these challenges by integrating machine learning 
and artificial intelligence to improve the early detection and 
treatment of Keratoconus. We propose a novel model that 
combines Convolutional Neural Networks (CNN) for feature 
extraction with Support Vector Machine (SVM) and 
Artificial Neural Network (ANN) for classification. 
Additionally, we focus on optimizing the feature extraction 
process using a Genetic Algorithm (GA) to balance the 
number of features and diagnostic accuracy. 

This paper is organized as follows: Section II reviews 
methodologies for diagnosing Keratoconus and the role of AI 
and optimization algorithms in ophthalmology. Section III 
details the dataset and methodology of the proposed approach. 
Section IV presents the experimental results, evaluating the 
accuracy of feature selection and image classification 
methods. Finally, Section V discusses conclusions and 
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potential future research. 

II. LITERATURE REVIEW

Keratoconus, marked by progressive corneal thinning and 
protrusion, presents a notable challenge for ophthalmologists, 
as early and accurate diagnosis is essential for initiating 
timely interventions and preventing vision loss. The 
increasing prevalence of Keratoconus highlights the urgent 
requirement for reliable diagnostic methods [9]. 
Technological advancements, particularly in machine 
learning and artificial intelligence (AI), show promise in 
aiding ophthalmologists in early and reliable disease 
diagnosis. Recognizing the importance of diagnosing 
Keratoconus in its early stages, efforts have been made to 
develop automated diagnostic systems using AI, machine 
learning, and deep learning technologies. These technologies 
demonstrate their capability in diagnosing Keratoconus [12, 
17–19]. On the other hand, classification algorithms play a 
crucial role in medical diagnosis by offering precision, 
efficiency, and consistency in detecting eye disorders. They 
enable early detection, leading to timely intervention and 
improved patient outcomes. By analyzing extensive medical 
data and images, classification algorithms provide accurate 
and consistent diagnoses while automating image analysis, 
thus saving time for both eye specialists and patients. 
Moreover, they support informed decision-making for 
treatment planning and can be combined with other machine 
learning methods to enhance diagnostic accuracy [11, 20]. 

A. The Use of SVM Classification Algorithms in Diagnosis
of KCN Eye Diseases
Support Vector Machine (SVM) stands out as a highly 

effective tool in diagnosing Keratoconus (KCN) and related 
eye diseases. The robustness of SVM in handling outliers and 
high-dimensional data, along with its flexibility in adapting 
to various data distributions through different kernel 
functions, underscores its significance in medical imaging 
[21, 22]. SVM has found extensive application in analyzing 
corneal images and parameters, facilitating the creation of 
automated diagnostic models. Notably, SVM excels in 
feature selection, enhancing diagnostic accuracy while 
streamlining model complexity [21]. Several studies 
underscore the effectiveness of Support Vector Machines 
(SVM) in diagnosing Keratoconus.  

Al-Timemy et al. [23] employed a hybrid deep learning 
and SVM model, achieving 97.7% accuracy for a two-class 
problem and 84.4% for a three-class problem, revealing the 
model’s limitations in more complex classifications. 
Arbelaez et al. [21] demonstrated SVM’s exceptional 
accuracy (>95%) in distinguishing between normal, 
Keratoconus, and subclinical Keratoconus eyes using 
Scheimpflug camera and Placido corneal topography data. 
Similarly, Mosa et al. [24] and Gao et al. [22] utilized SVM 
for high accuracy and specificity in Keratoconus detection, 
highlighting the model’s robustness in handling diverse 
datasets. Toutounchian et al. [25], and Souza et al. [26] 
further confirmed SVM’s high diagnostic accuracy using 
topographical maps, while Del Río et al. [27] compared SVM 
with other classifiers, demonstrating its superior performance. 
These studies collectively highlight SVM’s pivotal role in 
enhancing the precision of Keratoconus diagnosis through 
advanced feature extraction and classification techniques. 

B. The Use of ANN Classification Algorithms in Diagnosis
of KCN Eye Diseases
In diagnosing Keratoconus, ANNs are essential for 

analyzing corneal images and detecting subtle patterns that 
may elude human observers [12]. Moreover, ANNs excel in 
automatically extracting pertinent features from medical 
images, thereby enhancing classification accuracy. However, 
their efficacy hinges on access to large and diverse datasets 
for robust training and validation, facilitating model 
generalization. Metrics such as accuracy, sensitivity, 
specificity, and AUC serve as benchmarks to evaluate the 
effectiveness of ANN models in diagnosing Keratoconus [16, 
23]. Despite their potential, the reliance of ANNs on 
extensive and high-quality datasets for training poses a 
challenge, as such datasets may not always be readily 
available. 

Mehdizadeh Dastjerdi et al. [17] highlighted the practical 
implications of ANNs in clinical settings, aiding 
ophthalmologists in selecting suitable surgery candidates. 
Kovacs et al. [28] demonstrated ANNs’ efficacy in early 
Keratoconus detection, achieving higher precision than 
traditional methods. Elsawy et al. [18], developed 
Multidisease Deep Learning Neural Networks (MDDN) that 
accurately diagnose corneal diseases such as Keratoconus 
using AS-OCT images, achieving high accuracy 
(AUROCs >0.99, AUPRCs >0.96, F1 scores >0.90). 
Additionally, innovative approaches utilizing numerical 
computing techniques integrating feed-forward ANN and 
optimization technique, as proposed by Umar et al. [29] and 
combining Gudermannian Neural Network (GNN) with a 
hybrid optimization approach, as demonstrated by Sabir et al. 
[30], underscore the versatility and effectiveness of ANN-
based methodologies in solving complex corneal shape 
models in eye surgery. 

C. The Use of CNN Architecture Algorithms in Diagnosis
of eye Diseases
CNN architecture algorithms play a pivotal role in 

diagnosing eye diseases by automatically learning and 
extracting features from medical images such as corneal and 
retinal scans. Popular CNN architectures like VGG16, 
InceptionV3, and ResNet152 have demonstrated high 
accuracy, sensitivity, and specificity in identifying conditions 
like Keratoconus [23, 31, 32]. Techniques like transfer 
learning allow pre-trained CNN models to be fine-tuned for 
specific tasks, enabling early detection and timely 
intervention [18, 23]. Combining CNNs with other machine 
learning methods like Support Vector Machines (SVMs) and 
Artificial Neural Networks (ANN) forms hybrid approaches 
that leverage the strengths of different algorithms, thereby 
improving diagnostic accuracy [19]. Numerous studies have 
demonstrated the efficacy of CNN-based models in 
diagnosing Keratoconus. Kou et al. [33] found that CNN 
models like VGG16, InceptionV3, and ResNet152 achieved 
high sensitivity and specificity. Al-Timemy et al. [13] used 
an ensemble of pre-trained CNN networks, including 
SqueezeNet, AlexNet, ShuffleNet, MobileNet-v2, achieving 
98.3% accuracy, though their approach lacked optimization 
techniques. In another study, Al-Timemy et al. [19] used 
Xception and InceptionResNetV2 to extract features from 
topography maps, while omitting Elevation Back and 
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Pachymetry images in the three-class problem, which makes 
the final model not fully reliable. Kamiya et al. [15] showed 
VGG-16’s effectiveness in distinguishing Keratoconus from 
normal eyes with high accuracy. Lavric et al. [16] introduced 
KeratoDetect, a CNN-based algorithm with 99.33% accuracy. 
Feng et al. [12] developed KerNet, using CNN-based 
cascaded residual blocks, achieving superior diagnostic 
accuracy, highlighting CNN’s pivotal role. 

D. The Use of Optimization Techniques for Feature 
Selection 
The integration of optimization techniques such as Genetic 

Algorithms (GA) and Particle Swarm Optimization (PSO) 
with classification methods plays a crucial role in diagnosing 
eye diseases from images [34]. These algorithms automate 
feature selection, reducing data dimensionality, and 
enhancing the speed and accuracy of classification tasks. For 
instance, Feng et al. [12] introduced Cartesian Genetic 
Programming (CGP) to automatically design competitive 
Convolutional Neural Network (CNN) architectures, 
minimizing the need for expert knowledge and extensive trial 
and error. This innovative approach optimizes CNN structure 
and connectivity using CGP encoding, maximizing validation 
accuracy. Similarly, Subramanian and Ramesh [20] 
emphasized the significance of Particle Swarm Optimization 
(PSO) in selecting relevant indices for Keratoconus diagnosis, 
aiming to reduce computing time and errors in computerized 
diagnosis. By focusing on segmenting topography images, 
PSO and its modifications improve performance metrics such 
as accuracy, sensitivity, and specificity, thereby advancing 
Keratoconus diagnosis and classification. Other research 
studies have applied the integration of optimization 
techniques with classification algorithms to various medical 
applications. For example, Li et al. [35] utilized a genetic 
Algorithm (GA) to refine the initial weights of a 
Convolutional Neural Network (CNN) for liver CT tumor 
classification. By leveraging GA’s global optimization 
capabilities, the method generated an optimal set of initial 
weights, resulting in improved learning performance 
compared to traditional CNNs. Similarly, Llorella et al. [36] 
and Kabir Anaraki et al. [37] employed GA to optimize CNN 
network parameters, enhancing image classification quality 
in Brain-Computer Interface (BCI) systems and 
noninvasively classifying different grades of glioma brain 
tumors using magnetic resonance imaging (MRI), 
respectively. In both studies, GA significantly reduced 
computation time for architecture selection while improving 
classification accuracy. Additionally, Davoudi and 
Thulasiraman [38], and Rodrigues et al. [39] used GA to 
optimize CNN architectures for various tasks, achieving 
superior performance and reduced computation time. 

Building on the review of past studies, this research aims 
to develop a new model that integrates a Convolutional 
Neural Network (CNN) for feature extraction with Support 
Vector Machine (SVM) and Artificial Neural Network (ANN) 
models for detecting Keratoconus (KCN). The feature 
extraction process will focus on two main objectives: 
optimizing the number of features and increasing accuracy 
using a Genetic Algorithm (GA). This integrated approach 
aims to enable early detection and intervention, which are 
crucial for effective treatment and improved patient outcomes. 

 
Fig. 1. Samples of topography images used in this study. 

III. MATERIALS AND METHODS 

A. Dataset Organization and Feature Extraction 
This study utilizes a dataset consisting of ophthalmic 

images sourced from an eye clinic in Egypt, previously 
employed in a study conducted by Al-Timemy et al. [19]. The 
dataset used in this study comprises 5152 images from 1288 
eyes (samples), including 476 Normal, 453 Suspect, and 359 
Keratoconus cases. Each sample comprises four images, 
including Axial/Sagittal curvature, Pachymetry, Elevation 
front, and Elevation back, containing specific eye-related data, 
and the dimensions of the images are 256×256 pixels. Fig. 1 
shows samples of the 4 corneal maps for the 3 classes 
investigated in this study. 

 

 
Fig. 2. Data processing workflow for Pentacam topography images. 

 
In corneal topography analysis, color variations provide 

crucial insights into corneal health. Blue areas in Pentacam 
topography maps indicate corneal thickness variations, with 
minimal blue in healthy corneas and extensive blue in 
advanced Keratoconus (KCN), signifying severe thinning 
and steepening. Purple regions suggest localized thinning, 
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potentially indicating conditions like pellucid marginal 
degeneration. Orange coloration, minimal in healthy corneas, 
suggests irregularities in suspect and KCN cases, reflecting 
significant steepening and thinning. Predominant green 
signifies uniform thickness and regular curvature, while 
yellow indicates potential early irregularities. Red areas 
highlight minor irregularities in healthy corneas and severe 
thinning in KCN. White regions indicate severe KCN or other 
conditions like scarring or post-surgical changes, 
necessitating comprehensive evaluation. Symmetrical color 
distributions denote normal corneal shape, while 
asymmetrical patterns in suspect and KCN cases indicate 
underlying irregularities requiring further diagnostic testing 
[40–42].  

Fig. 2 shows the block diagram of the data processing 
workflow for Pentacam topography images. The subsequent 
sections will present the processing stages in more detail. 
1) Preprocessing techniques for Pentacam topography 
images 

The dataset for this study comprises high-resolution 
Pentacam topography images, capturing the eye’s anterior 
segment, particularly the cornea, with great precision. 
Rigorous pre-processing steps were undertaken to ensure the 
dataset’s integrity and reliability. During the initial 
examination, some images were found with incomplete 
topographical depictions due to potential imaging limitations. 
These deficient images were systematically excluded to 
maintain dataset accuracy and prevent biases. For feature 
scaling and transformation, since the AlexNet architecture is 
used in this study for feature extraction from images, and this 
architecture requires input images to be 227×227 pixels to 
effectively perform convolution and pooling operations 
necessary for feature extraction, the topography images from 
Pentacam devices were resized. This preprocessing step 
ensures that the images are scaled to be compatible with 
AlexNet, enabling consistent and efficient processing across 
all inputs, which is critical for the success of tasks like 
classification or anomaly detection within the network. The 
original images, sized at 256×256 pixels, were resized to 
227×227 pixels—a reduction of less than ten percent per 
dimension. This small resizing preserved the number of data 
layers and did not compromise the detailed corneal 
measurements, ensuring the images remained accurate and 
reliable for analysis. Regarding data cleaning procedures, the 
advanced Pentacam imaging technology produces high-
quality, reliable data, negating the need for additional 
processing like filtering or noise removal. The technology 
ensures the data are ready for immediate analysis, 
maintaining the highest quality. Overall, these meticulous 
pre-processing steps maintain the dataset’s integrity, 
supporting accurate and reliable analysis. This rigorous 
approach enhances the robustness and validity of the research 
findings, contributing to the practical effectiveness of the 
SVM and ANN models trained with the genetic algorithm. 

2) Image dataset organization and loading procedure 
The imageDatastore function in MATLAB efficiently 

handles and preprocesses image datasets, creating a labeled 
datastore. It reads images from specified folders 
(‘Keratoconus,’ ‘Normal,’ ‘Suspicious’) in a consistent order, 
facilitating organized management and processing. In this 

study, four types of topography images (Axial, Elevation 
Front, Elevation Back, and Pachymetry) are categorized into 
three groups (Keratoconus, Normal, Suspicious) using 
MATLAB’s imageDatastore function. For each topography 
image, such as Axial, each subfolder contains images 
corresponding to its label, which are utilized for training the 
neural network. The labels for the images are automatically 
assigned based on the folder names (Keratoconus, Normal, 
Suspicious). This process is also carried out for the remaining 
topography images (Elevation Front, Elevation Back, and 
Pachymetry) so that after saving the images and labels, the 
features related to the images can be extracted in the next step. 

 

 
Fig. 3. Training images process using CNN (AlexNet Architecture). 

3) Feature extraction using AlexNet Architecture 
The architecture utilized in this study is the AlexNet 

Architecture, one of the Convolutional Neural Network 
(CNN) models designed specifically for image processing 
[43]. The structure of the CNN consists of two main parts: 
Feature Extraction and Classification. The CNN network 
receives Pentacam topography images as input, in the form of 
an array of pixels, and then CNN performs the necessary 
preprocessing on images using its architecture. As an 
illustration, the model receives 2D topography scans as an 
input and then AlexNet Architecture is used as an encoder to 
extract the main features which includes multiple 
convolutional layers, max-pooling layers followed by fully 
connected layers which is a vector with a size of 4096. Fig.3 
provides the overview of the proposed CNN architecture 
utilized in this study. 

4) Cross validation 
In this study, cross-validation technique is employed to 

mitigate overfitting by dividing the dataset into training and 
testing sets. The model is trained on one subset and tested on 
another, with this process repeated multiple times to ensure 
robust performance evaluation. Specifically, a 3-fold cross-
validation is implemented, dividing the dataset into three 
equal sets, each containing an even distribution of Normal, 
Suspect, and Keratoconus (KCN) cases. Each set includes 
data from four types of topography images (Axial, Elevation 
Front, Elevation Back, and Pachymetry), ensuring 
comprehensive training and evaluation. The final setup 
includes 24 variables representing features and labels across 
all sets and image types. To form the first cross-validation set, 
the labels for the first validation set, which consists of 429 
rows across all groups (Axial, Elevation Front, Elevation 
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Back, and Pachymetry), must be checked. In these 429 rows, 
for each topography image, if the image in the first set of 
cross-validation maintains the same label (Keratoconus, 
Normal, or Suspect) across all groups (Axial, Elevation Front, 
Elevation Back, and Pachymetry), that case is classified 
accordingly. The features from the four topography images 
(Axial, Elevation Front, Elevation Back, and Pachymetry) are 
then combined, creating the features and labels for the first 
cross-validation set, which constitutes one-third of the data. 
Consistent labeling across all topography types is ensured for 
each selected case. Thus, the feature vector changes from 
4096 for each image to 16384 for four images with an 
accompanying label. The same process is carried out for the 
other two cross-validation sets. Finally, the three main sets 
are saved in a separate file to be loaded in the next step for 
performing the testing and training operations 

B. Data Classification and Feature Optimization 
This step involves data classification using Support Vector 

Machine (SVM) and Artificial Neural Network (ANN) based 
on features extracted from AlexNet. Initially, SVM and ANN 
classify the data using these extracted features. Then, a 
genetic algorithm optimizes the features, and the data is 
reclassified using SVM and ANN with the optimized features. 
The process begins by using SVM to classify topographic 
images from the available datasets. The features of each 
topographic image are input into the SVM, which outputs 
classifications and groups samples into three categories: 
Normal, Suspect, and Keratoconus. Notably, each sample is 
characterized by 16,834 extracted features, derived from 4 
topographic images per case. Next, classification using an 
ANN with 6 hidden neurons is performed to group the 
samples, utilizing all available features. Finally, a genetic 
algorithm optimizes all features, and the optimized features 
are employed for classification, first using SVM and then 
refined by ANN techniques. The following subsections will 
detail the implementation of the genetic algorithm for feature 
optimization and highlight the performance evaluation 
method. 
1) Feature optimization via Genetic Algorithm 

A Genetic Algorithm is employed to randomly create an 
initial population comprising 100 generations. This is 
represented by a matrix with 100 rows and 16,384 columns, 
where each row (chromosome) contains binary values 
indicating the presence (1) or absence (0) of specific features 
extracted from the images using the AlexNet architecture. 
The randomness introduced by this process allows the GA to 
explore diverse combinations of features, which is essential 
for optimizing the feature selection process. In the feature 
subset selection phase, the final layer of AlexNet, the fc7 
layer, extracts a 4096-dimensional feature vector for each 
image. Four types of Pentacam images (Axial, Elevation 
Front, Elevation Back, and Pachymetry) are processed, 
resulting in a combined feature vector of 16,384 elements per 
sample. The initial population’s chromosomes guide which 
features are selected, using a binary vector (‘dvar’) to indicate 
feature inclusion or exclusion. This vector enables the GA to 
experiment with various feature combinations, aiming to 
optimize classification accuracy for KCN, Normal, and 
Suspect cases. The classification process employs both SVM 
and ANN models, trained on features selected by the GA. The 
dataset is divided into three subsets for cross-validation. Each 

subset rotates as the test set while the other two subsets are 
used for training. This process ensures each subset is tested 
exactly once, facilitating robust model evaluation. 

The MATLAB function ‘fitcecoc’ configures and trains 
the SVM multiclass classification model using a One-vs-All 
strategy, breaking the multi-class problem into binary 
classification tasks. Each classifier distinguishes one class 
from the others, and the class with the highest confidence 
score is chosen as the final prediction. For ANN training, the 
MATLAB function ‘patternnet’ initializes the network, 
designed with an input layer matching the GA-selected 
features, six hidden neurons, and an output layer with three 
neurons for each class. The ANN training process divides the 
data into training, validation, and test sets (70%, 15%, and 
15%, respectively). The neural network learns by adjusting 
its settings to minimize errors, enhancing its ability to classify 
new data correctly. The ANN pairs input features with target 
labels to learn associations, crucial for accurate classification. 
During the ANN evaluation, the transposed test features are 
combined with the training features into a single matrix, 
allowing the neural network to predict on both datasets 
simultaneously. The Softmax activation function in the 
output layer generates a probability distribution across classes, 
selecting the class with the highest probability as the final 
classification. Each image is assigned a label based on these 
probabilities, ensuring precise categorization into Normal, 
Suspect, or KCN. 
2) Performance evaluation of SVM and ANN Classification 
models optimized with Genetic Algorithm 

In this stage of the study, the performance of the Support 
Vector Machine (SVM) and Artificial Neural Network 
(ANN) classifiers is evaluated by calculating metrics such as 
training error and the number of selected features. The error 
calculation is performed by comparing the true labels from 
both the training and test sets with the predicted labels 
generated by the classifiers. For the SVM, the classifier 
predicts class labels for each image, assigning a vector 
indicating membership in one of the classes: Normal, 
Suspect, or Keratoconus. The classification error is computed 
by counting the mismatches between the true and predicted 
labels. Each mismatch is marked as an error, and the total 
number of mismatches provides a measure of the classifier’s 
accuracy. The same process is applied for ANN, with a slight 
modification due to its nature of counting each mismatch 
twice, necessitating division by two to correct for the dual 
comparisons per data point. The ANN also predicts labels in 
a one-hot encoded format, comparing each predicted element 
with the actual label to identify mismatches, which are 
summed to calculate the prediction error. The number of 
selected features is determined by a binary vector, dvar, 
where each element indicates whether a feature is selected. 
The sum of these values gives the total number of features 
used for training the classifier. This process is essential for 
understanding feature selection’s impact on model 
performance. 

Both SVM and ANN models undergo three rounds of 
evaluation using cross-validation sets. A confusion matrix is 
generated to compare actual and predicted labels, providing a 
comprehensive analysis of the classifier’s performance. The 
average of the three error rates is reported as the final error, 
and the number of features selected by the genetic algorithm 
is noted. The genetic algorithm optimizes feature selection by 
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minimizing the classification error and the number of features. 
The fitness function evaluates each model, balancing these 
two objectives. A Pareto diagram is used to visualize this 
balance, with the X-axis representing the error rate and the Y-
axis showing the number of features. Points on the Pareto 
front highlight the best trade-offs with low error and fewer 
features. The genetic algorithm evaluates each chromosome 
based on these metrics, retaining those close to the Pareto 
front for further generations while discarding suboptimal 
ones. Some suboptimal chromosomes are maintained to 
preserve genetic diversity. Offspring are generated through 
crossover and mutation to explore new feature combinations. 
Over successive generations, the population evolves toward 
more optimal solutions, moving the Pareto front closer to the 
origin, indicating improved performance. In conclusion, this 
iterative evaluation and optimization process ensures 
continuous improvement in the model’s accuracy and feature 
efficiency. The final model, optimized by the genetic 
algorithm, achieves a specific level of average error and 
minimal features, demonstrating the effectiveness of 
combining SVM and ANN classifiers with genetic algorithms 
for early detection of Keratoconus. 

IV. EXPERIMENTAL RESULTS 
The evaluation of the proposed methods aims to find an 

effective subset of features for SVM and ANN classification 
for Keratoconus patients. In other words, through the 
evaluation of the proposed methods, it can be inferred that the 
highest accuracy in the classification and prediction of 
Keratoconus patients is achieved by these methods that select 
optimal features using the genetic algorithm for classification. 
Therefore, for the evaluation of the proposed methods, a 
comparison is made between the predicted class labels for test 
samples in the Keratoconus patient dataset and the actual 
class labels declared for these samples in the original dataset. 
However, it is evident that this classification problem is not 
limited to only two classes, and the implementation of the 
Confusion Matrix for Multiclass Classification is required. 
To generate the Confusion Matrix, the data have been entered 
as shown in Table 1. 

Table  1. Model input data 
SUSPECT (real) NORMAL 

(real) 
KCN (real)  

Suspect patients 
mistakenly 
predicted as 
Keratoconus 

Normal patients 
mistakenly 
predicted as 
Keratoconus 

Patients with 
Keratoconus correctly 
predicted as 
Keratoconus 

KCN (prediction) 

Suspect patients 
mistakenly 
predicted as 
Normal 

Normal patients 
correctly 
predicted as 
Normal 

Patients with 
Keratoconus 
mistakenly predicted 
as Normal 

NORMAL 
(prediction) 

Suspect patients 
correctly predicted 
as Suspect 

Normal patients 
mistakenly 
predicted as 
Suspect 

Patients with 
Keratoconus 
mistakenly predicted 
as Suspect 

SUSPECT 
(prediction) 

 
In each stage, the target case is considered as the positive 

class, and other cases are considered as negative classes. To 
investigate and evaluate the proposed method and provide a 
comparison, a confusion matrix is used, and the summary of 
the results of this comparison is categorized into four 
categories, including TRUE POSITIVE, TRUE NEGATIVE, 
FALSE POSITIVE, and FALSE NEGATIVE. Table 2 
describes the details of these indexes for each type of image 

class. 
The evaluation process utilizes the confusion matrix for 

each class. Averaging the precision of these metrics across all 
classes provides a general idea of the model’s performance. 
Precision, specifically, is calculated as the number of True 
Positives divided by the sum of True Positives and False 
Positives for a particular class. These evaluation metrics, 
derived from the confusion matrix parameters, serve as a tool 
for assessing the quality of the proposed method and 
comparing it with existing methods. Therefore, in the 
following, the confusion matrices and sensitivity analysis of 
the proposed feature selection method based on the genetic 
algorithm for Support Vector Machine (SVM) and Artificial 
Neural Network (ANN) classification with the standard SVM 
and ANN classification approaches have been investigated 
separately. 

Table   2. Main indexes of confusion matrix 
SUSPECT NORMAL KCN  

The number of 
Suspect patients 

correctly 
considered as 

Suspect 

The number of 
Normal patients 

correctly 
considered as 

Normal 

The number of 
KCN patients 

correctly 
considered as 

KCN 

TURE POSITIVE 
(TP) 

The number of 
non-Suspect 

patients 
mistakenly 

considered as 
Suspect 

The number of 
non-Normal 

patients 
mistakenly 

considered as 
Normal 

The number of 
non-KCN patients 

mistakenly 
considered as 

KCN 

FALSE POSITIVE 
(FP) 

The number of 
Suspect patients 

mistakenly 
considered in other 

groups 

The number of 
Normal patients 

mistakenly 
considered in 
other groups 

The number of 
KCN patients 

mistakenly 
considered in 
other groups 

FALSE 
NEGATIVE (FN) 

The number of 
non-Suspect 

patients correctly 
considered as non-

Suspect 

The number of 
non-Normal 

patients correctly 
considered as non-

Normal 

The number of 
non-KCN patients 

correctly 
considered as 

non-KCN 

TRUE 
NEGATIVE (TN) 

 
A. Confusion Matrix for the Accuracy of the Algorithm 
Using ANN 
Fig. 4 shows the confusion matrix of the created neural 

network, representing the accuracy of the network in the 
prediction of KCN, Suspect and Normal cases. The neural 
network used in this study utilizes the cross-validation 
technique, which includes training and testing data divided 
into three subsets. In the first step, the first subset of data is 
used as testing data and the remaining data is used for training. 

 

 
Fig. 4. Confusion Matrix for the first subset of cross validation (ANN). 

As shown in Figs. 4 to 6, the squares marked in green — 
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(1,1), (2,2), and (3,3) — represent samples correctly predicted 
by the network. Conversely, the squares highlighted in red — 
(1,2), (1,3), (2,1), (2,3), (3,1), and (3,2) — indicate cases 
where the network made incorrect predictions. The 
percentages in the gray squares at the bottom of the confusion 
matrix represent recall metric. 

 
Fig. 5. Confusion Matrix for the first subset of cross validation (ANN). 

 
Fig. 6. Confusion Matrix for the third subset of cross validation (ANN). 

 
Eq. (1) shows that recall is calculated by dividing the 

number of true positive predictions by the total number of 
actual positives, which includes both true positives and false 
negatives. The percentages in the gray squares to the right of 
the confusion matrix represent precision. Eq. (2) shows that 
precision is calculated by dividing the number of true positive 
predictions by the total number of predicted positives, which 
includes both true positives and false positives. Eq. (3) 
represents the F1 score, which is the harmonic mean of 
precision and recall. It accounts for both false positives and 
false negatives, making it particularly effective for handling 
imbalanced datasets. Finally, the percentage displayed in the 
blue square at the bottom right corner of the confusion matrix 
represents the overall accuracy of the model. Eq. (4) shows 
that accuracy is calculated by dividing the total number of 
correct predictions (the sum of the diagonal elements, which 
correspond to the true positives for each class) by the total 
number of predictions made (the sum of all elements in the 
matrix). 

Recall = TP / (TP + FN)                          (1) 

Precision = TP / (TP + FP                       (2) 

F1 Score = 2 × (Precision×Recall) / (Precision + Recall) (3) 

Accuracy = ∑ Diagonal Elements / ∑ All Elements  (4) 

The results obtained from running the SVM and ANN 
algorithms without using a genetic algorithm will yield a 
point with a specific number of errors and features, which is 
not optimal. To calculate the algorithm’s accuracy, the 
average confusion matrix across a three-fold cross-validation 
will be computed. 

To be more specific, as shown in Fig. 4, in the first step, 
345 samples (1380 images) out of 359 samples (1436 images) 
related to KCN patients were correctly predicted. However, 4 
KCN cases (16 images) were mistakenly diagnosed as 
Normal, and 10 KCN cases (40 images) were mistakenly 
diagnosed as Suspicious. Similarly, for Normal cases, 467 
samples (1868 images) out of 476 cases (1904 images) were 
correctly predicted. No Normal case was mistakenly 
diagnosed as KCN, but 9 Normal cases (36 images) were 
mistakenly diagnosed as Suspicious. Lastly, 444 samples 
(1776 images) out of 453 samples (1812 images) 
corresponding to Suspicious patients were correctly predicted, 
while 5 Suspicious cases (20 images) were mistakenly 
diagnosed as KCN, and 4 Suspicious cases (16 images) were 
mistakenly considered as Normal. 

On the other hand, considering the percentages in the gray 
squares at the far right of the plot, 98.6% precision for Class 
1 (KCN) indicates that out of all instances the model 
predicted to be KCN, 98.6% were actually KCN. Similarly, 
98.3% precision for Class 2 (Normal) means that out of all 
the instances the model predicted to be Normal, 98.3% were 
Normal. Furthermore, the 95.9% precision for Class 3 
(Suspicious) suggests that out of all instances predicted as 
Suspicious by the model, 95.9% truly were Suspicious.  
Overall, the prediction accuracy of this step turned out to be 
97.5%. In the second and third steps, the same process is 
followed: first, the second subset of data is used as testing 
data while the remaining data is used for training, and then 
the third subset of data is used as testing data while the 
remaining data is used for training. The confusion matrices 
for the second and third subset of data are presented in Fig. 5 
and Fig. 6, which show 96.7% and 98.4% prediction accuracy. 
The observed fluctuations in accuracy result from variations 
in the test and training datasets. Instead of considering a 
singular accuracy value, the mean accuracy across all values 
is calculated, resulting in a mean accuracy of 97.53%.  

Additionally, the final error of the ANN algorithm after 
three-fold cross-validation is calculated using the formula 
below, yielding an error of 32 with 16384 features. 
(1288 × 3) − (444 + 471 + 352 + 420 + 473 + 352 + 345 + 467 + 444)

3
=  32 
 

B. Confusion Matrix for the Accuracy of the Algorithm 
Using SVM Classification 
As shown in Fig. 7, in the first subset, 352 samples (1408 

images) out of 359 samples (1436 images) related to KCN 
patients are correctly predicted. One KCN case (4 images) is 
mistakenly diagnosed as a Normal case, and 6 KCN cases (24 
images) are mistakenly diagnosed as suspicious. Similarly, 
for Normal cases, 471 (1884 images) out of 476 cases (1904 
images) are correctly predicted. No Normal cases have 
mistakenly been diagnosed as KCN but 5 Normal cases (20 
images) are mistakenly diagnosed as suspicious. Finally, 441 
samples (1764 images) out of 453 samples (1812 images) 
corresponding to suspicious patients are correctly predicted, 
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while 4 suspicious cases (16 images) are mistakenly 
diagnosed as KCN, and 8 suspicious cases (32 images) are 
mistakenly considered as Normal. On the other hand, 
considering the percentages in the gray squares at the far right 
of the plot, 98.9% precision for Class 1 (KCN) indicates that 
out of all instances the model predicted to be KCN, 98.9% 
were actually KCN. Similarly, 98.1% precision for Class 2 
(Normal) means that out of all the instances the model 
predicted to be Normal, 98.1% were Normal. Furthermore, 
the 97.6% precision for Class 3 (Suspicious) suggests that out 
of all instances predicted as Suspicious by the model, 97.6% 
truly were Suspicious.  Overall, the prediction accuracy of 
this step turned out to be 98.1%. The confusion matrices for 
the second and third subset of data are presented in Fig. 8 and 
Fig. 9, which show 97.6% and 95% prediction accuracy, 
resulting in a mean accuracy of 96.90% across three matrices. 

 

 
Fig. 7. Confusion Matrix for the first subset of cross validation (SVM) 

 

 
Fig. 8. Confusion Matrix for the second subset of cross validation (SVM). 

 

 
Fig. 9. Confusion Matrix for the third subset of cross validation (SVM). 

 

The final error of the SVM algorithm after three-fold cross-
validation is calculated using the formula below, yielding an 
error of 39 with 16384 features. 
 
(1288 × 3) − (359 + 389 + 476 + 428 + 472 + 357 + 352 + 471 + 441)

3
=  39.66 

 
Fig. 10. Confusion Matrix for the first subset of cross validation- (ANN and 

GA). 
 

C. Confusion Matrix of Algorithm Accuracy Using ANN 
Classification and GA for Feature Selection 
Reducing feature size from 16384 to 7103 by utilizing a 

genetic algorithm for feature selection lowers classifier 
complexity, cuts computational load and training time, and 
reduces overfitting, improving ANN efficiency. As shown in 
Fig. 10, in the first subset, 357 samples (1428 images) out of 
359 samples (1436 images) related to KCN patients have 
been correctly predicted. On the other hand, no KCN cases 
have mistakenly been diagnosed as Normal, and 2 KCN cases 
(8 images) are mistakenly diagnosed as suspicious. Similarly, 
for Normal cases, 474 (1896 images) out of 476 cases (1904 
images) of Normal patients are correctly predicted. 
Additionally, no Normal cases have mistakenly been 
diagnosed as KCN cases, and 2 Normal cases (8 images) are 
mistakenly diagnosed as suspicious. Finally, 448 samples 
(1792 images) out of 453 samples (1812 images) 
corresponding to suspicious patients are correctly predicted, 
while one suspicious case (4 images) is mistakenly 
considered as KCN, and 4 suspicious cases (16 images) are 
mistakenly considered as Normal. On the other hand, 
considering the percentages in the gray squares at the far right 
of the plot, 99.7% precision for Class 1 (KCN) indicates that 
out of all instances the model predicted to be KCN, 99.7% 
were actually KCN. Similarly, 99.2% precision for Class 2 
(Normal) means that out of all the instances the model 
predicted to be Normal, 99.2 % were Normal. Furthermore, 
the 99.1% precision for Class 3 (Suspicious) suggests that out 
of all instances predicted as Suspicious by the model, 99.1% 
truly were Suspicious. Overall, the prediction accuracy of this 
step turned out to be 99.3%. The confusion matrices for the 
second and third subset of data are presented in Fig 11 and 12, 
which show 97.7% and 98.9% prediction accuracy, resulting 
in a mean accuracy of 98.63% across three matrices. 
Additionally, the optimum point of the algorithm with a 
minimum error of 17 and 6994 features is reported. 
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Fig. 11. Confusion Matrix for the second subset of cross validation- (ANN 

and GA). 
 

The reported results indicate that the algorithm’s accuracy 
is consistent across all three subsets (99.3%, 97.7%, and 
98.9%). This suggests that the neural network operates 
uniformly and reasonably in this scenario. The results show 
that using a genetic algorithm for feature selection helps 
eliminate features that create noise or mislead the ANN. By 
reducing the number of features, the accuracy of the 
algorithm increases. Consequently, our network becomes 
more organized, and with less disturbance, classification 
accuracy increases. However, using the genetic optimization 
algorithm in this method essentially eliminates features that 
complicate the ANN network or create disruptions in the 
response, leading to incorrect predictions or responses. 
Therefore, feature selection with Genetic algorithm helps to 
achieve better results with ANN. 

 

 
Fig. 12. Confusion Matrix for the third subset of cross validation- (ANN 

and GA). 
 

D. Confusion matrix of algorithm accuracy using SVM 
classification and GA for feature selection 

Reducing feature size from 16384 to 6999 by utilizing a 
genetic algorithm for feature selection lowers classifier 
complexity, cuts computational load and training time, and 
reduces overfitting, improving SVM efficiency. As can be 
seen in Fig. 13, 352 samples (1408 images) out of 359 
samples (1436 images) related to KCN patients have been 
correctly predicted. On the other hand, 1 KCN case (4 
images) is mistakenly diagnosed as Normal, and 6 KCN cases 
(24 images) are mistakenly diagnosed as suspicious. 
Similarly, for Normal cases, 471 (1884 images) out of 476 
cases (1904 images) of Normal patients are correctly 
predicted. Additionally, no Normal cases have mistakenly 
been diagnosed as KCN cases, and 5 Normal cases (20 
images) are mistakenly diagnosed as suspicious. Finally, 445 
samples (1780 images) out of 453 samples (1812 images) 

corresponding to suspicious patients are correctly predicted, 
while 2 cases of suspicious cases (8 images) have mistakenly 
been diagnosed as KCN cases, and 6 suspicious cases (24 
images) are mistakenly considered as Normal. On the other 
hand, considering the percentages in the gray squares at the 
far right of the plot, 99.4% precision for Class 1 (KCN) 
indicates that out of all instances the model predicted to be 
KCN, 99.4% were actually KCN. Similarly, 98.5% precision 
for Class 2 (Normal) means that out of all the instances the 
model predicted to be Normal, 98.5% were Normal. 
Furthermore, the 97.6% precision for Class 3 (Suspicious) 
suggests that out of all instances predicted as Suspicious by 
the model, 97.6% truly were Suspicious. Overall, the 
prediction accuracy of this step turned out to be 98.40%. The 
confusion matrices for the second and third subset of data are 
presented in Fig. 14 and Fig. 15, which show 97.8% and 
98.2% prediction accuracy, resulting in a mean accuracy of 
98.13% across three matrices. Additionally, the optimum 
point of the algorithm with a minimum error of 17 and 6994 
features is reported. 

 
Fig. 13. Confusion Matrix for the first subset of cross validation (SVM and 

GA). 

 
Fig. 14. Confusion Matrix for the second subset of cross validation (SVM 

and GA). 

 
Fig. 15. Confusion Matrix for the third subset of cross validation (SVM and 

GA). 
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The reported results indicate that the algorithm’s accuracy 
is consistent across all three subsets (98.4%, 97.8%, and 
98.2%). This suggests that the SVM operates uniformly and 
reasonably in this scenario, similar to ANN. 

The results indicate that while feature selection with the 
genetic algorithm improves the accuracy of both SVM and 
ANN classifications, ANN combined with the genetic 
algorithm achieves higher accuracy than SVM with the 
genetic algorithm. 

E. Determination of optimal point selection for SVM and 
ANN classifications with Genetic Algorithm 
The result of the combination of SVM and ANN with the 

optimization process is visualized using a Pareto diagram 
(Fig. 16 and Fig. 17), which helps to understand the trade-offs 
between classification error and the number of features 
selected by each solution. For each optimal point identified in 
the Pareto diagrams and their related tables (Table 3 and 
Table 4), the corresponding optimal feature vector is reported. 
This allows for analysis of which features are effective in 
detecting Pentacam topography images at each specific 
optimal point, and conversely, which features are ineffective. 
To select the best optimum point, among these points, the one 
with the least Euclidean distance from the origin (0,0) is 
selected as the optimal Euclidean point. This method ensures 
that the chosen point minimizes both the number of features 
and the algorithm’s error simultaneously. 

 

 
Fig. 16. Pareto front chart of the number of errors and features (ANN and 

GA). 
 

 
Fig. 17. Pareto front chart of the number of errors and features (SVM and 

GA). 

Considering the results obtained from using GA and ANN 
(Fig. 16), each point on the chart specifies the average 
number of errors and the number of features used for 
detection. Considering the point with the least Euclidean 
distance from the origin (0,0), the optimal point was reported 
with 15 errors, and the number of features decreased from 
16384 to 7103 after applying the dual-objective genetic 
algorithm optimization. The detailed values of the average 
number of features and their corresponding errors have been 
presented in Table 3. It is worth mentioning that, since this 
algorithm is executed across three sets of validation classes, 
the final error is the average error obtained from running the 
algorithm in three cross-validation sets. 

Table 3. Number of features and their corresponding errors (ANN and GA) 
Point Average of error Average number of features 

1 13.66 7758 
2 21.66 6993 
3 17.33 7047 
4 17.66 6994 
5 15 7103 
6 22.33 6969 
7 17 7056 

 
Similarly, considering the results obtained from using 

SVM and GA (Fig. 17), the optimal point was reported with 
an average of 23.33 errors, and the number of features was 
reduced from 16384 to 6999 after applying the dual-objective 
genetic algorithm optimization. The detailed values of the 
average number of features and their corresponding errors 
have been presented in Table 4.  

Table 4. Number of features and their corresponding errors (SVM and GA) 
Point  Average of error Average number of features 

1 22 7498 
2 36.33 6975 
3 23.13 6999 
4 23 7071 
5 22.67 7180 
6 25.67 6987 

F. Comparison of the Prediction Power of Different 
Algorithms 
Following the implementation and evaluation of the 

proposed method using evaluation criteria derived from the 
confusion matrix, a comparison is conducted between 
existing methods. The overall accuracy of the different 
modeling approaches utilized in this study is shown in Fig. 
18. The proposed method, which incorporates a feature 
selection approach utilizing the metaheuristic genetic 
algorithm optimization, not only identifies the best 
representative features related to Keratoconus within the 
dataset but also reduces classification errors in predicting test 
samples. This demonstrates a significant improvement 
compared to methods that did not use the GA. Moreover, the 
algorithm’s predictive performance improved when 
employing artificial neural networks coupled with a genetic 
algorithm, surpassing that of SVM with a genetic algorithm 
for classification. In addition to accuracy, the superior 
performance of the algorithm combining artificial neural 
networks (ANN) with a genetic algorithm (GA) is further 
demonstrated by its higher precision, recall, and F1 score (Fig. 
19). 
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Fig. 18. Comparison of the modeling accuracy using different algorithms. 

 

 
Fig. 19. Comparison of the performance metrics of different algorithms. 

V. CONCLUSION 
This study has clearly demonstrated that an integrated 

machine learning approach can be effectively applied to 
detect and classify Keratoconus (KCN). By combining 
Convolutional Neural Networks (CNN) for feature extraction 
with Support Vector Machines (SVM) and Artificial Neural 
Networks (ANN) for classification, significant advancements 
in the diagnosis of KCN have been achieved.  

Reducing the size of the feature vector impacts classifier 
complexity by lowering the computational load and training 
time, reducing overfitting risks. In this study, before feature 
reduction, the classifier must process a vast number of 
features (16384), leading to high complexity, longer training 
times and increased overfitting risks. After feature reduction 
using a GA for SVM and ANN, the model becomes less 
complex, processing fewer features (SVM: 6,999 and ANN: 
7,103), resulting in faster training and improved efficiency. 
This not only helped identify the most relevant features for 
Keratoconus detection in the dataset but also led to a 
significant reduction in classification errors on test samples 
compared to methods without GA. 

It was found that the combination of CNN and GA for 
feature selection leads to more accurate diagnoses by 
effectively managing complex data, thus reducing the typical 
risks associated with handling large volumes of information. 
By focusing on the most relevant features of KCN, an 
accuracy rate of 98.63% was achieved by the model, which 
was higher than the 98.13% accuracy achieved by models 
utilizing SVM with GA. This underscores the advantages of 
integrating ANN with GA for this type of analysis. In addition 
to accuracy, the ANN and GA model significantly 
outperforms the other models across multiple evaluation 
metrics, including precision, recall, and F1 score. In other 
words, the ANN and GA model achieves the highest recall 
and precision rates, which lead to an improved F1 score, 
indicating a better balance between correctly identified 
positive instances and minimizing false positives. 

The strength of the predictive models was also supported 
by the use of a large and varied database that included 1,288 

real patients and 5,152 images. This extensive dataset played 
a critical role in improving the algorithm’s capabilities, 
highlighting the importance of having both high-quality and 
large amounts of data to ensure high accuracy. 

While this study is limited to a single dataset, the 
robustness of the approach, leveraging a combination of 
artificial neural networks and genetic algorithms, suggests it 
is likely to yield consistent results across different datasets, 
as these methods are well-established for their ability to 
generalize effectively across varying data distributions and 
feature spaces. Therefore, it is suggested that future studies 
apply this approach to different datasets to further validate its 
generalizability and effectiveness across diverse data 
distributions. To improve the prediction of Keratoconus, 
future research could also consider incorporating 
demographic factors such as gender and age, along with 
clinical measurements like vision and refraction, as these may 
influence the detection of asymptomatic Keratoconus. 
Additionally, exploring the use of curvelet transforms for 
image processing could be beneficial, especially for cases 
involving circular textures and edge details. Finally, 
investigating the integration of various classification methods 
with different feature subset selection techniques may 
enhance prediction accuracy by leveraging the strengths of 
multiple algorithms. 
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