
 

Borderline Active Learning: Transactional Records in Alert-
Feedback System  

Bokyung Amy Kwon and Kyungtae Kang* 

Department of Artificial Intelligence, Hanyang University, Ansan, Korea 
Email: amykwon@hanyang.ac.kr(B.A.K.); ktkang@hanyang.ac.kr(K.K.) 

*Corresponding author
Manuscript received November 11, 2024; revised November 27, 2024; accepted December 6, 2024; published December 27, 2024. 

Abstract—Transactional records often exhibit highly 
imbalanced patterns, which can hinder the performance of data-
driven models in alert-feedback systems. While oversampling 
techniques are commonly used to address this imbalance, they 
increase the total number of instances, leading to higher 
computational costs. Although the Active Learning (AL) 
approach is computationally expensive, it focuses only on the 
most informative samples, which can be more efficient for 
transactional records. Our experiments show that AL 
outperforms SMOTE and Borderline-SMOTE in terms of 
accuracy and AUPRC. Therefore, AL presents a promising 
approach for addressing the class imbalance problem in 
transactional records, without the added computational burden 
of synthetic samples. 

Keywords—active learning, oversampling, transactional 
records, precision-recall, machine learning 

I. INTRODUCTION

Although advancements in machine learning (ML) and 
artificial intelligence (AI) have significantly improved 
information retrieval and analysis across various fields, these 
techniques often fail to achieve satisfactory performance due 
to generic problems specific to the data. Transactional records 
serve as typical examples. In practice, many real-time 
transactional records are monitored by alert-feedback 
systems that trigger alarms when abnormal transactional 
patterns are detected based on data-driven models, to prevent 
significant damage from fraud. It is crucial to select the right 
data-driven model for the system to achieve satisfactory 
performance in identifying abnormal patterns. However, even 
with the right models, there are still generic challenges 
specific to the data. Transactional records are affected by 
concept drift, leading to continuously evolving abnormal 
patterns over time [1], and there is a latency issue in verifying 
the ground truth for the label information, which is critical in 
a supervised learning framework by hindering prompt 
knowledge acquisition for the data-driven model [2]. 

Moreover, abnormal patterns resulting from illegal 
activities are often not accessible, leading to a lack of positive 
information that results in a severe class imbalance problem. 
This skewed distribution in the class often causes a hard 
mining problem when detecting anomaly patterns, which 
ultimately exacerbates the performance of the given model 
and makes it harder for ML or AI based models to learn from 
positive events [3, 4]. Since all of these problems either 
explicitly or implicitly impact the overall performance of the 
data-driven model on transactional records, improving the 
model's performance would benefit from measuring any one 
of these issues. Our study specifically focuses on addressing 
imbalanced class distribution in transactional records for a 

given classifier. 
There have been studies addressing class imbalance 

problems using sampling approaches. These studies aimed to 
balance the data by either oversampling observations in the 
minority class or undersampling observations in the majority 
class [5–7]. While these methods have shown improvements 
in performance in certain cases, they generally yield 
inconsistent results, and no specific studies have 
demonstrated improved performance when applying these 
approaches to transactional records. Additionally, increasing 
the data volume to force an even ratio could reduce the 
effectiveness of the alert-feedback system by increasing 
training time. 

Our study proposes active learning (AL) as a solution to 
alleviate the challenges of learning from imbalanced data. AL 
focuses on selecting informative instances during model 
training, enabling effective learning without necessitating a 
balance in the data distribution. Moreover, to the best of our 
knowledge, there has been no direct application of AL as a 
solution for imbalanced data distribution. 

After the introduction, we briefly describe related studies 
regarding studies specifically focusing on class imbalance 
problems as well as ones comparatively selecting the right 
models on transactional data. Next, we present our AL 
approach in detail, along with a brief explanation of the 
background needed in the context. In the Results section, we 
will present the experimental results based on standard 
performance measures. Finally, we summarize the strengths 
and weaknesses of our approach and highlight areas for future 
research. 

II. LITERATURE REVIEW

The ML community generally addresses the class 
imbalance problem by either penalizing classification errors 
[5] or using sampling techniques to balance the distribution
[6, 7, 9]. The former approach typically assigns cost matrices
to the predicted classes during the selection process to
minimize classification errors based on inductive learning.
However, these methods may not be effective for noisy data,
as they often require an increased number of rules. Therefore,
we reviewed the literature focusing on the latter approach.

The Synthetic Minority Over-sampling Technique 
(SMOTE) specifically addresses the class imbalance problem 
in supervised learning [6]. This method generates synthetic 
instances of the minority class in feature space under the 
over-sampling framework. Synthetic instances are created 
along the line segments joining N% of the k nearest minority 
class neighbors depending on the necessary amounts of over-
sampling. Less commonly, this approach creates a random 
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point by multiplying the random number between 0 and 1 by 
the difference between the feature vector and its neighbors 
then add this result, to the original feature vector, along the 
line segment between two specific features. In the experiment 
using C4.5 as the base classifier, SMOTE demonstrated an 
improved area under the receiver operating characteristic 
curve (AUC). Borderline-SMOTE was proposed to address 
the same issue as SMOTE [7]. This method oversamples only 
the minority instances near the decision boundary, 
considering the relative importance of instances in that region. 
It constructs a 'danger set' to generate synthetic instances, 
similar to the process in SMOTE, where minority class 
instances are included in the danger set if more than half of 
their nearest neighbors belong to the majority class. 
Comparisons show that Borderline-SMOTE performs 
relatively better in terms of F-score [8]. Meanwhile, one-
sided selection (OSS) [9] leaves the minority class instances 
untouched while eliminating noisy and unreliable instances 
from the majority class based on Tomek links [10]. This 
approach moves all misclassified instances in the training set 
to the C set, which consists of a randomly chosen negative 
instance and all positive instances, using 1-nearest neighbor 
(1-nn). It then removes instances belonging to Tomek links 
from the C set. This method has relatively low costs for 
learning, and evaluates performance using geometric mean of 
accuracy as a single measurement. 

Apart from this problem, several comparative studies have 
been conducted to identify the most effective data-driven 
models using ML or neural network (NN) techniques on 
transactional records for an alert-feedback system [11–15]. 
On the comparison study among decision tree, k-nn, logistic 
regression (LR), Naïve Bayes and random forest (RF), it 
recommended the decision tree model considering prediction 
time as well as accuracy to detect fraudulent events [11]. 
Decision-tree based models are also independently compared 
according to different criteria, entropy and GINI index, with 
another combination of ML models in [12], the study 
recommended NN instead in terms of both accuracy and 
sensitivity. One study highlights the imbalanced 
characteristics of transactional records and examines whether 
model performance varies with different loss functions [13]. 
It suggests that the focal loss function may improve 
performance on imbalanced transactional records compared 
to standard cross-entropy [14]. However, adapting the focal 
loss function for training on transactional records is 
challenging, as it remains unclear how to set the weights for 
new data given the evolving characteristics. Considering the 
sequential procedures of the alert-feedback system, one study 
compared various classifiers under different parameter 
settings and selected the multi-layer perceptron (MLP) as the 
best classifier to minimize false positive rates, since reducing 
false positives decreases the time required for post-processing 
[15]. Additionally, both over-sampling and under-sampling 
techniques are applied to various ML models to address the 
inherent characteristics of transactional records and compare 
their performance [16]. The results indicate that 
oversampling approaches generally outperform 
undersampling approaches, recommending RF as the best 
option. However, it also cautions that results based on 
sampling techniques may not always be optimal. 

III. BACKGROUND 

A. Alert-feedback System  

The alert-feedback system consists of three sequential 
procedures to process real-time transactional records, as 
illustrated in Fig. 1. When a transaction occurs, it passes 
through the control gate, which authorizes normal 
transactions by checking authentication using various 
encryption methods within a short time frame. Once 
authorized, a data-driven model predicts whether the 
transaction exhibits an abnormal pattern, based on a set of 
labeled data and utilizing ML or AI techniques. Therefore, an 
effective classifier is crucial in this phase. If a transaction is 
flagged as abnormal, the verification process is initiated, 
triggering alarms and confirming the transaction's validity 
through expert review. During this phase, an annotation delay 
often occurs due to the latency in obtaining true label 
information, which hinders prompt knowledge acquisition. 
 

 
Fig 1. The process of the alert-feedback system. 

 

B. Data-driven models  

As data-driven models, we consider the following five 
models that have shown relatively better performance in 
previous studies [11–16]. 
 Logistic regression (LR) 

LR serves as a base classifier in our context, consistent 
with previous literature.  
 

 Random Forest (RF) [17] 
RF is an ensemble-based approach that makes 
predictions by aggregating multiple trees built in 
parallel from independently chosen random subsets of 
the data. In terms of generalization error, it demonstrates 
robustness against overfitting, making it an effective 
strategy for building individual trees with higher 
strength and lower correlation. Generally, larger trees 
tend to provide better predictions as the number of 
features increases. 
 

 LightGBM (L-GBM) [18] 
L-GBM is implemented as a gradient boosting decision 
tree (GBDT), but it uses a subset of instances with larger 
gradient values to compute information gain. By 
randomly dropping instances with small gradients, it 
achieves accurate estimation of information gain with a 
much smaller subset, avoiding the need to compute it at 
all split points. Additionally, L-GBM employs a 
strategy to bundle mutually exclusive features by 
treating two features as vertices and linking them if they 
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are not mutually exclusive. This problem is then 
approached as a graph coloring problem, solved in a 
greedy manner with a constant approximation ratio. 
These two main strategies lead to faster computation 
during training while maintaining accuracy and efficient 
memory consumption compared to other approaches. 
 

 XGboost [19] 
XGBoost is a scalable end-to-end tree boosting 
algorithm based on an approximate greedy approach. It 
incorporates column sub-sampling, same to RF, and is 
designed to be sparsity-aware. Additionally, it 
regularizes the ensemble tree model to prevent 
overfitting. For approximation, XGBoost generates a set 
of split point candidates by deriving the ranks of feature 
quantiles, resulting in weighted quantiles that provide a 
theoretical guarantee. Furthermore, it handles all 
sparsity patterns uniformly, whether dealing with 
categorical or dense data, which speeds up computation 
by only visiting non-missing entries in the default 
direction of the branches. 
 

 Neural network (NN)[20] 
NN is constructed with a standard architecture having 
two hidden layers illustrated in Fig 2, and the 
backpropagation is implemented by a perceptron 
converge procedure, which is simpler and maintains 
locality in weight space.    

 
Fig. 2. Standard architecture of NNs in the context. 
 

C. SMOTE technique  

Based on previous literature indicating that over-sampling 
approaches generally outperform under-sampling methods, 
we selected SMOTE as our benchmark algorithm to address 
the class imbalance problem. Suppose that ൛𝑥௜: 𝑖 ൌ 1, ⋯ , 𝑁௣ൟ 

is a set of minority samples, and 𝑁% of the samples needs 
to be synthesized by SMOTE. (For simplicity, we convert 
𝑁% to 𝑁∗ using (𝑁/100) in the context.) For each instance 
of 𝑥௜, k-nearest neighbors are computed to generate synthetic 
samples as many as 𝑁∗ ⋅T as a total. The synthetic samples 
are generated at each 𝑥௜  through the procedure called 
`Populate (𝑁∗, i, nn_ind)’, where nn_ind indicates the indices 
of k- nearest neighbors of 𝑥௜ . (The pseudocode of 
`PROCEDURE: Populate’ is summarized in Algorithm 1.) 

 

Algorithm 1: The pseudo code of SMOTE 
PROCEDURE: Populate (𝑁∗, i, nn_ind)  
1: 
2: 
3 
4: 
 
 
5: 
6: 
7: 

While (𝑁∗ > 0) do 
   Select randomly 𝑗 in the nn_ind 
   Do linear interpolation between 𝑥௜ and 𝑥௝ 
   Generate synthetic samples of 𝑧௜௝   

 ω ~ 𝑈𝑛𝑖𝑓ሺ0,1ሻ 
         𝑧௜௝ ൌ 𝑥௜ ൅ 𝜔 ∙ ሺ𝑥௝ െ 𝑥௜ሻ 
         𝑁∗ ← 𝑁∗ െ 1 
End while 

 

D. Borderline-SMOTE Technique  

Borderline-SMOTE is also implemented within the over-

sampling framework. While standard SMOTE utilizes all 
nearest neighbors, Borderline-SMOTE specifically targets 
instances near the decision boundary. This distinction 
motivated our study, despite differences in implementation. 

Given a value of k, Borderline-SMOTE categorizes nearest 
neighbors based on their corresponding label information into 
three categories: If the number of their labels belonging to the 
majority is equal to k, 𝑥௜ is regarded as a noisy sample. If it 
is less than half of k, 𝑥௜ is regarded as a safe sample. 
Otherwise, 𝑥௜ is regarded as danger, and assigned to a danger 
set. (The procedure for generating Danger samples, distinct 
from SMOTE, is summarized in Algorithm 2.) 
 

Algorithm 2: The pseudo code of Danger  
1: 
2: 
3 
4: 
 
 
5: 
6: 
7: 

danger = {}                 \\* creating Danger(k,i) 
For 𝑖 ൌ 1, ⋯ , 𝑁𝑝:  
   Compute k-nn, and count nn having the negative labels 

 (nn୧ ← sumሺIሺ𝑦௡௡ ൌ െ1ሻሻ  

   If (
௞

ଶ
൑ nn_i ൑ 𝑘) do:  

 danger ← danger ∪ ሼ𝑥_𝑖ሽ 
   End If 
End For 

Note: 𝑦௡௡ indicates the label information of k nearest neighbors. 
 

The synthetic samples are generated in the same way to 
SMOTE. Our study identifies the initial sets for active 
learning by modifying the Danger procedure. 

E. Evaluation Metrics  

The most common setting is binary classification within 
the framework of supervised learning, particularly when 
addressing class imbalance problems. By convention, the 
prevalent performance measure is accuracy, defined as Eq. 
(1), where TP, TN, FP, and FN denote the numbers of true 
positives, true negatives, false positives, and false negatives, 
respectively. 
 

       Accuracy ൌ  
்௉ା்ே

்௉ାிேାி௉ା்ே
            (1) 

 

However, the predictive accuracy does not often convey 
performance properly in the context of imbalanced data [6, 9, 
21]. Area under the receiver operating characteristic curve 
(AUROC) assigns lower score to random or those that predict 
only one class [22], making it a more reliable evaluation 
metric than accuracy. When AUROC curves intersect, the 
overall AUROC serves as an average value for comparing 
models [23]. Recently, the area under the precision-recall 
curve (AUPRC) has garnered considerable attention in 
settings with class imbalance, according to recent literature 
[24–27]. Let f be a trained model for a binary classification in 
an imbalanced context, represented as 𝑓: 𝛸 → 𝑌 , where 
ሺx, yሻ ∈ Χ ൈ Y. The model, f outputs continuous probability 
scores over the space, and both AUROC and AUPRC can be 
expressed as shown in Eq. (2) and Eq. (3). 

 

AUROC୤ ൌ 1 െ 𝐸୸ ~୤ሺ୶ሻ|௬ୀଵሾFPRሺ𝑓, 𝑧ሻሿ         (2) 
 

AUPRC୤ ൌ 1 െ p୷ሾ0ሿ ⋅ 𝐸୸ ~୤ሺ୶ሻ|௬ୀଵሾ
୊୔ୖሺ୤,୸ሻ

௉ሺ௙ሺ௫ሻவ௭ሻ
ሿ    (3) 

 

As noted in [24], these two metrics differ in how they 
optimize model-dependent parameters. While AUROC 
minimizes the expected false positive rate (FPR) across all 
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positive samples evenly, AUPRC minimizes the expected 
FPR over positive samples, weighted by the inverse of the 
firing rate 𝑃ሺ𝑓ሺ𝑥ሻ ൐ 𝑧ሻ, at a given positive sample score. 
Consequently, AUPRC places greater emphasis on high-
score misclassification errors, so it should be interpreted 
cautiously in general situations. However, it is particularly 
well-suited for identifying abnormal patterns in transactional 
records, since high-score misclassifications can lead to 
significant potential damages in alert-feedback systems due 
to the costs incurred by the verification process. Therefore, 
our study prioritizes the AUPRC score over AUROC and 
accuracy as reference measures. 

IV. METHODS 

A. Active Learning  

AL is a machine learning technique that aims to select 
informative instances based on a given acquisition function, 
allowing for some control over the input space. This is 
especially useful when part of the data is unlabeled within the 
supervised learning framework. Traditionally, supervised 
learning assumes balanced data, but few studies have 
addressed the class imbalance problem in the context of 
active learning. (In the domain of computer vision, the 
imbalance problem is typically defined by the imbalance ratio, 
which is calculated as the mean divided by the standard 
deviation for each class, particularly in multi-label settings 
[28]. This definition deviates from ours, so it is not 
considered in this context.) One study directly tackles the 
class imbalance problem in active learning within a support 
vector machine (SVM) framework [29]. This study selects a 
small, constant number of random sets, independent of the 
training set size, and chooses the instance closest to the 
hyperplane, assuming that the instance is among the top p% 
closest instances in the training set with a probability of 1 - η. 
If η is set to 0.05, the number of samples in a random set is 
fixed at 59, regardless of the size of the training set. This 
approach has an advantage to reduce the version space faster 
by local searching, but it is specifically designed for SVM. 
Based on the literature on the performance of data-driven 
models, SVMs do not perform well on transactional records, 
so this approach is not preferred as reference in the context. 

B. Borderline-Active Learning  

The previous literature shows that AL can be advantageous 
for training on imbalanced data due to its inherent property of 
not retaining its entire input. In particular, the distribution 
near the decision boundary is more balanced than that of the 
entire dataset [29]. Hence, we hypothesize that the 
performance with AL, focusing solely on informative 
samples near the decision boundary, would be at least as good 
as methods that either retain the entire dataset or enforce 
balance through sampling approaches. 

The AL can be implemented under either stream-based or 
pool-based framework depending on how to choose the 
instances for learning, and we assumes pool-based 
framework where the data is denoted as D consisting of 
labeled observations and unlabeled observations (For 
simplicity, they are denoted as L set and U set, respectively).  

A. Initial Setting   

Motivated by the Danger procedure in Borderline-SMOTE, 

we construct a seed set S based on the L set for learning. The 
key difference in our approach is that S includes both 
minority and majority samples near the borderline, with 
approximately balanced quantities, to proceed with AL. In 
contrast, the danger set in Algorithm 2 only includes minority 
samples near the borderline. 

Let 𝐿௉ ൌ ൛𝑥𝑖: 𝑖 ൌ 1, ⋯ , N௣ൟ  and 𝐿ே ൌ ሼ𝑥𝑖
∗: 𝑖 ൌ 1, ⋯ , N௡ሽ  

be a set of minority samples, and majority samples, 
respectively. The procedure to construct S, is as follows: 
 

Step 1. For 𝑥௜ ∈ 𝐿௉ , compute k-nn, and count the 
negative samples, as nn୧ ← sumሺIሺy୬୬ ൌ െ1ሻሻ.  

Step 2. If ሺ
௞

ଶ
൑ nn୧ ൑ kሻ do: 

    𝑆 ← S ∪ ሼ𝑥௜, x௜
ሺ௡௡ିሻሽ   

where x௜
ሺ௡௡ିሻ indicates the nn with negative labels 

Step 3. Repeat for all 𝑥௜ in 𝐿௣ 
 

If k is set to 5, the number of negative samples typically 
becomes about twice as large as the number of positive 
samples, at most. This ratio can be adjusted by controlling 
both k and the criteria for the sets. (For example, if we 
randomly choose a single negative instance, it creates a 
perfectly balanced seed set.  

B. Implementation 

As the data-driven model is trained with S, AL can be 
incorporated by adding the most informative samples, 𝑥௜ , 
from the unlabeled set U according to a predefined strategy. 
One common strategy is uncertainty-based selection [30, 31], 
where entropy is a well-known measure, as shown in Eq (4). 
 

   H൫𝑝௝൯ ൌ  െ ∑ 𝑝ሺ𝑥௝ሻ ∙ log 𝑝ሺ𝑥௝ሻ௡೔
௝ୀଵ               (4) 

 

Given the characteristics of entropy, the instance with the 
highest entropy is selected. Higher entropy indicates greater 
uncertainty, which naturally aligns with the instances in S in 
our study. This entropy measure can be re-expressed in Eq (5) 
where 𝑃௅ሺ𝑦|𝑥ሻ indicates the predicted value by the model 
for 𝑥௜. 
 

𝐻൫𝑦௜, 𝑃௅ሺ𝑦|𝑥ሻ൯ ൌ െ ∑ y୧ ⋅ log 𝑃௅ሺ𝑦௜|𝑥௜ሻ௬೔
         (5) 

 

This measure is often incorporated into more refined 
formulas, but its fundamental characteristic is inherently 
maintained. Based on this measure, active learning (AL) can 
be implemented as follows (the pseudocode follows). 
 

Algorithm 3: The pseudo code of Borderline-AL 
Algorithm. AL  
Input: 𝑥௜ ∈ 𝑈, ሺ𝑥௜, 𝑦௜ሻ ∈ 𝑆 as input 
Output: S’ 
1: 
2:  
3 
4: 
 
 
5: 
6: 
7: 

Initialization: S’= S 
Loop while adding new instance into S’ 

Train the pre-defined model with S’ 
    Use the model to probabilistically label 𝑥௜   
    Compute Eq (5) 
    Choose the instance satisfying 

 x୧ ൌ 𝑎𝑟𝑔 max
ሼ୶౟ሽ

𝐻൫𝑦௜, 𝑃௅ሺ𝑦|𝑥ሻ൯   

 Sᇱ ൌ 𝑆′ ∪ ሼ𝑥௜ሽ 
Until the predefined stopping condition is met. 
Return S’ 

  
Note: S indicates the seed set. 
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V. EXPERIMENTS 

A. Datasets  

The original dataset consists of 284,807 credit card 
transactions made by European cardholders in September 
2013. The data were collected through a collaboration 
between Worldline and the Machine Learning Group at 
Université Libre de Bruxelles [32]. Out of the 26 features, 24 
were transformed using principal component analysis (PCA) 
to maintain confidentiality. The two features that were not 
transformed are 'time' and `amount.' 'Time' represents the 
number of seconds elapsed from the first transaction to each 
subsequent transaction, while `amount' denotes the total 
amount paid in each transaction. Each transactional record 
belongs to either `normal’ or `abnormal’. 

B. Exploration & Pre-processing  

Before classification, the 'amount' feature was log-
transformed to prevent performance deterioration due to 
skewness. Additionally, the density kernels of all features 
were analyzed by class, and some of these results are 
randomly selected and displayed in Fig. 3.  

 
Fig. 3. Kernel densities of randomly selected input features. 

 

C. Experiment: Implementation 

SMOTE and Borderline-SMOTE are applied with 100% 
synthesis based on the number of positive instances, creating 
a perfectly balanced dataset with a 1:1 ratio of positive to 
negative instances. For AL, all negative samples from the 
danger set are added to the seed set, S for initial learning, 
resulting in an approximately 1:2 positive-to-negative ratio. 
Here, k is fixed at 5, and the predefined stopping condition is 
set such that the difference in accuracy between iterations is 
less than 0.0001. This value is set as a stopping criterion, with 
the assumption that increments smaller than 0.0001 are 
negligible, particularly in terms of training efficiency. 

(As mentioned in the previous section, balance can be 
achieved by selecting a nearest negative neighbor in AL, 
though we believe this does not significantly impact 
performance given the characteristics of AL.) 
Under this setup, all 24 features are used as input, and the 
experiment is conducted independently for each condition. 

VI. RESULTS 

The performance of AL is evaluated based on accuracy, 
AUROC, and AUPRC for each model, with the selected 
models demonstrating relatively better performance on 
transactional records compared to combinations of other 
models in previous literature [11-15]. The AL approach 
achieved the highest accuracy in 4 out of 5 models except NN 
and the best AUPRC in 3 out of 5 models. Overall, AL 
demonstrated fair performance; however, it exhibited lower 
accuracy compared to SMOTE in the NN model. The reasons 
for the NN's performance deviation are not entirely clear, but 
several factors, such as the number of layers or nodes, could 
influence its performance. These factors should be explored 
further in future studies. 

In contrast, SMOTE delivered the best AUROC in 4 out of 
5 models, while Borderline-SMOTE showed similar results 
to SMOTE, but with the best AUROC in only 2 out of 5 
models, which is relatively lower (The comparison results are 
summarized in Table 1).  

 
Table 1. Performance comparison by the different processing 

Models Processing 
Performance 

ACCU. AUROC AUPRC 

LR SMOTE 0.977 0.958* 0.845* 

 Borderline-SMOTE 0.992 0.935 0.841 

 Active learning 0.997* 0.925 0.715 

RF SMOTE 0.997 0.964 0.818 

 Borderline-SMOTE 0.990 0.966* 0.806 

 Active Learning 0.999* 0.939 0.836* 

XGboost SMOTE 0.987 0.959* 0.861 

 Borderline-SMOTE 0.997 0.959* 0.877 

 Active Learning 0.999* 0.952 0.878* 

L-GBM SMOTE 0.980 0.966* 0.840 

 Borderline-SMOTE 0.989 0.962 0.819 

 Active Learning 0.999* 0.919 0.858* 

Neural 
Networks 

SMOTE 0.999* 0.923* 0.885 

 Borderline-SMOTE 0.999* 0.920 0.896* 

 Active Learning 0.995 0.914 0.838 
1 LR: Logistic regression (base).; * indicates the best accuracy 

 

A. Additional analysis results 

The t-SNE (Stochastic Neighbor Embedding) [33] is 
illustrated in Fig. 4, comparing SMOTE and AL after training 
the NN classifier where the X and Y axes represent the first 
and second t-SNE components, respectively. As shown in Fig. 
4, the synthetic samples from SMOTE are less 
distinguishable, as the total number of instances nearly 
doubles in the t-SNE plot. In contrast, AL exhibits more 
distinct clustering, making it easier to identify positive 
samples, with the total number of instances averaging below 
20k. 

 
The x and y axes indicate the first and the second t-SNE components. 

Fig. 4. t-SNE comparison between SMOTE vs. AL 
 

Additionally, we identified the important features selected 
by the NN classifier using AL based on SHAP values 
described in Eq (6). The SHAP value originally represents a 
fair distribution of a total reward among participants based on 
their contributions, and it can be interpreted as the 
contribution of each feature to the prediction by a given 
model in machine learning context. According to results, we 
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illustrated the top 10 features as a descending order based on 
SHAP value in Fig. 5. The 4th, 10th, 14th, and 16th features 
were prioritized according to Eq. (6), though no single feature 
emerged as distinctly dominant. 

 

𝜙௜ሺ𝜐ሻ ൌ ∑ |ௌ|!ሺ|ே|ି|ௌ|ିଵሻ!

|ே|!
ሾ𝜐ሺ𝑆 ∪ ሼ𝑖ሽሻ െ 𝜐ሺ𝑆ሻሿௌ⊆ேሼ௜ሽ    (6)  

 
where 𝜙௜ሺ𝜐ሻ represents the SHAP value for each feature i, 
and N is the set of all features. Here, 𝜐ሺ𝑆 ∪ ሼ𝑖ሽሻ െ 𝜐ሺ𝑆ሻ is 
marginal contribution of feature i to the coalition S when |S| 
and |N| are the size of the subset S and the total number of 
features, respectively.    

 

 
Fig. 5. Features by SHAP values.  

VII. DISCUSSION 

It is well-known that sampling techniques are commonly 
used to address the class imbalance problem, yet few studies 
have explored the use of Active Learning (AL). 
Oversampling techniques are typically applied before 
training the model, requiring minimal time. In contrast, AL is 
more computationally expensive, as it is performed during the 
model's training process. However, AL offers distinct 
advantages over methods like oversampling and 
undersampling. The oversampling techniques generally 
encounter computational burdens for training because of 
excessive data volume while undersampling techniques are 
exposed to the risk of losing valuable information at the cost 
of balance. Since AL focuses on informative instances for 
training according to a pre-defined informative measure, it 
can avoid those risks. However, AL does not originally aim 
to make balance unlike sampling techniques, we leverage the 
fact that the instances near decision boundary are relatively 
balanced in class distribution, which drives us to propose 
Borderline-AL approach. Based on our approach, initial set 
of instances are collected at the boundary, which reduce 
skewness in distribution and is faster than standard AL 
techniques. In alert-feedback systems, for example, positive 
instances in transactional records are often less than 1-2% of 
the total data, which can lead to high computational costs. 
Although over-sampling can help by generating synthetic 
instances, it may not always be efficient. Additionally, false 
positives in alert-feedback systems can result in significant 
damage. In our experiments, AL techniques outperformed 
sampling methods, demonstrating higher accuracy and better 
AUPRC (Area Under the Precision-Recall Curve), even 
though they do not produce a perfectly balanced dataset. 
Recent research has also highlighted that synthetic samples 
generated by methods like SMOTE may not always 
accurately represent the minority class distribution, 

potentially harming classification performance. [34] Given 
these limitations, AL algorithms present a promising 
alternative to over-sampling techniques for handling class 
imbalance in transactional records. We also plan to further 
develop AL techniques to solve the imbalance issue in the 
near future. 

VIII. CONCLUSION 

Unlike sampling techniques, our proposed approach based 
on AL, focuses solely on informative samples near the 
decision boundary for effective training. This avoids risks of 
losing valuable information and doubling the training volume 
associated with sampling techniques, which also addressing 
the imbalance issue. Given these facts, it is noteworthy that 
AL demonstrates its potential for addressing the class 
imbalance problem, especially when compared to traditional 
sampling techniques. 
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