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Abstract—This paper proposes the optimization of the 

Transformer model for analysis of sequential data using a 
modified clonal selection algorithm (mCSA). Transformers 
demonstrate better performance over Long Short-Term 
Memory (LSTM) deep networks when the input sequence is 
exceptionally long. They are good at capturing long-term 
dependencies in comparison to LSTM networks. However, this 
comparison is valid only if the hyperparameters are optimized 
correctly. Also, transformers are very sensitive to their 
hyperparameters. Designing the architecture of the 
transformer model for better performance is very complex and 
time-consuming. There have been other efforts using Bayesian, 
Grid Search, Blackbox, and metaheuristic optimization 
techniques for the optimization of the architecture of deep 
learning models. mCSA is a nature-inspired immunocomputing 
approach. The performance of the optimized transformer 
model has been compared with an unoptimized transformer 
model, genetic algorithm optimized transformer, Clonal 
Selection Algorithm optimized LSTM(CSA_LSTM), Clonal 
Selection Optimized Hybrid Convolutional Neural Network and 
LSTM network (CSA-CNN-LSTM, and Random Forest search 
algorithm. CSA optimized transformer model has consistently 
shown better performance in comparison to all other models for 
a variety of datasets such as IMDB-movie, SMS-Spam, and US 
Twitter Airline datasets. Here we also show that improper 
optimization of transformer hyperparameters can lead to 
degraded performance that cannot surpass even traditional ML 
approaches like random forest. We have also carried out 
ablation studies to understand the impact of various 
hyperparameters on the performance of our model. 
 
Keywords—deep learning, clonal selection algorithm, 

immunocomputing, genetic algorithm, hyperparameters 
optimization, nature inspired algorithm, topology optimization, 
transformers 

I. INTRODUCTION 

Transformer models are new neural network architectures 
that replace convolution neural networks and recurrent neural 
networks for machine learning [1]. They utilize a 
self-attention mechanism [2, 3] to weigh parts of input data 
higher or lower. While memory-based RNN architectures 
such as LSTM also gave state of art results after training, the 
very nature of RNNs slows them down because the input 
must be repeated for each calculation [1, 4]. Also, when the 
input data is very long, LSTMs tend to have difficulty 
learning the features in the data. This can be prevented using 
attention-based mechanisms [1, 4]. 

Whenever any deep neural network is designed, many 
parameters need to be optimized, such as the number of 
layers, window size, learning rates, size of the input layer, 
batch size, attention heads and many more depending upon 

the type of model. However, parameter selection also 
depends on the  

type of data the network is trained on. Usually, the network 
is either designed by experts or by algorithms. Popular 
algorithms include Bayesian optimization [5], gradient-based 
optimization, grid search [6], random search, and 
evolutionary algorithms which CSA and GA are part of. For a 
smaller number of hyperparameters, grid search is commonly 
used. In grid search, each grid holds a discrete value that 
needs to be to be searched. In random search, the 
hyperparameters are selected randomly by random sampling. 
Unfortunately, both search techniques do not take into 
consideration the results from previous iterations [7]. 
Bayesian optimization techniques take into consideration the 
results from previous iterations, but the Bayesian technique is 
hard to implement [7]. Because of all these constraints, 
nature-inspired optimization techniques provide a strong 
alternative to the above techniques.  

In statistical modeling, the ability to accurately capture and 
represent data dependencies is crucial. Datasets such as SMS 
Spam, IMDB Movie reviews, Twitter US Airline are 
commonly used to evaluate the performance of new models. 
In [8], a new method based on discrete hidden Markov model 
(HMM) was used to identify spam with high accuracy. 
Transformers excel in this domain by offering a robust 
framework for modeling complex interactions within data. 
Transformers have been used on a variety of applications like 
Natural Language Processing, Time Series Forecasting, 
Biological Data Analysis, etc.  

II. RELATED WORK 

Many techniques have been studied for hyperparameter 
optimization for many generic machine learning models. 
Grid search-based methods used to be very common. Grid 
search tries to create a search space for possible solutions to 
the optimization problem and then tries all the values in the 
grid. However, this causes the computational cost to increase 
exponentially as the number of hyperparameters increases. In 
Bayesian Optimization, the strategy is to fit a Gaussian 
process model which tries to capture beliefs about the 
performance of the model. This model is then used to 
estimate the future distribution of hyperparameters. Another 
technique used in grid search is the use of early stopping 
where a bad combination of hyperparameters is discarded 
early from the information provided by the Bayesian 
optimization technique. Early stopping thus saves 
computational time which could be lost while training 
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unpromising hyperparameters. However, the grid search 
method does not take into consideration the results of 
previous iterations. The use of nature-inspired algorithms for 
the optimization of transformer hyperparameters has not been 
investigated in the literature. In [9], the authors explored the 
use of auto-sizing techniques for optimizing the topology of 
transformers. Auto sizing techniques use regularization to 
yield the best parameters over a single training run. The main 
advantage of this approach is that training is only done once 
to optimize the parameters. In [10], the authors proposed 
meta-learning hyperparameter optimization algorithms 
where learning was done from prior experiments. There are 
also other hyperparameter optimization services such as 
Google Vizier [11], Amazon Syne Tune [12], and Microsoft 
Azure ML [13]. In [14], authors compared the prediction 
accuracy of mCSA with other nature-inspired optimization 
algorithms such as Particle Swarm Algorithm and Ant 
Colony Algorithm for Iris dataset. They found that mCSA 
had better performance. In [15], authors used CSA to 
optimize the topologies of LSTM networks. They evaluated 
their methods on IMDB, SMS-Spam and Twitter US Airline 
datasets.  

III. BACKGROUND 

A. The Transformer Model 

Transformers were introduced by Vaswani et al. and now 
have widely shown their effectiveness over LSTM networks. 
Transformers consist of a stack of encoder and decoder layers. 
Fig. 1 shows the simplified view of transformer models. 
In Fig. 1, each input passes through the stack of encoders first, 
then through the stack of decoders. The output from the last 
encoder is passed to each decoder block. The output from the 
last decoder is the final output. Each encoder and decoder 
block consists of multiple layers.  

Because transformers do not use recurrent neural networks, 
they are free from the sequential processing requirements of 
RNNs [1]. This makes them very fast because of 
parallelization. 

Fig. 2 shows each encoder and decoder block. Inside each 
encoder are self-attention layers and feed-forward layers 
while inside each decoder are self-attention layers [16], feed 
forward layers, and encoder-decoder attention layers. Fig. 3 
shows the overall picture of the transformer. Each layer has 
its own embedding layer and while all stacks are identical, 
they do not share weights. 

 

 
Fig. 1. Simplified overview of transformer model. 

 
Fig. 2. Internal Architecture of the encoder and decoder.  

 

B. Inside the Transformer 

1) Inputs 

These are the inputs to the network, such as sentences, 
words, or numbers. Since computers do not understand words, 
each of the words is converted into tokens from vocabulary. 

2) Input embedding 

Instead of using a single number representation for each 
input to feed into a network, input embedding converts each 
word into a vector. The vector can be of dimension 256, 512, 
etc. This action of embedding words into vectors only 
happens at the first encoder layer. In the case of a transformer 
having more than one encoder, each encoder receives input as 
the output from the previous encoder. Each word flows 
through its own path in the case of transformers, which makes 
transformers able to parallelize learning. While the 
multi-head attention layer has dependencies between the 
paths followed by each word, the feed-forward layer does not 
have any dependency. 

3) Positional encoding 

To account for the order of words, position encoders are 
needed because unlike LSTMS or similar RNNs, 
transformers process input simultaneously. For each 
embedding, positional encoding vectors are added which the 
models are expected to learn.  

4) Encoders 

The embedded input, which consists of a word vector that 
is positionally encoded, is passed to the first encoder. The 
subsequent encoders receive output from the previous 
encoders as input. Each transformer encoder consists of 
multiple layers to which input is fed step by step. 

a) While LSTMs [17] improve upon earlier architectures 
for supporting a very long input, the attention 
mechanism completely removes the limitations of fixed 
memory and even very long sequences can be accessed. 
Each attention mechanism consists of a query vector 
(Q), key vector (K), and scores. The main role of this 
layer is to enrich each embedding vector with the 
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context of the entire sentence so that the model has a 
better understanding of the entire sequence. 

 

 
Fig. 3. Architecture of transformer. 

 
b) Add and norm layer: Each Encoder has two Add and 

Norm layers. One of them comes after the multi-head 
attention layer while the other comes after the feed 
forward layer. The main purpose of the add layer is to 
form a residual connection so that input from both the 
previous layer and the layer before the previous layer is 
accounted for enriching the embedded vectors with 
additional information. The normalization layer is used 
to normalize the information to reduce the effect of 
covariant shift. Normalization is done for each 
embedded vector. 

c) Feed-forward layer: This is a fully connected 
feed-forward layer with two linear layers and a RELU 
layer for introducing non-linearity. In this layer, each 
embedding vector is processed independently. The 
output of this layer is given as: 

             (1) 
 

where W1 and W2 are the weights in the fully connected layer 
and b1 and b2 are the biases or offset for the wight values. 

5) Decoders 

Both the output of the last encoder in the stack and the 
previous outputs of the network are passed to the decoders. 
The layers inside the decoders are similar compared to those 
of encoders, apart from the masked multi-head attention 
layer. 

a) Masked multi-head attention layer [1]: While decoding, 
we need to make sure that future words are not included 
in the training. When writing a sentence, we base our 
next word only on the previous words that have been 
written, and not on the future words. Masked multi-head 
attention layer masks certain positions from the input. 
Usually, to do this, the attention score is set to a large 
negative number. 

b) Output Embedding: Since this is fed to the decoder, the 
input to the decoders is the previous output from 
encoders, and the target tokens are decoded up to the 
current decoding step. 

c) SoftMax: This last block of the transformer outputs the 
predicted next-token probabilities. This gives the 
predicted distribution of output vocabulary. 

6) Output embedding 

It is similar to the input embedding layer structurally but 
different in the role it plays. The embedded vector of the 
previous output and the embedded vector from the encoder 
are input together to the decoder to generate a new output 
sequence. 

C. Vanishing Gradient Problem 

As the neural network layers are made deeper, they 
become susceptible to the vanishing gradient problem [18]. 
Vanishing gradient problems are usually experienced while 
training networks with gradient-based learning or 
backpropagation-based learning. During training, the error 
gradients shrink as they are backpropagated and sometimes 
may become so small that the network completely stops 
learning. Many methods have been implemented to fix this 
issue while training neural networks. Some of the methods 
include proper weight initialization [19], batch normalization 
[20], the use of a different activation function [21], having 
residual connections [22], or for recurrent neural networks, 
the use of gated recurrent units (GRU) and LSTMs. But even 
LSTMs suffer from the problem when the dependency is very 
long.  

D. Clonal Selection Algorithm 

A clonal selection algorithm (CSA) [23] is a type of 
artificial immune system (AIS) algorithm that is inspired by 
the clonal selection theory of acquired immunity. The CSA 
works by iteratively generating a population of candidate 
solutions, called antibodies, and then selecting the best 
antibodies to reproduce and mutate. The process is repeated 
until a satisfactory solution is found. The CSA is a stochastic 
algorithm, which means that it does not always find the same 
solution to a problem. However, it has been shown to be 
effective in a variety of optimization problems, including 
function optimization, pattern recognition, and scheduling.  
In CSA, the problem to be optimized is encoded as an antigen. 
The antigen can be represented in binary or decimal format.  

This objective function would typically be the 
performance of the transformer model on a specific task or 
dataset. We have used Root Mean Squared Error (RMSE) as 
a measure to test the fitness of the chromosomes.  

 The parameters of the CSA such as the population size, 
mutation rate, and convergence criteria are configured for the 
optimization problem.  

Once the algorithm is configured, we run it on the 
optimization problem to search for the optimal values of the 
parameters of the Transformer model. The algorithm would 
iteratively evaluate the objective function and adjust the 
values of the parameters.  

Fig. 4 shows the flowchart of the CSA algorithm. The CSA 
starts by generating an initial population of antibodies 
(candidate solutions) randomly or using some heuristic 
method. Each antibody represents a potential solution to the 
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optimization problem at hand. The affinity of each antibody 
is calculated based on its fitness or objective function value. 
Affinity measures how well an antibody performs in terms of 
the optimization criterion. Higher affinity indicates better 
fitness. 

 
Fig. 4. Flowchart of the CSA algorithm. 

 
Antibodies with higher affinities are selected for clonal 

expansion, mimicking the selection of B-cells with more 
effective antibodies in the immune system. The selected 
antibodies are duplicated to create a larger population. To 
introduce diversity and explore the solution space, mutation 
or hypermutation operators are applied to the duplicated 
antibodies. These operators perturb the antibodies' values or 
positions to generate new candidate solutions. 

The affinity of the mutated antibodies is evaluated, and the 
antibodies with better fitness are selected for the next 
generation. This process emulates the selection of B-cells 
with improved antibodies during affinity maturation. The 
best-performing antibodies in terms of affinity are retained as 
memory cells, representing the immune system's long-term 
memory. These memory cells store high-quality solutions 
and contribute to the exploration and exploitation of the 
search space. 

Steps 3 to 6 are repeated for a specified number of 
iterations or until a termination criterion is met. Through 
repeated clonal expansion, mutation, and selection, the 
population of antibodies gradually converges toward better 
solutions. 

IV. PROPOSED METHOD 

A. Antigen Encoding 

Fig. 5 shows the encoding scheme of each hyperparameter 
during training for our experiment. This involves 
determining the hyperparameter space and the encoding 
scheme they take. There can be multiple numbers of 
hyperparameters and all of those should be represented by a 
1D vector of antigens. The range and value of each 
hyperparameter should also be implemented. We will use an 
integer encoding scheme for antigen encoding because 
hyperparameters are discrete and integer encoding schemes 
are intuitive and interpretable. For example, the number of 
layers or the number of units in a neural network layer are 

natural choices to encode as integers. This makes the 
resulting hyperparameter configurations more interpretable 
and easier to understand. 
 

 
Fig. 5. Encoding of hyperparameters as antigen. 

 
Table 1. Range of each hyperparameter for optimization 

Hyperparameter Range of Hyperparameter 
Embedding Size [1-512] 
No. of Heads [1-8] 
Size of hidden layer in FF n/w [1-2048] 
Batch Size [1-8] 
Optimizer type [Adam, SGD, RMSprop] 
No. of epochs to train [1-16] 

 

Table 1 shows the hyperparameters and their respective 
ranges chosen for this research. The ranges have been chosen 
empirically. 

B. Antibody Creation 

To simulate the CSA for the optimizing transformers, the 
antibodies are initially generated randomly, constrained by 
the range of their values. For example, the batch size can be 
between 16 and 64. The algorithm produces a set of X 
antibodies, each with a distinct sequence of 1D vectors. Fig. 6 
shows the created antibodies with random operation. 

 
Fig. 6. Initial creation of N antibodies. 

 
C. Mapping Immune System Terminologies to 
Hyperparameter Optimization Problem 

To develop a computational model based on CSA for the 
sentiment analysis dataset, we need to map the terminologies 
of the immune system to the structure of the sentiment 
analysis domain. Table 2 shows how CSA can be interpreted 
in terms of application to transformer hyperparameter 
optimization. 

D. Modified CSA 

We implemented a modified version of CSA (mCSA) for 
our cloning and mutation operation. In an unmodified CSA 
algorithm, the number of clones and mutations is fixed for all 
selected antibodies. In modified CSA, the number of clones is 
given by Eq. (2). 
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                                (2) 

where NC is the number of clones to be generated, xi is the 
affinity value of the ith antibody, xmin is the lowest affinity 
value from the list of antibodies and xmax is the highest 
affinity value from the list of antibodies. Ni is fixed to a 
higher bound of normalization. 

Each of the cloned antibodies goes through hypermutation. 
If the affinity of the antibody is low, the number of mutation 
points is set to high and vice versa. The mutation points for 
modified CSA are calculated under the formula given in Eq. 
(3). 
 

                              (3) 
 

where Mp is the number of mutation points, Ni is the higher 
bound of normalization and Nc is the number of clones. 
 

Table 2. Interpretating CSA Terminologies as a hyperparameter 
optimization problem 

Immune System Transformer model 
Antigen (Ag) Initial hyperparameters to be optimized 
Antibody (Ab) Potential solutions to hyperparameter problem 
Affinity Proximity between antigen and antibody 
Cloning Creation of multiple copies of the antibody 
Mutation Change in one or more hyperparameters of 

antibody 
Population Total number of antibodies 
Generation Number of Iteration 

 

E. Selection 

Selection is the process of selecting the best antigens from 
the pool of created antibodies. It is based on the fitness value 
evaluated during the affinity creation process. These 
antibodies are considered to be the best solutions as they are 
more effective in dealing with the given antigen. The CSA 
aims to improve the population of antibodies by selecting and 
reproducing those with higher affinity, similar to how the 
immune system generates more effective antibodies in 
response to antigens. 

V. EXPERIMENT SETUP 

This section describes the implementation details of 
carrying out this research. It gives details of the datasets used, 
steps involved in data processing, and implementation, and 
the various performance metrics to compare the results. Apart 
from the already existing techniques such as Blackbox, 
Bayesian, grid search, and random optimization as mentioned 
earlier to correctly optimize the hyperparameters of the 
transformer, we hereby propose a biologically inspired, 
mCSA algorithm to optimize the hyperparameters of 
transformers.  

A. Datasets 

We used three datasets for comparing the performance, the 
IMDB movie dataset, the SMS spam dataset, and the Twitter 
US Airline dataset. We included database mixes such that we 
can estimate model performance in a dynamic environment. 
The SMS spam dataset is unbalanced with comparatively few 
number of data. The IMDB consists of movie reviews as a 
binary sentiment, which is whether the movie was favorable 
or unfavorable for the audience. It consists of a total of 50k 
movie reviews. The SMS spam dataset consists of 

approximately 5.5k SMS data, each labeled as whether the 
data was spam or not spam (ham). The Twitter US Airline 
dataset consists of approximately 11k sentiment data. 

We then benchmarked the results by comparing them to 
the GA-optimized Transformer model, the existing general 
transformer model without optimization (the default 
transformer), LSTM, and various other ML models.  

B. Dataset Preparation 

Since our dataset mixture consisted of small, large, and 
unbalanced datasets, we used K-fold cross validation in order 
to robustly predict the performance of the model, and to 
better assess the generalizability to unseen data. K-fold 
cross-validation was used with the number of folds (K) set to 
10 and the number of repetitions set to 3. Since the 
transformer works with tokens, tokenization was carried out 
for every word and then embedded as real-valued vectors. 

Since computers cannot understand words and sentences 
directly, they need to be converted into a sequence of numeric 
vectors. Furthermore, sentences in the dataset can be 
inconsistent and can have missing values, for example, an 
empty row in the dataset or invalid characters. Hence, to 
transform the dataset into computer-readable numeric vector 
sequence, first, the data is cleaned up and then encoding 
techniques like BagOfWord, TF-IDF, and Word2Vec are 
used [24, 25]. The following steps were used for data 
preprocessing. 

1) Data Filtration: We need to make sure that invalid 
characters and empty tables are removed before 
processing the data. 

2) Data shuffle: Shuffling data randomly ensures that the 
training dataset does not lean heavily to one side or the 
other during the data-gathering process. Usually, train 
and test data splits are created by shuffling randomly. 

3) Train-test data split: Train and test datasets are separated 
to ensure that the model is not remembering the dataset. 
Very complex models can remember the dataset features 
and thus will have a very high training accuracy but have 
a degraded performance for the test dataset. 

4) Removing irrelevant words: We need to remove any 
words or sentences that contain invalid characters or 
numbers. 

5) Tokenization: Tokenization is the process of cutting data 
into parts so that they can be represented as vectors. This 
process also ensures that repeated words as represented 
as the same vector. 

6) Padding/truncating: Inputs to the network should be of 
the same size. In the dataset, some reviews might contain 
short sentences while some might contain longer 
sentences. Truncating and padding operations ensure 
that they are of the same length, either by removing some 
portions of the sentences or by adding a filler word, 
respectively. 

7) Word embedding: The tokenized data is then encoded as 
vectors known as word embedding. This is usually done 
to increase the dimension of the dataset so that complex 
representations can be learned easily.  

C. Performance Metrics 

For comparing the performance of various deep and 
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shallow machine learning models, the selection of proper 
metrics plays a crucial role. Various metrics can be used in 
evaluating machine learning model performance. For 
regression, metrics such as mean square errors (MSE), and 
root mean squared error (RMSE) are used. In the case of 
classification metrics, accuracy, confusion matrix, precision, 
recall, F1-score, Area Under the ROC Curve (AUC-ROC) or 
Area Under the Precision-Recall Curve (AUPR) are used 
[26]. AUC measures the ability of the classifier to distinguish 
between classes. It plots the True Positive Rate (TPR) against 
the False Positive Rate (FPR) at various threshold settings. It 
is useful when the class distribution is relatively balanced. 
AUPR measures the trade-off between precision and recall 
for different thresholds. AUPR is particularly useful when 
dealing with imbalanced datasets where the positive class is 
rare. Since this research is a classification problem related to 
sentiment analysis as positive or negative, the performance 
metric of the confusion matrix, AUC and AUPR were chosen. 
An average of performance metrics such as accuracy, 
precision, recall, and F1-score are computed from the 
confusion matrix across all the folds and number of 
repetitions.  

Before we delve into confusion matrix parameters, we 
must discuss true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN). Let us consider the 
case of the SMS-spam dataset, where all spam sentences are 
labeled as positive (1), and all ham sentences are labeled as 
negative (0). 

1) True positive (TP): When the prediction of the model is 
the same as that of the positive ground truth, the result is 
called to be true positive. For example, the model 
correctly predicts that the given sentence is spam. 

2) True Negative (TN): When the prediction of the model is 
correct for the negative ground truth, it is known as true 
negative. For example, if the model correctly predicts 
that the given sentence is not spam. 

3) False positive (FP): When the prediction of the model is 
incorrect for the positive ground truth, the result is called 
false positive. For example, if the model incorrectly 
predicts that the given sentence is spam. 

4) False negative (FN): When the prediction of the model is 
incorrect for the negative ground truth, the result is false 
negative. For example, if the model incorrectly predicts 
that the given sentence is not spam. 

The other performance metrics such as Accuracy, 
Precision Recall, and F1 Score are calculated from the 
confusion matrices.  

1) Accuracy 

Accuracy shows how many of the classifications were 
correctly classified. Accuracy is given by: 

                                   (4) 

2) Precision 
When the class distribution is imbalanced, precision can be 

used as a good classification metric indicator. Precision is 
calculated as the ratio between the total number of positive 
examples correctly classified to the total number of examples 
classified correctly or incorrectly as positive.  

Precision =                                   (5) 
 

3) Recall 
It can be defined as the ratio between the number of 

correctly classified positive examples to the total number of 
positive samples. In other words, the recall metric measures 
the ability of the model to recognize positive examples. The 
higher the recall, the more positive examples are recognized. 

 

Recall=                                   (6) 
 

4) F1 score 

It helps to have a measurement that represents both recall 
and precision. It is calculated as the harmonic mean of 
precision and recall. 

 

 F1-score= 2×                             (7) 
 

D. Experiment Setup 

This research project was implemented using Python 3.7 
with high-level neural networks API called Keras library 
running on top of Tensor Flow [27]. The hardware platform 
used was a GPU computer on AMD Ryzen 5800H processor 
and RTX 3070 GPU with 8GB of GPU memory and 32GB of 
RAM.  

The classification process using the transformer is 
illustrated in Fig. 9. First, the hyperparameters are set for the 
transformer using default initialization parameters and 
training is carried out for a given dataset. Then RMSE is 
calculated from the classification operation from the 
transformer and used as fitness criteria for the mCSA. The 
mCSA algorithm outputs a new set of parameters to be used 
for training by selecting new parents and performing 
mutation operations. The training is now done using the 
optimal hyperparameters discovered by the mCSA. The 
process continues until the fitness criteria are reached. Lastly, 
a prediction is made on test data, and the performance is 
evaluated based on the metrics described above.  

The proposed CSA-Transformer was benchmarked using 
the IMDB dataset. Table 3 shows the features of IMDB, SMS 
SPAM, and Twitter US Airline datasets that have been used 
in this experiment. 

 
Table 3. Dataset statistics 

 IMDB SMS Spam Twitter USAirline 
Input Length 500 100 200 
Vocabulary length 181,556 8024 13,234 
Classes 2 2 2 
K-Fold Cross 
Validation and 
Repetitions 

K=10 
R=3 

K=10 
R=3 

K=10 
R=3 

 

E. Results 

We have compared the performance of the optimized 
transformer using mCSA and GA with unoptimized 
transformer model. The hyperparameters of the unoptimized 
transformer were chosen as the most sensible default value. 
We further compared the performance of the optimized 
transformer with optimized LSTM using the Clonal Selection 
Algorithm and CSA_CNN_LSTM, which is the optimized 
architecture of a hybrid Convolution Neural Network and 
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LSTM using CSA [28]. 

1) Performance Comparison for the IMDB dataset 

Table 4 shows the comparison of accuracies of the various 
ML models for the IMDB validation data set. It shows that 
compared to the unoptimized transformer; the optimized 
transformer has higher accuracy. Our unoptimized 
transformer consisted of the initialization values as shown in 
Table V. The optimized model exhibits superior performance 
over other algorithms such as CSA-LSTM, 
CSA_CNN_LSTM, and Random Forest. It also shows that 
the performance metrics of the unoptimized transformer are 
subpar compared to optimized LSTM networks. However, 
optimization of the hyperparameters yields a vastly different 
conclusion. When optimized, transformers have shown 
superior performance. 

 
Table 4. Performance comparison of mCSA Transformer with other 

techniques for IMDB validation Dataset 
Model Accuracy precision recall F1-score 

mCSA Optimized 
Transformer 

90.48% 93.15% 91.47% 92.30% 

GA optimized 
Transformer 

89.72% 92.15% 87.88% 89.96% 

Transformer 
(unoptimized) 

88.56% 87.34% 90.06% 88.67% 

CSA-LSTM [27] 89.52% 88.58% 90.77% 89.66% 
CSA-CNN-LSTM 
[27] 

89.88% 89.37% 90.05% 89.71% 

Random Forest [27] 54.66% 54.38% 52.34% 53.34% 

 
Table 5 shows the new hyperparameters found by our 

mCSA algorithm for the IMDB dataset. The number of 
epochs and the type of optimizer have not changed from the 
initial unoptimized value. It means that for this IMDB dataset, 
training for 2 epochs yielded the best result without 
overfitting. 

Figs. 7 and 8 show the average of AUC and AUPR curves 
for the IMDB dataset across all folds. It shows that our 
classifier has a very good discriminatory power. 

 
Table 5. the final optimized hyperparameters discovered by our proposed 

model for the IMDB dataset 
Hyperparameter optimized 

value 
initialization value 

(unoptimized) 
#Epochs 2 2 
#Heads 2 8 
hidden layer size in 
feed-forward layer 

39 32 

embedding size for each token 16 32 
optimizer ADAM ADAM 

 

 
Fig. 7. Average AUC Curve for IMDB Dataset across all folds. 

 
Fig. 8. Average AUPR Curve for IMDB Dataset across all folds. 

 

2) Performance Comparison for SMS SPAM dataset 

In the SMS spam dataset, there is more ham compared to 
spam, thus making it unbalanced. Training deep neural 
networks for these kinds of datasets is difficult. Making small 
changes to the hyperparameters can have a drastic effect on 
the performance. 

This once again strengthens the need for a proper 
hyperparameter optimization technique. Note that the 
hyperparameters were optimized based on the validation 
dataset. Table 6 shows the comparison of accuracies of the 
various ML models for the SMS spam validation data set. In 
this dataset too, our model performed better than the 
unoptimized transformer and other NIA-optimized LSTM 
models. In all the four performance metric domains (accuracy, 
precision, recall and F1-score), the mCSA optimized 
transformer performed better. Figs. 9 and 10 show the AUC 
and AUPR curve for the SMS Spam dataset during the fourth 
fold of K-fold operation. Given that the dataset is imbalanced, 
the AUPR curve is vital for assessing the performance of our 
model. Our AUPR score for this dataset is 0.98, which is very 
good. 
 

Table 6. Performance comparison of mCSA Transformer with other 
techniques for SMS spam validation dataset 

Model Accuracy precision recall F1-score 
mCSA Optimized 
Transformer 

99.25% 99.75% 99.55% 99.64% 

GA optimized 
Transformer 

98.87% 99.65% 99.15% 99.40% 

Transformer 
(unoptimized) 

98.55% 99.25% 98.77% 99.01% 

CSA-LSTM [27] 98.48% 97.05% 91.03% 93.95% 
CSA-CNN-LSTM 
[27] 

98.74% 93.33% 96.55% 94.91% 

Random Forest [27] 92.64% 78.89% 59.31% 67.71% 

 

 
Fig. 9. AUC Curve for SMS-SPAM Dataset for the 4th fold. 
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Fig. 10. AUPR Curve for SMS-SPAM Dataset for the 4th fold. 

 
Table 7 shows the final topology found for the optimized 

transformer model for the SMS spam dataset. While the type 
of optimizer used in training remained the same, our research 
found better values for the other hyperparameters. 

 
Table 7. The final optimized hyperparameters discovered by our proposed 

model for the spam dataset 
Hyperparameter optimized 

value 
initialization value 

(unoptimized) 
#Epochs 4 2 
#Heads 2 8 
hidden layer size in 
feed-forward layer 

18 32 

embedding size for each 
token 

58 32 

optimizer ADAM ADAM 

 

3) Performance Comparison for Twitter US Airline 
dataset 

Table 8 shows the comparison of accuracies of the various 
ML models for the Twitter US Airline data set. It shows that 
compared to the other optimization techniques, the 
mCSA-optimized transformer has higher performance in all 
of the metrics. Our unoptimized transformer consisted of the 
initialization values as shown in table IX. The optimized 
model exhibits superior performance over other algorithms 

such as CSA-LSTM, CSA_CNN_LSTM, and Random 
Forest. It also shows that the performance metrics of the 
unoptimized transformer are subpar compared to optimized 
LSTM networks. However, optimization of the 
hyperparameters yields a vastly different conclusion. When 
optimized, transformers have shown superior performance. 

 
Table 8. Performance comparison of mCSA Transformer with other 

techniques for Twitter US airline dataset 
Model Accuracy precision recall F1-score 

mCSA Optimized 
Transformer 

94.56% 95.67% 97.52% 96.58% 

GA optimized 
Transformer 

92.84% 94.67% 96.64% 95.64% 

Transformer 
(unoptimized) 

90.48% 87.58% 88.25% 87.91% 

CSA-LSTM [27] 92.25% 94.06% 95.94% 94.99% 
CSA-CNN-LSTM 
[27] 

92.77% 94.50% 95.88% 95.19% 

Random Forest 
[27] 

83.32% 83.85% 89.05% 90.40% 

 
Table 9. The final optimized hyperparameters discovered by our proposed 

model for the Twitter US Airline Dataset 
Hyperparameter optimized 

value 
initialization value 

(unoptimized) 
#Epochs 2 2 
#Heads 6 8 
hidden layer size in 
feed-forward layer 

48 32 

embedding size for each token 24 32 
optimizer ADAM ADAM 

 
Table 9 shows the new hyperparameters found by our 

mCSA algorithm for the US Twitter Airline dataset. The 
number of epochs has not changed from the initial 
unoptimized value. It means that for this Twitter US Airline 
dataset, training for 2 epochs yielded the best result without 
overfitting. 

Figs. 12 and 13 show the AUC and AUPR curve for the US 
Twitter Airline dataset. Since this is a multiclass 
classification, the AUC and AUPR curves are plotted for 
each class individually. Classes 0, 1 and 2 refer to positive, 
neutral, and negative classification respectively. 

 

 
Fig. 11. Optimization process of transformers using CSA. 

Dataset 

Transformer Model CSA Operation 
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Table 10. Summary of accuracy comparison of mCSA transformer with other techniques for all datasets 
Dataset/Model MCSA-Transformer GA-Transformer Unoptimized 

Transformer 
CSA-LSTM CSA-CNN-LSTM Random 

Forest 
IMDB 90.48% 89.72% 88.56% 89.52% 89.88% 54.66% 
SMS Spam 99.25% 98.87% 98.55% 98.48% 98.74% 92.64% 
US Twitter 
Airline 

94.56% 92.84% 90.48% 92.25% 92.77% 83.32% 

 

 
Fig. 12. AUC curve for US Twitter airline dataset. 

VI. ABLATION STUDY 

To evaluate the role of different hyperparameters in 
improving the accuracy of the transformer model, we 
conducted ablation study by varying the optimal 
hyperparameter values for each case, keeping everything else 
constant. Fig. 14 shows our ablation study result. It is seen 
that the number of epochs, the size of hidden layer in feed 
forward layer, and the type of optimizer used impact the 
performance of our model significantly, compared to the 
number of heads and embedding size.  

 

 
Fig. 13. AUPR curve for US Twitter airline dataset. 

VII. CONCLUSION 

Table X shows the comparative analysis of model 
accuracies among various other optimization algorithms and 
models that have been compared in this research. It is shown 
that MCSA-optimized transformer has the best accuracy. The 
performance of the original transformer has been highly 
improved by optimizing its architecture using evolutionary 
approaches to evolve its hyperparameters. Bio-inspired 
Modified Clonal Selection Algorithm (mCSA) was used for 
evolving the hyperparameters of transformers. In this paper, 
the optimized transformer architecture manifested an 

increase in the prediction accuracy to 90.48% from 88.56% 
for the IMDB dataset, an improvement to 99.25% from 
98.55% for the SMS spam dataset, and an improvement to 
94.56% from 90.48% for the US Twitter Airline dataset, 
using 10-fold cross-validation.  
 

 
Fig. 14. Ablation study of our proposed model. 

 

The effectiveness and utility of advanced machine learning 
models, such as the CSA-Transformer, extends beyond 
traditional data analysis and predictive tasks. First, accurately 
identifying spam messages can help reduce processing load, 
improve network efficiency, save storage space, and even 
help extend life of electronic components. From a 
sustainability perspective, properly identifying whether a 
message is spam or ham is analogous to identifying relevant 
and irrelevant energy data. In terms of energy optimization, 
this relates to accurately predicting energy usage and 
identifying potential areas of improvement. Ecologically 
disturbed locales, such as areas affected by deforestation, 
pollution, or climate change, require innovative and efficient 
energy management solutions. The proposed Transformer 
model can be used in energy applications such as predictive 
maintenance, renewable energy management, and adaptive 
energy policies. 

A novel framework using mCSA has been proposed that 
simplifies the selection of various hyperparameters of 
transformers, including but not limited to the number of 
epochs to train, batch size, number of embeddings, number of 
heads, percentage of validation data, etc. In addition, using 
mCSA also saves time in comparison to other black box or 
random methods since mCSA is based on the survival of the 
fittest paradigm. In the future, other nature-inspired 
algorithms such as various variants of Swarm intelligence 
such as Grey Wolf Optimization or Cuckoo Search 
Algorithms can be used for optimizing the hyperparameters 
of transformers. 
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