

Optimizing the Topology of Transformer Networks Using
Modified Clonal Selection Algorithm: A Bio-Inspired

Immunocomputing Approach

Ashish Kharel and Devinder Kaur

Electrical Engineering and Computer Science Department, University of Toledo, OH 43607 USA
Email: akharel@rockets.utoledo.edu (A.K.); dkaur@rockets.utoledo.edu (D.K.)

*Corresponding author
Manuscript received April 7, 2024; revised June 18, 2024; accepted June 28, 2024; published November 26, 2024

Abstract—This paper proposes the optimization of the

Transformer model for analysis of sequential data using a
modified clonal selection algorithm (mCSA). Transformers
demonstrate better performance over Long Short-Term
Memory (LSTM) deep networks when the input sequence is
exceptionally long. They are good at capturing long-term
dependencies in comparison to LSTM networks. However, this
comparison is valid only if the hyperparameters are optimized
correctly. Also, transformers are very sensitive to their
hyperparameters. Designing the architecture of the
transformer model for better performance is very complex and
time-consuming. There have been other efforts using Bayesian,
Grid Search, Blackbox, and metaheuristic optimization
techniques for the optimization of the architecture of deep
learning models. mCSA is a nature-inspired immunocomputing
approach. The performance of the optimized transformer
model has been compared with an unoptimized transformer
model, genetic algorithm optimized transformer, Clonal
Selection Algorithm optimized LSTM(CSA_LSTM), Clonal
Selection Optimized Hybrid Convolutional Neural Network and
LSTM network (CSA-CNN-LSTM, and Random Forest search
algorithm. CSA optimized transformer model has consistently
shown better performance in comparison to all other models for
a variety of datasets such as IMDB-movie, SMS-Spam, and US
Twitter Airline datasets. Here we also show that improper
optimization of transformer hyperparameters can lead to
degraded performance that cannot surpass even traditional ML
approaches like random forest. We have also carried out
ablation studies to understand the impact of various
hyperparameters on the performance of our model.

Keywords—deep learning, clonal selection algorithm,

immunocomputing, genetic algorithm, hyperparameters
optimization, nature inspired algorithm, topology optimization,
transformers

I. INTRODUCTION

Transformer models are new neural network architectures
that replace convolution neural networks and recurrent neural
networks for machine learning [1]. They utilize a
self-attention mechanism [2, 3] to weigh parts of input data
higher or lower. While memory-based RNN architectures
such as LSTM also gave state of art results after training, the
very nature of RNNs slows them down because the input
must be repeated for each calculation [1, 4]. Also, when the
input data is very long, LSTMs tend to have difficulty
learning the features in the data. This can be prevented using
attention-based mechanisms [1, 4].

Whenever any deep neural network is designed, many
parameters need to be optimized, such as the number of
layers, window size, learning rates, size of the input layer,
batch size, attention heads and many more depending upon

the type of model. However, parameter selection also
depends on the

type of data the network is trained on. Usually, the network
is either designed by experts or by algorithms. Popular
algorithms include Bayesian optimization [5], gradient-based
optimization, grid search [6], random search, and
evolutionary algorithms which CSA and GA are part of. For a
smaller number of hyperparameters, grid search is commonly
used. In grid search, each grid holds a discrete value that
needs to be to be searched. In random search, the
hyperparameters are selected randomly by random sampling.
Unfortunately, both search techniques do not take into
consideration the results from previous iterations [7].
Bayesian optimization techniques take into consideration the
results from previous iterations, but the Bayesian technique is
hard to implement [7]. Because of all these constraints,
nature-inspired optimization techniques provide a strong
alternative to the above techniques.

In statistical modeling, the ability to accurately capture and
represent data dependencies is crucial. Datasets such as SMS
Spam, IMDB Movie reviews, Twitter US Airline are
commonly used to evaluate the performance of new models.
In [8], a new method based on discrete hidden Markov model
(HMM) was used to identify spam with high accuracy.
Transformers excel in this domain by offering a robust
framework for modeling complex interactions within data.
Transformers have been used on a variety of applications like
Natural Language Processing, Time Series Forecasting,
Biological Data Analysis, etc.

II. RELATED WORK

Many techniques have been studied for hyperparameter
optimization for many generic machine learning models.
Grid search-based methods used to be very common. Grid
search tries to create a search space for possible solutions to
the optimization problem and then tries all the values in the
grid. However, this causes the computational cost to increase
exponentially as the number of hyperparameters increases. In
Bayesian Optimization, the strategy is to fit a Gaussian
process model which tries to capture beliefs about the
performance of the model. This model is then used to
estimate the future distribution of hyperparameters. Another
technique used in grid search is the use of early stopping
where a bad combination of hyperparameters is discarded
early from the information provided by the Bayesian
optimization technique. Early stopping thus saves
computational time which could be lost while training

International Journal of Machine Learning, Vol. 14, No. 4, 2024

119doi: 10.18178/ijml.2024.14.4.1168

unpromising hyperparameters. However, the grid search
method does not take into consideration the results of
previous iterations. The use of nature-inspired algorithms for
the optimization of transformer hyperparameters has not been
investigated in the literature. In [9], the authors explored the
use of auto-sizing techniques for optimizing the topology of
transformers. Auto sizing techniques use regularization to
yield the best parameters over a single training run. The main
advantage of this approach is that training is only done once
to optimize the parameters. In [10], the authors proposed
meta-learning hyperparameter optimization algorithms
where learning was done from prior experiments. There are
also other hyperparameter optimization services such as
Google Vizier [11], Amazon Syne Tune [12], and Microsoft
Azure ML [13]. In [14], authors compared the prediction
accuracy of mCSA with other nature-inspired optimization
algorithms such as Particle Swarm Algorithm and Ant
Colony Algorithm for Iris dataset. They found that mCSA
had better performance. In [15], authors used CSA to
optimize the topologies of LSTM networks. They evaluated
their methods on IMDB, SMS-Spam and Twitter US Airline
datasets.

III. BACKGROUND

A. The Transformer Model

Transformers were introduced by Vaswani et al. and now
have widely shown their effectiveness over LSTM networks.
Transformers consist of a stack of encoder and decoder layers.
Fig. 1 shows the simplified view of transformer models.
In Fig. 1, each input passes through the stack of encoders first,
then through the stack of decoders. The output from the last
encoder is passed to each decoder block. The output from the
last decoder is the final output. Each encoder and decoder
block consists of multiple layers.

Because transformers do not use recurrent neural networks,
they are free from the sequential processing requirements of
RNNs [1]. This makes them very fast because of
parallelization.

Fig. 2 shows each encoder and decoder block. Inside each
encoder are self-attention layers and feed-forward layers
while inside each decoder are self-attention layers [16], feed
forward layers, and encoder-decoder attention layers. Fig. 3
shows the overall picture of the transformer. Each layer has
its own embedding layer and while all stacks are identical,
they do not share weights.

Fig. 1. Simplified overview of transformer model.

Fig. 2. Internal Architecture of the encoder and decoder.

B. Inside the Transformer

1) Inputs

These are the inputs to the network, such as sentences,
words, or numbers. Since computers do not understand words,
each of the words is converted into tokens from vocabulary.

2) Input embedding

Instead of using a single number representation for each
input to feed into a network, input embedding converts each
word into a vector. The vector can be of dimension 256, 512,
etc. This action of embedding words into vectors only
happens at the first encoder layer. In the case of a transformer
having more than one encoder, each encoder receives input as
the output from the previous encoder. Each word flows
through its own path in the case of transformers, which makes
transformers able to parallelize learning. While the
multi-head attention layer has dependencies between the
paths followed by each word, the feed-forward layer does not
have any dependency.

3) Positional encoding

To account for the order of words, position encoders are
needed because unlike LSTMS or similar RNNs,
transformers process input simultaneously. For each
embedding, positional encoding vectors are added which the
models are expected to learn.

4) Encoders

The embedded input, which consists of a word vector that
is positionally encoded, is passed to the first encoder. The
subsequent encoders receive output from the previous
encoders as input. Each transformer encoder consists of
multiple layers to which input is fed step by step.

a) While LSTMs [17] improve upon earlier architectures
for supporting a very long input, the attention
mechanism completely removes the limitations of fixed
memory and even very long sequences can be accessed.
Each attention mechanism consists of a query vector
(Q), key vector (K), and scores. The main role of this
layer is to enrich each embedding vector with the

International Journal of Machine Learning, Vol. 14, No. 4, 2024

120

context of the entire sentence so that the model has a
better understanding of the entire sequence.

Fig. 3. Architecture of transformer.

b) Add and norm layer: Each Encoder has two Add and

Norm layers. One of them comes after the multi-head
attention layer while the other comes after the feed
forward layer. The main purpose of the add layer is to
form a residual connection so that input from both the
previous layer and the layer before the previous layer is
accounted for enriching the embedded vectors with
additional information. The normalization layer is used
to normalize the information to reduce the effect of
covariant shift. Normalization is done for each
embedded vector.

c) Feed-forward layer: This is a fully connected
feed-forward layer with two linear layers and a RELU
layer for introducing non-linearity. In this layer, each
embedding vector is processed independently. The
output of this layer is given as:

 (1)

where W1 and W2 are the weights in the fully connected layer
and b1 and b2 are the biases or offset for the wight values.

5) Decoders

Both the output of the last encoder in the stack and the
previous outputs of the network are passed to the decoders.
The layers inside the decoders are similar compared to those
of encoders, apart from the masked multi-head attention
layer.

a) Masked multi-head attention layer [1]: While decoding,
we need to make sure that future words are not included
in the training. When writing a sentence, we base our
next word only on the previous words that have been
written, and not on the future words. Masked multi-head
attention layer masks certain positions from the input.
Usually, to do this, the attention score is set to a large
negative number.

b) Output Embedding: Since this is fed to the decoder, the
input to the decoders is the previous output from
encoders, and the target tokens are decoded up to the
current decoding step.

c) SoftMax: This last block of the transformer outputs the
predicted next-token probabilities. This gives the
predicted distribution of output vocabulary.

6) Output embedding

It is similar to the input embedding layer structurally but
different in the role it plays. The embedded vector of the
previous output and the embedded vector from the encoder
are input together to the decoder to generate a new output
sequence.

C. Vanishing Gradient Problem

As the neural network layers are made deeper, they
become susceptible to the vanishing gradient problem [18].
Vanishing gradient problems are usually experienced while
training networks with gradient-based learning or
backpropagation-based learning. During training, the error
gradients shrink as they are backpropagated and sometimes
may become so small that the network completely stops
learning. Many methods have been implemented to fix this
issue while training neural networks. Some of the methods
include proper weight initialization [19], batch normalization
[20], the use of a different activation function [21], having
residual connections [22], or for recurrent neural networks,
the use of gated recurrent units (GRU) and LSTMs. But even
LSTMs suffer from the problem when the dependency is very
long.

D. Clonal Selection Algorithm

A clonal selection algorithm (CSA) [23] is a type of
artificial immune system (AIS) algorithm that is inspired by
the clonal selection theory of acquired immunity. The CSA
works by iteratively generating a population of candidate
solutions, called antibodies, and then selecting the best
antibodies to reproduce and mutate. The process is repeated
until a satisfactory solution is found. The CSA is a stochastic
algorithm, which means that it does not always find the same
solution to a problem. However, it has been shown to be
effective in a variety of optimization problems, including
function optimization, pattern recognition, and scheduling.
In CSA, the problem to be optimized is encoded as an antigen.
The antigen can be represented in binary or decimal format.

This objective function would typically be the
performance of the transformer model on a specific task or
dataset. We have used Root Mean Squared Error (RMSE) as
a measure to test the fitness of the chromosomes.

 The parameters of the CSA such as the population size,
mutation rate, and convergence criteria are configured for the
optimization problem.

Once the algorithm is configured, we run it on the
optimization problem to search for the optimal values of the
parameters of the Transformer model. The algorithm would
iteratively evaluate the objective function and adjust the
values of the parameters.

Fig. 4 shows the flowchart of the CSA algorithm. The CSA
starts by generating an initial population of antibodies
(candidate solutions) randomly or using some heuristic
method. Each antibody represents a potential solution to the

International Journal of Machine Learning, Vol. 14, No. 4, 2024

121

optimization problem at hand. The affinity of each antibody
is calculated based on its fitness or objective function value.
Affinity measures how well an antibody performs in terms of
the optimization criterion. Higher affinity indicates better
fitness.

Fig. 4. Flowchart of the CSA algorithm.

Antibodies with higher affinities are selected for clonal

expansion, mimicking the selection of B-cells with more
effective antibodies in the immune system. The selected
antibodies are duplicated to create a larger population. To
introduce diversity and explore the solution space, mutation
or hypermutation operators are applied to the duplicated
antibodies. These operators perturb the antibodies' values or
positions to generate new candidate solutions.

The affinity of the mutated antibodies is evaluated, and the
antibodies with better fitness are selected for the next
generation. This process emulates the selection of B-cells
with improved antibodies during affinity maturation. The
best-performing antibodies in terms of affinity are retained as
memory cells, representing the immune system's long-term
memory. These memory cells store high-quality solutions
and contribute to the exploration and exploitation of the
search space.

Steps 3 to 6 are repeated for a specified number of
iterations or until a termination criterion is met. Through
repeated clonal expansion, mutation, and selection, the
population of antibodies gradually converges toward better
solutions.

IV. PROPOSED METHOD

A. Antigen Encoding

Fig. 5 shows the encoding scheme of each hyperparameter
during training for our experiment. This involves
determining the hyperparameter space and the encoding
scheme they take. There can be multiple numbers of
hyperparameters and all of those should be represented by a
1D vector of antigens. The range and value of each
hyperparameter should also be implemented. We will use an
integer encoding scheme for antigen encoding because
hyperparameters are discrete and integer encoding schemes
are intuitive and interpretable. For example, the number of
layers or the number of units in a neural network layer are

natural choices to encode as integers. This makes the
resulting hyperparameter configurations more interpretable
and easier to understand.

Fig. 5. Encoding of hyperparameters as antigen.

Table 1. Range of each hyperparameter for optimization

Hyperparameter Range of Hyperparameter
Embedding Size [1-512]
No. of Heads [1-8]
Size of hidden layer in FF n/w [1-2048]
Batch Size [1-8]
Optimizer type [Adam, SGD, RMSprop]
No. of epochs to train [1-16]

Table 1 shows the hyperparameters and their respective
ranges chosen for this research. The ranges have been chosen
empirically.

B. Antibody Creation

To simulate the CSA for the optimizing transformers, the
antibodies are initially generated randomly, constrained by
the range of their values. For example, the batch size can be
between 16 and 64. The algorithm produces a set of X
antibodies, each with a distinct sequence of 1D vectors. Fig. 6
shows the created antibodies with random operation.

Fig. 6. Initial creation of N antibodies.

C. Mapping Immune System Terminologies to
Hyperparameter Optimization Problem

To develop a computational model based on CSA for the
sentiment analysis dataset, we need to map the terminologies
of the immune system to the structure of the sentiment
analysis domain. Table 2 shows how CSA can be interpreted
in terms of application to transformer hyperparameter
optimization.

D. Modified CSA

We implemented a modified version of CSA (mCSA) for
our cloning and mutation operation. In an unmodified CSA
algorithm, the number of clones and mutations is fixed for all
selected antibodies. In modified CSA, the number of clones is
given by Eq. (2).

International Journal of Machine Learning, Vol. 14, No. 4, 2024

122

 (2)

where NC is the number of clones to be generated, xi is the
affinity value of the ith antibody, xmin is the lowest affinity
value from the list of antibodies and xmax is the highest
affinity value from the list of antibodies. Ni is fixed to a
higher bound of normalization.

Each of the cloned antibodies goes through hypermutation.
If the affinity of the antibody is low, the number of mutation
points is set to high and vice versa. The mutation points for
modified CSA are calculated under the formula given in Eq.
(3).

 (3)

where Mp is the number of mutation points, Ni is the higher
bound of normalization and Nc is the number of clones.

Table 2. Interpretating CSA Terminologies as a hyperparameter
optimization problem

Immune System Transformer model
Antigen (Ag) Initial hyperparameters to be optimized
Antibody (Ab) Potential solutions to hyperparameter problem
Affinity Proximity between antigen and antibody
Cloning Creation of multiple copies of the antibody
Mutation Change in one or more hyperparameters of

antibody
Population Total number of antibodies
Generation Number of Iteration

E. Selection

Selection is the process of selecting the best antigens from
the pool of created antibodies. It is based on the fitness value
evaluated during the affinity creation process. These
antibodies are considered to be the best solutions as they are
more effective in dealing with the given antigen. The CSA
aims to improve the population of antibodies by selecting and
reproducing those with higher affinity, similar to how the
immune system generates more effective antibodies in
response to antigens.

V. EXPERIMENT SETUP

This section describes the implementation details of
carrying out this research. It gives details of the datasets used,
steps involved in data processing, and implementation, and
the various performance metrics to compare the results. Apart
from the already existing techniques such as Blackbox,
Bayesian, grid search, and random optimization as mentioned
earlier to correctly optimize the hyperparameters of the
transformer, we hereby propose a biologically inspired,
mCSA algorithm to optimize the hyperparameters of
transformers.

A. Datasets

We used three datasets for comparing the performance, the
IMDB movie dataset, the SMS spam dataset, and the Twitter
US Airline dataset. We included database mixes such that we
can estimate model performance in a dynamic environment.
The SMS spam dataset is unbalanced with comparatively few
number of data. The IMDB consists of movie reviews as a
binary sentiment, which is whether the movie was favorable
or unfavorable for the audience. It consists of a total of 50k
movie reviews. The SMS spam dataset consists of

approximately 5.5k SMS data, each labeled as whether the
data was spam or not spam (ham). The Twitter US Airline
dataset consists of approximately 11k sentiment data.

We then benchmarked the results by comparing them to
the GA-optimized Transformer model, the existing general
transformer model without optimization (the default
transformer), LSTM, and various other ML models.

B. Dataset Preparation

Since our dataset mixture consisted of small, large, and
unbalanced datasets, we used K-fold cross validation in order
to robustly predict the performance of the model, and to
better assess the generalizability to unseen data. K-fold
cross-validation was used with the number of folds (K) set to
10 and the number of repetitions set to 3. Since the
transformer works with tokens, tokenization was carried out
for every word and then embedded as real-valued vectors.

Since computers cannot understand words and sentences
directly, they need to be converted into a sequence of numeric
vectors. Furthermore, sentences in the dataset can be
inconsistent and can have missing values, for example, an
empty row in the dataset or invalid characters. Hence, to
transform the dataset into computer-readable numeric vector
sequence, first, the data is cleaned up and then encoding
techniques like BagOfWord, TF-IDF, and Word2Vec are
used [24, 25]. The following steps were used for data
preprocessing.

1) Data Filtration: We need to make sure that invalid
characters and empty tables are removed before
processing the data.

2) Data shuffle: Shuffling data randomly ensures that the
training dataset does not lean heavily to one side or the
other during the data-gathering process. Usually, train
and test data splits are created by shuffling randomly.

3) Train-test data split: Train and test datasets are separated
to ensure that the model is not remembering the dataset.
Very complex models can remember the dataset features
and thus will have a very high training accuracy but have
a degraded performance for the test dataset.

4) Removing irrelevant words: We need to remove any
words or sentences that contain invalid characters or
numbers.

5) Tokenization: Tokenization is the process of cutting data
into parts so that they can be represented as vectors. This
process also ensures that repeated words as represented
as the same vector.

6) Padding/truncating: Inputs to the network should be of
the same size. In the dataset, some reviews might contain
short sentences while some might contain longer
sentences. Truncating and padding operations ensure
that they are of the same length, either by removing some
portions of the sentences or by adding a filler word,
respectively.

7) Word embedding: The tokenized data is then encoded as
vectors known as word embedding. This is usually done
to increase the dimension of the dataset so that complex
representations can be learned easily.

C. Performance Metrics

For comparing the performance of various deep and

International Journal of Machine Learning, Vol. 14, No. 4, 2024

123

shallow machine learning models, the selection of proper
metrics plays a crucial role. Various metrics can be used in
evaluating machine learning model performance. For
regression, metrics such as mean square errors (MSE), and
root mean squared error (RMSE) are used. In the case of
classification metrics, accuracy, confusion matrix, precision,
recall, F1-score, Area Under the ROC Curve (AUC-ROC) or
Area Under the Precision-Recall Curve (AUPR) are used
[26]. AUC measures the ability of the classifier to distinguish
between classes. It plots the True Positive Rate (TPR) against
the False Positive Rate (FPR) at various threshold settings. It
is useful when the class distribution is relatively balanced.
AUPR measures the trade-off between precision and recall
for different thresholds. AUPR is particularly useful when
dealing with imbalanced datasets where the positive class is
rare. Since this research is a classification problem related to
sentiment analysis as positive or negative, the performance
metric of the confusion matrix, AUC and AUPR were chosen.
An average of performance metrics such as accuracy,
precision, recall, and F1-score are computed from the
confusion matrix across all the folds and number of
repetitions.

Before we delve into confusion matrix parameters, we
must discuss true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). Let us consider the
case of the SMS-spam dataset, where all spam sentences are
labeled as positive (1), and all ham sentences are labeled as
negative (0).

1) True positive (TP): When the prediction of the model is
the same as that of the positive ground truth, the result is
called to be true positive. For example, the model
correctly predicts that the given sentence is spam.

2) True Negative (TN): When the prediction of the model is
correct for the negative ground truth, it is known as true
negative. For example, if the model correctly predicts
that the given sentence is not spam.

3) False positive (FP): When the prediction of the model is
incorrect for the positive ground truth, the result is called
false positive. For example, if the model incorrectly
predicts that the given sentence is spam.

4) False negative (FN): When the prediction of the model is
incorrect for the negative ground truth, the result is false
negative. For example, if the model incorrectly predicts
that the given sentence is not spam.

The other performance metrics such as Accuracy,
Precision Recall, and F1 Score are calculated from the
confusion matrices.

1) Accuracy

Accuracy shows how many of the classifications were
correctly classified. Accuracy is given by:

 (4)

2) Precision
When the class distribution is imbalanced, precision can be

used as a good classification metric indicator. Precision is
calculated as the ratio between the total number of positive
examples correctly classified to the total number of examples
classified correctly or incorrectly as positive.

Precision = (5)

3) Recall
It can be defined as the ratio between the number of

correctly classified positive examples to the total number of
positive samples. In other words, the recall metric measures
the ability of the model to recognize positive examples. The
higher the recall, the more positive examples are recognized.

Recall= (6)

4) F1 score

It helps to have a measurement that represents both recall
and precision. It is calculated as the harmonic mean of
precision and recall.

 F1-score= 2× (7)

D. Experiment Setup

This research project was implemented using Python 3.7
with high-level neural networks API called Keras library
running on top of Tensor Flow [27]. The hardware platform
used was a GPU computer on AMD Ryzen 5800H processor
and RTX 3070 GPU with 8GB of GPU memory and 32GB of
RAM.

The classification process using the transformer is
illustrated in Fig. 9. First, the hyperparameters are set for the
transformer using default initialization parameters and
training is carried out for a given dataset. Then RMSE is
calculated from the classification operation from the
transformer and used as fitness criteria for the mCSA. The
mCSA algorithm outputs a new set of parameters to be used
for training by selecting new parents and performing
mutation operations. The training is now done using the
optimal hyperparameters discovered by the mCSA. The
process continues until the fitness criteria are reached. Lastly,
a prediction is made on test data, and the performance is
evaluated based on the metrics described above.

The proposed CSA-Transformer was benchmarked using
the IMDB dataset. Table 3 shows the features of IMDB, SMS
SPAM, and Twitter US Airline datasets that have been used
in this experiment.

Table 3. Dataset statistics

 IMDB SMS Spam Twitter USAirline
Input Length 500 100 200
Vocabulary length 181,556 8024 13,234
Classes 2 2 2
K-Fold Cross
Validation and
Repetitions

K=10
R=3

K=10
R=3

K=10
R=3

E. Results

We have compared the performance of the optimized
transformer using mCSA and GA with unoptimized
transformer model. The hyperparameters of the unoptimized
transformer were chosen as the most sensible default value.
We further compared the performance of the optimized
transformer with optimized LSTM using the Clonal Selection
Algorithm and CSA_CNN_LSTM, which is the optimized
architecture of a hybrid Convolution Neural Network and

International Journal of Machine Learning, Vol. 14, No. 4, 2024

124

LSTM using CSA [28].

1) Performance Comparison for the IMDB dataset

Table 4 shows the comparison of accuracies of the various
ML models for the IMDB validation data set. It shows that
compared to the unoptimized transformer; the optimized
transformer has higher accuracy. Our unoptimized
transformer consisted of the initialization values as shown in
Table V. The optimized model exhibits superior performance
over other algorithms such as CSA-LSTM,
CSA_CNN_LSTM, and Random Forest. It also shows that
the performance metrics of the unoptimized transformer are
subpar compared to optimized LSTM networks. However,
optimization of the hyperparameters yields a vastly different
conclusion. When optimized, transformers have shown
superior performance.

Table 4. Performance comparison of mCSA Transformer with other

techniques for IMDB validation Dataset
Model Accuracy precision recall F1-score

mCSA Optimized
Transformer

90.48% 93.15% 91.47% 92.30%

GA optimized
Transformer

89.72% 92.15% 87.88% 89.96%

Transformer
(unoptimized)

88.56% 87.34% 90.06% 88.67%

CSA-LSTM [27] 89.52% 88.58% 90.77% 89.66%
CSA-CNN-LSTM
[27]

89.88% 89.37% 90.05% 89.71%

Random Forest [27] 54.66% 54.38% 52.34% 53.34%

Table 5 shows the new hyperparameters found by our

mCSA algorithm for the IMDB dataset. The number of
epochs and the type of optimizer have not changed from the
initial unoptimized value. It means that for this IMDB dataset,
training for 2 epochs yielded the best result without
overfitting.

Figs. 7 and 8 show the average of AUC and AUPR curves
for the IMDB dataset across all folds. It shows that our
classifier has a very good discriminatory power.

Table 5. the final optimized hyperparameters discovered by our proposed

model for the IMDB dataset
Hyperparameter optimized

value
initialization value

(unoptimized)
#Epochs 2 2
#Heads 2 8
hidden layer size in
feed-forward layer

39 32

embedding size for each token 16 32
optimizer ADAM ADAM

Fig. 7. Average AUC Curve for IMDB Dataset across all folds.

Fig. 8. Average AUPR Curve for IMDB Dataset across all folds.

2) Performance Comparison for SMS SPAM dataset

In the SMS spam dataset, there is more ham compared to
spam, thus making it unbalanced. Training deep neural
networks for these kinds of datasets is difficult. Making small
changes to the hyperparameters can have a drastic effect on
the performance.

This once again strengthens the need for a proper
hyperparameter optimization technique. Note that the
hyperparameters were optimized based on the validation
dataset. Table 6 shows the comparison of accuracies of the
various ML models for the SMS spam validation data set. In
this dataset too, our model performed better than the
unoptimized transformer and other NIA-optimized LSTM
models. In all the four performance metric domains (accuracy,
precision, recall and F1-score), the mCSA optimized
transformer performed better. Figs. 9 and 10 show the AUC
and AUPR curve for the SMS Spam dataset during the fourth
fold of K-fold operation. Given that the dataset is imbalanced,
the AUPR curve is vital for assessing the performance of our
model. Our AUPR score for this dataset is 0.98, which is very
good.

Table 6. Performance comparison of mCSA Transformer with other
techniques for SMS spam validation dataset

Model Accuracy precision recall F1-score
mCSA Optimized
Transformer

99.25% 99.75% 99.55% 99.64%

GA optimized
Transformer

98.87% 99.65% 99.15% 99.40%

Transformer
(unoptimized)

98.55% 99.25% 98.77% 99.01%

CSA-LSTM [27] 98.48% 97.05% 91.03% 93.95%
CSA-CNN-LSTM
[27]

98.74% 93.33% 96.55% 94.91%

Random Forest [27] 92.64% 78.89% 59.31% 67.71%

Fig. 9. AUC Curve for SMS-SPAM Dataset for the 4th fold.

International Journal of Machine Learning, Vol. 14, No. 4, 2024

125

Fig. 10. AUPR Curve for SMS-SPAM Dataset for the 4th fold.

Table 7 shows the final topology found for the optimized

transformer model for the SMS spam dataset. While the type
of optimizer used in training remained the same, our research
found better values for the other hyperparameters.

Table 7. The final optimized hyperparameters discovered by our proposed

model for the spam dataset
Hyperparameter optimized

value
initialization value

(unoptimized)
#Epochs 4 2
#Heads 2 8
hidden layer size in
feed-forward layer

18 32

embedding size for each
token

58 32

optimizer ADAM ADAM

3) Performance Comparison for Twitter US Airline
dataset

Table 8 shows the comparison of accuracies of the various
ML models for the Twitter US Airline data set. It shows that
compared to the other optimization techniques, the
mCSA-optimized transformer has higher performance in all
of the metrics. Our unoptimized transformer consisted of the
initialization values as shown in table IX. The optimized
model exhibits superior performance over other algorithms

such as CSA-LSTM, CSA_CNN_LSTM, and Random
Forest. It also shows that the performance metrics of the
unoptimized transformer are subpar compared to optimized
LSTM networks. However, optimization of the
hyperparameters yields a vastly different conclusion. When
optimized, transformers have shown superior performance.

Table 8. Performance comparison of mCSA Transformer with other

techniques for Twitter US airline dataset
Model Accuracy precision recall F1-score

mCSA Optimized
Transformer

94.56% 95.67% 97.52% 96.58%

GA optimized
Transformer

92.84% 94.67% 96.64% 95.64%

Transformer
(unoptimized)

90.48% 87.58% 88.25% 87.91%

CSA-LSTM [27] 92.25% 94.06% 95.94% 94.99%
CSA-CNN-LSTM
[27]

92.77% 94.50% 95.88% 95.19%

Random Forest
[27]

83.32% 83.85% 89.05% 90.40%

Table 9. The final optimized hyperparameters discovered by our proposed

model for the Twitter US Airline Dataset
Hyperparameter optimized

value
initialization value

(unoptimized)
#Epochs 2 2
#Heads 6 8
hidden layer size in
feed-forward layer

48 32

embedding size for each token 24 32
optimizer ADAM ADAM

Table 9 shows the new hyperparameters found by our

mCSA algorithm for the US Twitter Airline dataset. The
number of epochs has not changed from the initial
unoptimized value. It means that for this Twitter US Airline
dataset, training for 2 epochs yielded the best result without
overfitting.

Figs. 12 and 13 show the AUC and AUPR curve for the US
Twitter Airline dataset. Since this is a multiclass
classification, the AUC and AUPR curves are plotted for
each class individually. Classes 0, 1 and 2 refer to positive,
neutral, and negative classification respectively.

Fig. 11. Optimization process of transformers using CSA.

Dataset

Transformer Model CSA Operation

International Journal of Machine Learning, Vol. 14, No. 4, 2024

126

Table 10. Summary of accuracy comparison of mCSA transformer with other techniques for all datasets
Dataset/Model MCSA-Transformer GA-Transformer Unoptimized

Transformer
CSA-LSTM CSA-CNN-LSTM Random

Forest
IMDB 90.48% 89.72% 88.56% 89.52% 89.88% 54.66%
SMS Spam 99.25% 98.87% 98.55% 98.48% 98.74% 92.64%
US Twitter
Airline

94.56% 92.84% 90.48% 92.25% 92.77% 83.32%

Fig. 12. AUC curve for US Twitter airline dataset.

VI. ABLATION STUDY

To evaluate the role of different hyperparameters in
improving the accuracy of the transformer model, we
conducted ablation study by varying the optimal
hyperparameter values for each case, keeping everything else
constant. Fig. 14 shows our ablation study result. It is seen
that the number of epochs, the size of hidden layer in feed
forward layer, and the type of optimizer used impact the
performance of our model significantly, compared to the
number of heads and embedding size.

Fig. 13. AUPR curve for US Twitter airline dataset.

VII. CONCLUSION

Table X shows the comparative analysis of model
accuracies among various other optimization algorithms and
models that have been compared in this research. It is shown
that MCSA-optimized transformer has the best accuracy. The
performance of the original transformer has been highly
improved by optimizing its architecture using evolutionary
approaches to evolve its hyperparameters. Bio-inspired
Modified Clonal Selection Algorithm (mCSA) was used for
evolving the hyperparameters of transformers. In this paper,
the optimized transformer architecture manifested an

increase in the prediction accuracy to 90.48% from 88.56%
for the IMDB dataset, an improvement to 99.25% from
98.55% for the SMS spam dataset, and an improvement to
94.56% from 90.48% for the US Twitter Airline dataset,
using 10-fold cross-validation.

Fig. 14. Ablation study of our proposed model.

The effectiveness and utility of advanced machine learning
models, such as the CSA-Transformer, extends beyond
traditional data analysis and predictive tasks. First, accurately
identifying spam messages can help reduce processing load,
improve network efficiency, save storage space, and even
help extend life of electronic components. From a
sustainability perspective, properly identifying whether a
message is spam or ham is analogous to identifying relevant
and irrelevant energy data. In terms of energy optimization,
this relates to accurately predicting energy usage and
identifying potential areas of improvement. Ecologically
disturbed locales, such as areas affected by deforestation,
pollution, or climate change, require innovative and efficient
energy management solutions. The proposed Transformer
model can be used in energy applications such as predictive
maintenance, renewable energy management, and adaptive
energy policies.

A novel framework using mCSA has been proposed that
simplifies the selection of various hyperparameters of
transformers, including but not limited to the number of
epochs to train, batch size, number of embeddings, number of
heads, percentage of validation data, etc. In addition, using
mCSA also saves time in comparison to other black box or
random methods since mCSA is based on the survival of the
fittest paradigm. In the future, other nature-inspired
algorithms such as various variants of Swarm intelligence
such as Grey Wolf Optimization or Cuckoo Search
Algorithms can be used for optimizing the hyperparameters
of transformers.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

International Journal of Machine Learning, Vol. 14, No. 4, 2024

127

AUTHOR CONTRIBUTIONS

Ashish Kharel conducted the research, carried out the
experiments and wrote the paper; Devinder Kaur advised and
guided the research, and helped in proofreading the paper; all
authors had approved the final version.

REFERENCES
[1] V. Ashish, S. Noam, P. Niki, U. Jakob et al., “Attention is all you need,”

arXiv:1706.03762 [cs.CL], 2017.
[2] S. B. Ł. Kaiser, “Can active memory replace attention?” Advances in

Neural Information Processing Systems, 2016.
[3] A. Parikh, O. Täckström, D. Das, and J. Uszkoreit, “A decomposable

attention model,” In Empirical Methods in Natural Language
Processing, 2016.

[4] O. Kuchaiev and B. Ginsburg, “Factorization tricks for LSTM networks,”
arXiv preprint arXiv:1703.10722, 2017

[5] P. I Frazier, “A tutorial on Bayesian optimization,” arXiv preprint
arXiv:1807.02811, 2018.

[6] P. W. Glynn et al., “Stochastic optimization via grid search,” Lectures in
Applied Mathematics-American Mathematical Society, vol. 33, pp.
89–100, 1997.

[7] A. Hussain and S. A. Ludwig, “Hyperparameter optimization: comparing
genetic algorithm against grid search and bayesian optimization,” in
Proc. 2021 IEEE Congress on Evolutionary Computation (CEC),
IEEE, 2021.

[8] X. Tian and X. M. Chen, “A discrete hidden Markov model for SMS
spam detection,” Applied Sciences, vol. 10, no. 14, p. 5011, 2020.

[9] M. Kenton et al., “Auto-sizing the transformer network: Improving speed,
efficiency, and performance for low-resource machine translation,”
arXiv preprint arXiv:1910.06717, 2019.

[10] Y. T. Chen et al., “Towards Learning Universal Hyperparameter
Optimizers with Transformers,” arXiv preprint arXiv:2205.13320,
2022.

[11] G. Daniel et al., “Google vizier: A service for black-box
optimization,” in Proc. the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2017.

[12] S. David et al., “Syne tune: A library for large scale hyperparameter
tuning and reproducible research,” in Proc. International Conference
on Automated Machine Learning, 2022.

[13] M. P. Ranjit et al., “Efficient deep learning hyperparameter tuning
using cloud infrastructure: Intelligent distributed hyperparameter
tuning with Bayesian optimization in the cloud,” in Proc. 2019 IEEE
12th International Conference on Cloud Computing, IEEE, 2019.

[14] A. A. Bataineh and D. Kaur, “Immuno-computing-based neural
learning for data classification,” International Journal of Advanced
Computer Science and Applications, vol. 10, no. 6, 2019.
http://dx.doi.org/10.14569/IJACSA.2019.0100632

[15] A. A. Bataineh and D. Kaur, “Immunocomputing-Based Approach for
Optimizing the Topologies of LSTM Networks,” IEEE Access, vol. 9,
pp. 78993-79004, 2021, doi: 10.1109/ACCESS.2021.3084131

[16] J. K. Chorowski et al., “Attention-based models for speech
recognition,” Advances in Neural Information Processing Systems, vol.
28, 2015.

[17] H. Sepp and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[18] H. Sepp, “The vanishing gradient problem during learning recurrent
neural nets and problem solutions,” International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 6, no. 2,
pp. 107–116, 1998.

[19] Y. H. Hu et al., “Overcoming the vanishing gradient problem in plain
recurrent networks,” arXiv preprint arXiv:1801.06105, 2018.

[20] S. Shibani et al., “How does batch normalization help optimization?”
Advances in Neural Information Processing Systems, vol. 31, 2018.

[21] H. H. Tan and K. H. Lim, “Vanishing gradient mitigation with deep
learning neural network optimization,” in Proc. 2019 7th International
Conference on Smart Computing & Communications (ICSCC). IEEE,
2019.

[22] V. Andreas, M. J. Wilber, and S. Belongie, “Residual networks behave
like ensembles of relatively shallow networks,” Advances in Neural
Information Processing Systems, vol. 29, 2016.

[23] D. Dasgupta, “An overview of artificial immune systems and their
applications,” Artificial Immune Systems and Their Applications,
Springer, pp. 3–21, 1993.

[24] W. Chong and K. Q. Huang, “How to use bag-of-words model better
for image classification,” Image and Vision Computing, vol. 38, 2015,
pp. 65–74.

[25] M. Long and Y. Q. Zhang, “Using Word2Vec to process big text data,”
in Proc. 2015 IEEE International Conference on Big Data (Big Data).
IEEE, 2015.

[26] D. Jesse and M. Goadrich, “The relationship between Precision-Recall
and ROC curves,” in Proc. the 23rd International Conference on
Machine Learning, 2006.

[27] G. Aurélien, Hands-on Machine Learning with Scikit-Learn, Keras,
and TensorFlow, O'Reilly Media, Inc, 2022.

[28] A. A. Bataineh and D. Kaur, “Immunocomputing-based approach for
optimizing the topologies of LSTM networks,” IEEE Access, vol. 9, pp.
78993–79004, 2021, doi: 10.1109/ACCESS.2021.3084131.

Copyright © 2024 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

International Journal of Machine Learning, Vol. 14, No. 4, 2024

128

