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Abstract—Cell instance segmentation in medical imaging is 

pivotal for advancing diagnostics and treatment. Despite the 
acknowledged importance of Mask R-CNN for this task, we 
observed challenges in effectively distinguishing some boundary 
pixels, particularly in scenarios where cells are in close 
proximity. To address these issues, this research introduces 
three key enhancements: 1) Multiscale Feature Learning 
(MSFL), 2) the Cross Spatial Attention Module (CSAM), and 3) 
Novel training of UNet for guiding the training of Mask RCNN 
through CSAM module. MSFL utilizes various features 
produced by the FPN backbone across different scales, thereby 
minimizing data loss and enhancing the overall representation 
of the region of inter- est. The lightweight CSAM significantly 
enhances segmentation results by harnessing the inherent 
segmentation capabilities of U-Net in the medical domain. This 
novel approach not only rectifies boundary errors, but also 
enhances accuracy and robustness in medical image analysis. 
Importantly, the adaptable CSAM seamlessly integrates into 
various models, increasing segmentation accuracy without a 
substantial impact on the model size. The efficacy of this 
approach is demonstrated through its application on two 
distinct cell segmentation datasets. Results demonstrate a 
notable increase of 2.66% mean Intersection over Union (mIOU) 
from the baseline on the SegPC dataset and a significant 
improvement by 1.86% in the mAP@[0.5:0.95] on the Yeast 
Cell dataset. 
 
Keywords—medical imaging, cell instance segmentation, 

Mask R-CNN, U-Net, spatial attention 

I. INTRODUCTION 

Instance Segmentation is crucial in medicine, guiding 
treatment decisions by precisely locating, segmenting, and 
classifying abnormalities like cancer, tumors, or lesions [1]. 
This task involves classifying regions of interest, such as 
tumors, cells, organs, and tissues, and distinguishing between 
their instances. Medical datasets often present challenges like 
varied shapes of cells/structures, poor illumination, uneven 
staining, and complexities such as cell division and 
overlapping cells. Overcoming these challenges requires a 
resilient and robust representation capable of handling the 
intricacies within the medical domain. Cell segmentation 
involves diverse methodologies, from classical computer 
vision techniques to con- temporary deep learning paradigms. 
Some of the famous architectures for medical image 
segmentation have been the U-Net architecture [2] and its 
variants [3, 4]. UNet is a convolutional neural network (CNN) 
based encoder-decoder type architecture that has been 
successfully used in cell segmentation. The architecture, 
unlike the fully convolutional network (FCN), involves the 
concatenation of feature maps from the encoder layers to 

decoder layers, which helps in context information 
preservation and generation of smoother segmentation 
masks. 

In the recent past, deep learning methods, exemplified by 
DeepMask [5] and SharpMask [6], have significantly 
enhanced capturing of spatial relationships. Segment 
Anything [7] is recognized for effectiveness despite 
constraints in segmenting fine structures, while Mask 
R-CNN [8] that has proven crucial in cell segmentation, also 
encounters challenges at boundaries. Models like Cascade 
R-CNN [9] and Hybrid Task Cascade [10], built upon Mask 
R-CNN, show promising results, but face challenges of 
training a higher number of parameters. This paper adopts 
Mask R-CNN for instance segmentation and proposes 
enhancements to address its limitations. 

Attention mechanisms, such as visual attention [11], 
residual attention networks [12], SENet [13], and 
TransAttUnet [14], have gained prominence in image 
segmentation due to their efficacy in modeling the 
importance of features in a given task. These models 
incorporate attention elements, including spatial attention, 
channel attention, and relation functions, to enhance feature 
representation and leverage con- textual information. Recent 
developments such as BAM [15], CBAM [16], and DAN [17] 
fuse spatial and channel attention, while Efficient Channel 
Attention (ECA) [18] employs a local cross-channel 
interaction strategy without dimensionality reduction. ECA is 
noteworthy for its efficiency and significant performance 
improvements with only a limited number of parameters and 
computations [18]. This paper leverages the ECA module to 
enhance the Mask Head in Mask R-CNN [8]. Existing 
attention mechanisms rely on their inherent features, and thus 
fall short in capturing domain-specific intricacies, especially 
in medical imaging. One promising approach for enhancing 
these features involves strategically integrating 
domain-specialized models known for their excellence in 
specific contexts. Thus, to address the challenges at 
boundaries in cell segmentation, this work introduces a 
modification to the Mask R-CNN by introducing three novel 
ideas: 

1) Multiscale Feature Learning: The FPN backbone in 
Mask R-CNN generates multiple features at different 
scales for each region proposal. However, traditional 
methods use only one feature based on scale matching. 
MSFL leverages all generated features simultaneously, 
and thus enhances learning, reduces potential data loss, 
and captures complementary information at various 
scales, fostering a more comprehensive representation 
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of the considered region. 
2) Cross-Spatial Attention Module: In our proposed 

attention module, we enrich feature representation by 
collaboratively incorporating domain-specific 
promising models to extract more contextually relevant 
information. Notably, we leverage the U-Net 
architecture [19], known for its state-of-the-art 
performance in medical image segmentation tasks. This 
synergy harnesses the strengths of both models, 
promising improved performance and adapt- ability 
across diverse tasks and domains. Importantly, this 
approach is inherently generalizable across diverse 
domains, allowing integration of well-performing 
models from different domains to capitalize on their 
expertise. By adapting attention modulation based on 
guided attention maps from high-performing models, 
our method offers a flexible and effective means of 
incorporating prior knowledge, enhancing overall 
performance and adaptability. 
 

3) Novel training of U-Net Architecture: We leveraged 
U-Net’s strong performance in medical semantic 
segmentation to tackle instance segmentation. We 
performed fine- tuning of the U-Net model using our 
carefully curated dataset. The input images were 
designed to simulate ROI proposals on cell images, 
incorporating neighboring regions and overlapping cells. 
The ground truth annotations were structured to enable 
the model to distinguish between the primary cell within 
each proposed region and neighboring cells. This 
strategy effectively enhances the feature maps of U-Net, 
thereby assisting Mask RCNN in refining instance 
segmentation performance via the CSAM module. 

II. PROPOSED MODEL 

In the subsequent sections, we elucidate how we enhanced 
the baseline Mask-RCNN by introducing Multiscale Features 
Learning, the Cross Spatial Attention Module, and novel 
U-Net training. 

A. Multiscale Feature Learning (MSFL) 

Mask R-CNN is a two-stage detector network, initially 
generating region proposals and subsequently predicting 
class, bounding box, and mask for each proposal. Employing 
a Feature Pyramid Network-equipped backbone, it extracts 
image features across various scales. RPN is a Region 
proposal network that identifies proposals of regions of 
interest, with the Multiscale ROI Align providing a feature 
resized to predetermined dimensions. Despite having access 
to three-scale feature maps from the FPN backbone, the 
model opts for a single feature map based on scale matching 
potentially resulting in information loss. To improve the 
comprehension of visual content and to obtain more 
contextual information about the ROI, our solution involves 
utilizing all these multiscale feature maps. This issue is 
addressed through a novel mask head for Mask R-CNN, 
optimizing pixel-level mask prediction by incorporating all 
feature maps and enabling the model to autonomously 
determine their relative importance. 

Our proposed mask head requires feature maps at various 
scales for each ROI. MSFL provides fixed-sized feature maps 

for ROIs at various scales. Initially, image feature maps sized 
64×64, 128×128, and 256×256 from the Feature Pyramid 
Network (FPN) backbone are passed into the Multiscale ROI 
Align along with the ROI proposals. This process generates 
feature maps of fixed sizes 16×16, 32×32, and 64×64 
corresponding to each input image feature map for the ROIs. 
These feature maps then go through separate convolution 
layers within the mask head. The resulting outputs are 
concatenated, combining the information from multiple 
scales, e.g., the 64×64-sized feature is pooled, and the 
16×16-sized feature is transposed convoluted to achieve a 
uniform size of 32×32 (Fig. 1). This concatenated set of 
features is passed through the ECA network that learns 
weights to assign relative importance to feature maps of 
different scales extracted originally. Next, the set of feature 
maps undergoes two additional convolution layers. 
Following this, cross-spatial attention from U-Net is 
introduced to further enhance these features through the 
Cross Spatial Attention Module, which is elaborated upon in 
the subsequent discussion. 

B. Cross Spatial Attention Module (CSAM) 

The Cross Spatial Attention Module takes as input two 
crucial features: the Guiding feature and the Guided feature. 
The guiding feature is the segmentation map derived from a 
model recognized for its excellence in image segmentation 
within the specified domain. The guided feature corresponds 
to the output obtained after employing the ECA step in the 
MSFL process. Both features undergo separate Max and 
Average Pooling (Adaptive), individually adjusted to the size 
of the guided feature (32×32). Adaptive Pooling allows us   to 
specify the output size, with the stride and kernel size 
automatically adjusted to suit the requirements. This adaptive 
approach ensures consistent output sizes regardless of input 
dimensions, which are then concatenated and fed through a 
convolution layer producing four channels as output. This 
process is repeated for both the guided and guiding features. 
Subsequently, the outputs of both the guided and guiding 
features are concatenated and further processed through a 
final convolution layer, followed by a sigmoid activation to 
yield the guided spatial feature attention map. 

This spatial attention map is a synthesis of information 
from both the guided and guiding features, creating a 
comprehensive attention map for the guided feature. To 
ensure compatibility, the spatial attention map is extended 
(replicated along the channels) to match the channels of the 
guided feature. The two are then subjected to element-wise 
multiplication and returned. The architecture of the Cross 
Spatial Attention Module is depicted in Fig. 2. 

C. Unified Model Architecture 

We apply Multiscale Feature Learning (MSFL) to generate 
the guided feature, dynamically integrating features of 
diverse scales adjusted according to their individual 
significance. Additionally, we incorporate spatial attention 
from the U-Net model, known for its proficiency in analyzing 
medical images. A dedicated U-Net model is trained to 
generate segmentation masks for each ROI extracted from 
the dataset. The proposal region is cropped from the original 
image, and the U-Net model produces a segmentation mask 
of dimensions 32×32. This segmentation mask, 
post-convolution, serves as the guiding feature for the CSAM 
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module. It collaborates with our initial feature from the 
primary model which served as the guided feature. The 
output of the CSAM is integrated into our original guided 
feature, resulting in a significant enhancement, and after 
passing through two additional convolution layers, the final 
ROI mask is accurately predicted. The complete architecture 
of our unified model is illustrated in Fig. 1. 

III. EXPERIMENTAL SETUP 

The primary dataset utilized in this study is the 
SegPC-2021 dataset [20–22], featuring microscopic images 
of bone marrow aspirate slides from patients diagnosed with 

Multiple Myeloma (MM). Captured in raw BMP format 
using two cameras affixed to the microscope, the images 
come in two sizes: 2040×1536 pixels and 2560×1920 pixels. 
These images have been stain normalized by the authors of 
the dataset [23, 24]. The dataset comprises a total of 409 
images, with 120 allocated to the training set, 12 for 
validation, and 277 for the final test dataset. The dataset’s 
objective is to facilitate the segmentation of each cell instance 
(nucleus + cytoplasm), labeled as Background: ‘0’ and Cell: 
‘255’. Training encompasses whole images, and 
augmentations, with the evaluation conducted on the entire 
microscopic images. 

 
Fig. 1. Proposed Model Architecture: Our model employs Multiscale Feature Learning (highlighted in blue dotted lines) on ROIs proposed by the Multiscale 
ROI align, dynamically adjusting features of varying scales for improved segmentation accuracy. The Cross Spatial Attention Module (highlighted in red 
dotted lines) leverages U-Net’s segmentation output, specifically trained for precise cell mask segmentation in response to ROIs. The updated feature 
facilitates efficient instance- wise segmented masks, embodying a comprehensive approach to instance segmentation in our unified model. The ECA module 
has been taken from the reference [18]. All the convolutional layers incorporate ReLU as the activation function. 

 

 
Fig. 2. Cross Spatial Attention Module: The CSAM improves instance segmentation by guiding the model with spatial attention, utilizing the segmentation 
output from a model recognized for its performance in the specific domain. 
 

 

To assess the proposed model’s generalizability, a second 
dataset of yeast cell segmentation in microstructures is 
utilized [25]. It comprises of 493 dense annotated microscopy 
images. This dataset provides pixel-wise instance 
segmentation labels for yeast cells and trap microstructures. 
Used as a validation benchmark, this second dataset enables 
an evaluation of our model’s consistency and generalizability 
across diverse bio-logical scenarios. Some sample images of 

both the dataset are shown in Fig. 3. 

A. Loss Function and Evaluation Metrics 

The training process incorporates a composite loss, which 
encompasses classification, bounding box regression, and 
mask loss, following the definitions provided in [8]. To 
evaluate the segmentation algorithm’s performance, we 
employ mIoU as the primary metric. IoU measures the 
overlap between ground truth and predicted segments. Given 
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the two classes (background and cell), IoU is calculated 
separately for each class. The mean IoU is then determined 
by averaging the IoUs for both classes, offering a 
comprehensive measure of segmentation accuracy. 

 

    

   
(a)                                                   (b) 

Fig. 3. Sample Images from the SegPC-2021 [20] and Yeast Cell Dataset 
[25]: (a) Input images (b) Corresponding Ground truth instance 
segmentation masks. 

 

B. Training Details 

1) MaskRCNN Training: During training, in order to 
make the input images of a uniform size, symmetrical zero 
padding was applied to make them of the dimension 
2560×1920. Several data augmentation techniques were 
employed such as random horizontal and vertical flip with 
probability 0.3 and varying the hue, saturation, brightness 
and intensity values of images. We experimented with widely 
used backbone networks ResNet-50, ResNet-152, 
ResNext-101 and WideResNet-101 as well. 

We employed an SGD optimizer with a momentum of 0.9 
and a weight decay of 5e-4 during training. Additionally, we 
utilized a Cyclic Learning Rate Scheduler in triangular2 
mode with a base learning rate of 1e5, a maximum learning 
rate of 0.006, and a step size of 5, while training on a batch 
size of 4. All models were implemented using the PyTorch 
framework and trained on Nvidia DGX GPUs. 

2) U-Net Training: The U-Net model, employed for 
generating semantic segmentation masks that would serve as 
the guiding feature for the CSAM module, underwent 

dedicated training tailored for this specific task. To curate the 
dataset for ROI mask generation, an iterative process was 
initiated across all instance segmentation masks for each 
image in the SegPC dataset. This involved identifying the top, 
bottom, left, and right boundary pixels of the masks 
corresponding to each cell instance, with an additional value 
added to encompass neighboring cell regions. This modified 
region was cropped to serve as the ground truth for training. 
Concurrently, the corresponding region with identical 
boundary pixels was extracted from the training image. These 
cropped regions simulate ROI proposals similar to those 
generated by Mask R-CNN, encompassing not only the 
primary cell but also neighboring or overlapping cells.  

However, our dataset design ensures that the U-Net is 
exclusively trained to disregard these additional cells and 
concentrate on predicting the primary cell within the ROI. 
Fig. 4 depicts training of U-Net. This meticulous approach 
elevates the model’s proficiency in discerning and outlining 
the primary cell of interest, thereby refining precision in 
semantic segmentation within the designated ROI. This 
enhanced segmentation output serves as a robust guiding 
feature for the CSAM. 
 

 
Fig. 4. U-Net Training: Simulated ROI proposals encompassing the primary 
cell as well as neighboring or overlapping cells are passed as input to 
fine-tune U-Net. The dataset ensures that U-Net is exclusively trained to 
disregard neighboring cells and predict the primary cell within the ROI. 

IV. RESULTS AND ANALYSIS 

Within this section, we conduct a comprehensive ablation 
study, evaluating our model’s performance on the 
SegPC-2021 challenge test set through mIoU metric. Our 
investigation delves into the influence of various factors, 
including the model backbone, training augmentations, 
MSFL, and the CSAM module. The results obtained are 
presented and summarized in Table 1. 

 
Table 1. Experimental Results on SegPC dataset [20]: Comparison of baseline Mask R-CNN with the outcomes achieved with our proposed multiscale feature 

learning and cross-attention module 
Model Backbone mIOU Number of parameters 

Mask RCNN ResNet50 0.8712 43.9M 

Mask RCNN+Augmentation ResNet50 0.8841 43.9M 

Mask RCNN ResNeXt101 0.8900 107M 

Mask RCNN+Augmentation ResNeXt101 0.8925 107M 

Mask RCNN+MSFL ResNet50 0.9027 44.4M 
Mask RCNN+MSFL+CSAM ResNet50 0.9107 44.5M 

Mask RCNN+MSFL ResNeXt101 0.9072 107.5M 
Mask RCNN+MSFL+CSAM ResNeXt101 0.9133 107.6M 

 
 
 
 
 

 

A. Ablation Study 

1) Optimization Strategies and Backbone Selection: We 

use three key optimization strategies for refining the 
instance segmentation model. First, we implement various 
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augmentation techniques, including changes in hue, 
saturation, brightness, intensity values, and random flips. 
Keeping other hyperparameters constant, these 
augmentations elevate the mIOU to 0.8841, showcasing a 
1.3% mIOU improvement over the vanilla Mask RCNN. 
Considering the critical role of the backbone in Mask 
RCNN’s performance, we experiment with ResNet50, 
ResNet152, ResNeXt101, and WideResNet101 backbones. 
We find that the ResNeXt101 backbone yielded the highest 
mIOU of 0.8900, outperforming its counterparts, while 
ResNet52 backbone performed second best. Hence, we 
have shown results with ResNeXt101 and ResNet52 
backbones. Mask RCNN, equipped with the ResNeXt101 
backbone, and dataset augmentations, attains an impressive 
mIOU of 0.8925. The rationale behind this improvement 
lies in the model’s exposure to a more extensive range of 
variable and diverse samples, fostering increased 
robustness 

2) Multiscale Feature Learning: The application of our 
multi-scale feature learning technique to the Mask RCNN 
model with the ResNet50 backbone significantly increases 
the test mIOU from 0.8841 to 0.9027. This noteworthy 
improvement highlights the potential loss of vital 
information when only one feature is selected from the FPN 
and others are discarded. The discarded features may 
contain crucial details contributing to enhanced 
segmentation. Consequently, our approach, involving 
attention-driven concatenation of all features, proves more 
effective, as substantiated by the achieved results. 

3) Cross Spatial Attention Module: Mask RCNN, 
coupled with Multi-Scale Feature Learning alone, attains a 
respectable 0.9027 mIOU. However, upon incorporating the 
cross-spatial attention approach, we observe a significant 
boost in performance, achieving an mIOU of 0.9107 with 
ResNet50 backbone and 0.9133 with ResNeXt101 
backbone. Leveraging the strengths of U-Net in 
medical-domain semantic segmentation, we produce 
guiding features for each region proposal which play a 
crucial role in directing the model on where to focus within 
the guided features generated for that specific region 
proposal from the FPN. Thus, employing the Cross Spatial 
Attention module enables us to harness the outstanding 
abilities of one model to guide another effectively. 

B. Visualization of Test Outputs 

We conduct a comparative analysis between the instance 
segmentation masks generated by Model A, based on Vanilla 
Mask RCNN with data augmentations and a ResNeXt101 
backbone, and our proposed Model B with MSFL and CSAM. 
The results obtained on the test images are presented in Fig. 5. 
Our analysis reveals that Model A struggles to effectively 
distinguish between individual cell instances when they 
appear cluttered together, often predicting multiple 
overlapping masks. Consequently, the boundaries of the cells 
exhibit irregularities and lack coherence. In contrast, our 
proposed model produces smooth boundaries, significantly 
reducing boundary errors. It excels in clearly distinguishing 
between cells clustered together, presenting a substantial 
improvement over Model A. These findings underscore the 
superior performance of our proposed model, emphasizing its 
potential applicability in diverse image segmentation tasks. 

 
(a)                             (b)                            (c) 

Fig. 5. Sample Outputs: (a) Input image (b) Predicted Segmentation masks 
using Vanilla Mask RCNN. (c) Predicted Segmentation masks using Mask 
RCNN that also incorporates our proposed MSFL and CSAM. We observe 
that the quality of segmentation mask improves and the model is able to 
better distinguish between overlapping cells and cell borders. 

C. Comparison on Model Size 

We note that transitioning from ResNet50 (A) to 
ResNeXt101 (B) as the backbone of the baseline Mask 
RCNN results in an augmentation of approximately 63 
million trainable parameters, with only a marginal increase of 
0.84% in mIoU. Conversely, the incorporation of the MSFL 
technique leads to a minimal increment of 0.5 million 
trainable parameters in Mask RCNN, accompanied by a 
notable improvement of 1.86% in mIoU. Subsequently, the 
addition of CSAM results in a mere increase of 0.1 million 
parameters over Mask RCNN with MSFL, yet yields an 
improvement of 0.80% in mIoU as compared to it, 
underscoring the significance of the CSAM module. This 
highlights the lightweight nature of the CSAM module 
alongside its substantial impact on performance. 

D. Assessing Model Generalizability with Another 
Dataset 

We train our refined model using a similar approach on 
another dataset of yeast cell segmentation in microstructures 
and evaluate its performance using the mean Average 
Precision@[0.5:0.95], a widely used metric for instance 
segmentation. Results obtained on this dataset are presented 
in Table 2. Compared to the baseline vanilla Mask R-CNN, 
our model demonstrates improved performance on the 
secondary dataset, achieving a 1.86% increase in 
mAP@[0.5:0.95]. This validation underscores the robustness 
and adaptability of our proposed segmentation approach 
across diverse biological contexts. 

 
Table 2. Experimental Results on Yeast Cell dataset: Comparison of baseline 

Mask R-CNN with the outcomes achieved with our proposed multiscale 
feature learning and cross-attention module 

Model Backbone mAP@[0.5:0.95] 
Mask RCNN ResNeXt101 0.7504 
Mask RCNN+MSFL ResNeXt101 0.7608 
Mask RCNN+MSFL+CSAM ResNeXt101 0.7690   

V. CONCLUSION 

In our ablation study on the SegPC dataset, we examined 
the impact of crucial factors, such as model backbone, 
training augmentations, Multiscale Feature Learning, and the 

International Journal of Machine Learning, Vol. 14, No. 4, 2024

117



  

Cross Spatial Attention Module, on instance segmentation 
performance. The comprehensive experiments and 
summarized results underscore the effectiveness of our 
proposed modifications. Notably, we achieved a substantial 
improvement in mIOU by incorporating augmentations, 
utilizing advanced backbones, applying MSFL, and utilizing 
the lightweight CSAM. Our model demonstrated superior 
performance compared to the baseline Mask RCNN, 
exhibiting enhanced segmentation accuracy, smoother 
boundaries, and an improved ability to distinguish between 
clustered cells. 

In addition to the compelling results on the SegPC dataset, 
we extended our analysis to a yeast cell segmentation dataset, 
further validating the versatility of our proposed model. This 
cross-dataset validation consistently demonstrated improved 
performance, affirming the adaptability and robustness of our 
approach across diverse instance segmentation scenarios. 

Importantly, the CSAM, as a lightweight module, not only 
contributed to the observed positive outcomes but also 
showcased its potential for easy integration into other 
domain-specific segmentation tasks. These findings 
emphasize the broader applicability and efficacy of our 
proposed model, establishing it as a valuable tool for various 
image segmentation challenges. 
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