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Abstract—The World Health Organization recommends 
routine immunological and virologic monitoring for all patients 
with Human Immunodeficiency Virus (HIV) infection. However, 
viral load and lymphocyte T CD4 (LTCD4) count analysis 
requires sophisticated equipment and qualified human 
resources. This creates a financial burden, especially in limited 
resource settings. Thus, there is a need for alternative 
approaches. One such alternative is machine learning (ML), 
which offers a more cost-effective solution. In this study, five 
highly optimized data-driven models for LTCD4 prediction 
were designed based on popular ML techniques: support vector 
machine (SVM), random forest (RF), logistic regression (LR), 
artificial neural networks (ANNs), and naive Bayes (NB). To 
guarantee the robust performance of the proposed algorithms, 
we meticulously scrutinized the optimal approach for 
constructing models. Furthermore, we analyzed the predictive 
capabilities of LTCD4 according to multiple thresholds of the 
total lymphocyte count. Moreover, an imbalance-aware strategy 
to overcome the aforementioned issue was adopted using the 
synthetic minority oversampling technique. The cutoff points 
for the number of lymphocytes “1100” had the best performance 
in predicting the LTCD4 count. SVMs, RF, NB, LR, and ANNs 
provided an area under the curves of 97%, 93.2%, 90%, 92.01%, 
and 93%, respectively. SVMs achieved better results in 
predicting LTCD4 in all metrics. The results offer novel 
perspectives on LTCD4 forecasting, presenting opportunities to 
enhance initiatives aimed at developing web-based systems. 
These systems could alleviate the financial burden associated 
with measuring LTCD4 in patients with HIV infection, 
particularly in resource-constrained settings. 

Keywords—HIV, CD4 T lymphocyte count, total lymphocyte 
count, machine learning 

I. INTRODUCTION

policy interventions is crucial for minimizing variations in 
LTCD4 levels. Reliable LTCD4 count forecasting and 
proactive analysis are undeniably of great interest and 
necessity. Most studies have been conducted on LTCD4 
variation. The latter is a complex mechanism influenced by 
multiple contributing factors such as the HIV viral load, 
antiretroviral therapy, coinfections, age, and adherence to 
medical care factors [4]. Although previous research offers 
valuable perspectives on fostering positive safety practices, it 
is imperative to acknowledge that during the LTCD4 count 
prediction process, diverse modeling techniques yield distinct 
performance measures. In this context, machine learning (ML) 
models have demonstrated superiority over statistical 
analyses in forecasting future events and have documented 
satisfactory outcomes [5]. Support vector machines (SVMs) 
and artificial neural networks (ANNs) are among the most 
substantial ML techniques that have been used for LTCD4 
count prediction  [6]. It has been asserted that the SVM model 
has the capability to manage small data sizes, exhibits 
excellent performance in mitigating overfitting issues, and 
demonstrates superior generalization abilities [7]. Conversely, 
ANNs have garnered widespread acclaim because of their 
proficiency in handling diverse and complex tasks. They have 
progressively gained recognition for their capacity to acquire 
data representations in both supervised and unsupervised 
settings, coupled with parallel processing, fault tolerance, and 
efficiency in generalizing to unseen data samples through 
hierarchical representations [8]. In the literature pertaining to 
LTCD4 prediction, techniques such as SVM and ANNs are 
recognized as prominent and effective because of their robust 
theoretical foundations. Nevertheless, these ML algorithms 
encounter a significant challenge in achieving optimal 
performance results, prompting the exploration of parameter 
optimization strategies. Previous research has demonstrated 
that for enhanced performance metrics in the SVM model, 
optimization of the penalty factor (C) and kernel parameter 
(c) is crucial. The optimization of SVM was executed using
the grid search method, which is a widely adopted and proven
efficient approach for tuning the model's hyperparameters [9].
Similarly, ANNs optimization can be realized by tuning the
number of layers, input and hidden neurons, weights, etc. A
trial-and-error strategy along with the dropout regularization
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Human Immunodeficiency Virus is known to be one of the 
major concerns and threatening problems encountered by 
societies, resulting in many health issues, economic losses, 
and fatalities. The World Health Organization (WHO, 2023) 
reported that 40.4 million (32.9–51.3 million) people are 
currently living with ongoing HIV transmission worldwide 
[1]. Throughout HIV-related care and support programs, the 
LTCD4 counts are used for progression monitoring and 
treatment response assessment [2, 3]. Therefore, 
understanding the conditions under which changes in CD4 
count significantly influence the development of effective 



  

method [10] and early-stop approaches were used to achieve 
this objective. The k-fold cross-validation technique was 
adopted to evaluate the classification performance. It has 
been recognized for its susceptibility to yield minimal bias 
and variance in contrast to the other validation methods, 
including the leave-one-out method [11]. In the context of 
current research, SVM and ANNs model applications 
represent a significant advancement in statistical modeling. 
These techniques not only address the limitations of 
traditional methods but also align with the overarching 
objectives of statistical analysis to provide accurate, reliable, 
and interpretable results [6, 12]. By leveraging these 
advanced ML approaches, researchers can achieve more 
precise predictions and gain deeper insights into their data, 
thereby pushing the boundaries of what can be achieved 
through statistical modeling hence advancing our 
understanding and ability to predict future events [12]. Data 
necessary for LTCD4 count prediction systems can be 
gathered through various experimental formats, including 
numerical registries in hospitals [13]. Selecting data mining 
studies in the field of healthcare has been growing in recent 
years. As such, routine complete blood count (CBC) and 
LTCD4 count using flow cytometry (FCM) have been 
recorded during patient follow-up. CBC and FCM analyses 
have vital effects on progression monitoring and treatment 
response assessment in HIV-positive patients [3]. 
Furthermore, it was found that there were an estimated 39.0 
million [33.1–45.7 million] people living with HIV at the end 
of 2022, two-thirds of whom (25.6 million) are in the WHO 
African Region [1]. Even though several studies that 
examined the variation of LTCD4 count, research 
investigating the prediction of LTCD4 count is relatively 
limited. Another instrumental factor in the prediction of 
LTCD4 count is the imbalanced dataset. Addressing the latter 
presents a challenging procedure that scholars are 
endeavoring to refine by leveraging various technologies. In 
pursuit of this objective, Chawla et al. (2002) [14] introduced 
the synthetic minority oversampling technique (SMOTE), 
recognized as one of the most potent resampling algorithms  
to solve the imbalance issue by producing synthetic instances 
from the minor class. Extensive research has proven that 
SMOTE has a better efficiency than undersampling and 
oversampling techniques [15, 16]. To our current 
understanding, limited to no research has been conducted to 
comprehensively develop the proposed models for predicting 
LTCD4 counts while incorporating the SMOTE imbalance-
aware learning strategy and using CBC and FCM input 
outcomes across diverse thresholds of total lymphocyte count 
(TLC). As such, the objectives of this paper are twofold: (1) 
to ascertain the reliability of TLC as a substitute for LTCD4 
count because TLC is easily obtained from CBC by 
constricting five predictive models of type classification, 
considering two classes (<200 and ≥200) and (2) to adopt an 
imbalance-learning strategy based on the SMOTE technique 
to develop optimized ML models for LTCD4 count. 

II. MATERIALS AND METHODS 
A cross-sectional and analytic investigation was 

undertaken involving 511 patients with HIV infection 
recruited from the immunology laboratory at Mohammed VI 
University Hospital (Northern African country) over a 3-year 

period (2017–2019). The patients were selected from the 
laboratory database based on their receipt of both CBC and 
LTCD4 count assessments. Additionally, they were clinically 
categorized according to the staging criteria of the Centers for 
Disease Control and Prevention (CDC)[17]. Every patient 
was diagnosed as having HIV in accordance with WHO 
recommendations, using combination tests that identify both 
HIV antibodies and antigens for early and precise diagnosis. 
The study exclusively considered patients meeting the 
following criteria: (i) those whose immunological status had 
been evaluated at the immunology laboratory and (ii) those 
with comprehensive medical records. Among the 800 patients 
listed in the hospital registry, 511 were included in our study, 
whereas 289 were excluded because they did not meet the 
specified eligibility criteria. 

A. Laboratory Testing 
A 2-mL sample of venous blood was collected from each 

patient with HIV on an empty stomach at each time point. 
Blood cells were analyzed by FCM (FACSCan II, BD 
Biosciences, San Jose, CA) using a combined 
CD3/CD4/CD8/CD45 multitest reagent (BD Biosciences, 
San Jose, CA), allowing the absolute number of lymphocyte 
subsets to be measured and analyzed. All tests were 
completed <4 h after venous blood collection. Meanwhile, 
CBC was measured by routine blood testing using Sysmex 
XN (Kobe, Japan). 

B. Data Preparation Procedure 
Patient data essential for the study were reviewed 

thoroughly, and individuals meeting the eligibility criteria 
were subsequently included. The dataset was transferred to 
Microsoft Excel 2010, where it underwent scrutiny and 
filtration before being exported to statistical analysis software 
(R software). The analysis primarily concentrated on 
parameters such as LTCD4 count, CD8 T cell count, CBC, 
and CDC stage. The normality of continuous variables was 
evaluated through distribution tests. 

C. Methodology 
The methodology used in this study conducts a 

comprehensive evaluation of various lymphocyte count 
thresholds using ML and deep learning (DP) algorithms. The 
primary aim is to construct a model for predicting LTCD4 
counts by incorporating the most pertinent factors and 
deploying the most effective “ML/DP” algorithms. The 
predictive model is a binary classification model designed to 
ascertain whether an HIV-positive patient will have an 
LTCD4 count <200. To the best of our knowledge, the 
exploration of LTCD4 count predictions through the 
application of diverse algorithms considering different TLC 
thresholds has not been previously investigated. 
Consequently, a three-step process is being considered [18]: 
pretreatment, variable selection, and construction of 
predictive models (Fig. 1). Preprocessing of the dataset is 
performed to address the problem of unbalanced class 
distribution. Variable selection is used to find a set of relevant 
features to have a robust forecast. Thus, five different models 
are built: logistic regression (LR), random forest (RF), SVM, 
ANNs, and naive Bayes (NB). Furthermore, ensuring the 
absence of data leakage is imperative for maintaining the 
integrity of predictive modeling in experimental research. 
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Data leakage occurs when information from the test set 
influences the training process, leading to overly optimistic 

model performance [19]. To fortify against such pitfalls, 
meticulous considerations were taken [20] (Fig. 2). 

 

 
Fig. 1. Overview of the proposed decision framework. 

 

 
Fig. 2. Data leakage mitigation strategy. 

1) Preprocessing 
The ratio between the two classes <200 or ≥200 of LTCD4 

has generated unbalanced data; such imbalances result in a 
bias toward the majority class. The classification models 
prioritize the class with a higher number of observations 
resulting in an overestimation of this class [21]. 
Preprocessing aims to solve this problem by balancing the 
distribution of classes across the dataset. In this paper, 
SMOTE was adopted [14]. SMOTE creates minority 
instances based on random intervals between cases. 
2) Variable selection 

After the preprocessing phase, reducing the number of 
input variables through variable selection is a crucial step for 
classification models because some of these characteristics 
may have no significant effect on the dependent variable. 
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Thus, there will be an increase in error estimation [22]. 
Therefore, it is important to inspect our data to determine 
which variables appear to be strong predictors. The RF model 
has been widely adopted for variable selection [23]. Thus, 
nine variables (Fig. 1) were reduced to one (TLC) by the 
selection process (Fig. 3). The natural history of untreated 
HIV infection has opposing effects on circulating LTCD4 and 
CD8 T lymphocytes [24]. Before HIV depletes CD4 cells, 
circulating CD8 cells will typically increase in response to the 
infection [22]. In the setting of antiretroviral therapy, some 
patients will restore CD4 counts and experience a decline in 
CD8 counts. For other individuals, however, despite 
suppression of the virus and improvement of CD4 levels, the 
high levels of circulating CD8 cells are maintained [22]. The 
imbalance in the game of T cells leads us to suspect that CD8 
T lymphocytes may false our results. In our clinical setting, 
CD8 T lymphocytes are not used for monitoring HIV-positive 
patients. Consequently, we examined the distribution of both 
CD8 T lymphocytes and LTCD4 in the remaining 289 
patients who did not meet the eligibility criteria but had CD8 
T lymphocyte counts documented in their records. Our 
analysis led to the conclusion that CD8 T lymphocytes do not 
exert any influence on LTCD4 (Fig. 4). 
 

 
Fig. 3. Variable importance ranking using Gini impurity index. 

 

 
Fig. 4. Distribution and correlation between CD8 T lymphocytes, CD4 T 

lymphocytes and TLC. 
 
3) Predictive models 

a) Logistic regression  
In this study, we use LR to forecast LTCD4 by leveraging 

TLC, formulating the task as a binary outcome prediction 
endeavor. Acknowledging the pivotal significance of 
accurate LTCD4 count predictions in clinical decision-
making within the field of immunology, our investigation 
explores the intricate association between TLC and the binary 
categorization of LTCD4 counts. Using the logistic function, 
we convert continuous predictors, specifically TLC, into 
probabilities, refining the model through iterative coefficient 
adjustments facilitated by advanced optimization algorithms 

[25]. Coefficients and odds ratios provide measurable 
indicators of the influence of TLC on the probability of being 
categorized into specific LTCD4 count groups. Concurrently, 
performance metrics such as accuracy, sensitivity, and 
specificity assess the model's effectiveness in predicting 
binary outcomes [26, 27]. LR can be described as follows: 

 

 
b) Random forest 
The “random forest” algorithm (or RF sometimes also 

translated as decision tree forest) was proposed by Leo 
Breiman and Adèle Cutler in 2001 as a statistical prediction 
or ML algorithm. In the realm of predictive modeling for 
binary outcome prediction, with a focus on forecasting 
LTCD4 counts based on TLC, the RF algorithm stands as a 
methodological cornerstone. This ensemble learning 
approach, characterized by the aggregation of numerous 
decision trees, intricately navigates the complexities inherent 
in immunological data, offering both robustness and 
interpretability [28]. The methodological rigor of our inquiry 
initiates with the meticulous curation of a diverse patient 
cohort, encompassing comprehensive demographic and 
medical history data [29]. The modeling framework hinges 
on the dependent variable, signifying binary outcomes 
corresponding to distinct LTCD4 count categories, and the 
independent variable, TLC. The RF method operates by 
generating multiple decision trees, with each tree being 
trained on a subset of the data and using a random subset of 
features at each node [30]. This diversity mitigates overfitting 
and enhances the algorithm's generalization capabilities. The 
final prediction is a consensus derived from the aggregation 
of individual tree predictions, resulting in a robust, ensemble-
based model [30]. The ensemble nature of RF imparts a layer 
of stability and reliability to predictions, a critical aspect of 
clinical decision-making. RF can be described as follows: 
 

ŷ
 

c) Support vector machine 
Developed by V. N. Vapnik (1995) [31], SVM is a 

nonprobability binary linear classifier that can be used to 
solve a classification problem by constructing an optimal 
hyperplane separation to maximize the margin for SVM to 
have good generalization capability. SVM is very effective 
and robust for binary-type classification problems and to 
perform proportionally or better than other statistical and ML 
methods [32]. The overarching objective is to contribute to 
the refined understanding of the intricate relationship 
between these immunological variables, leveraging SVM's 
discriminative capabilities. We meticulously define our 
variables, with the dependent variable representing binary 
outcomes indicative of distinct LTCD4 count categories, and 
the independent variable being the TLC. The SVM algorithm, 
a powerful tool in the domain of ML and statistical modeling, 
operates by delineating hyperplanes within a high-
dimensional feature space [33]. This endeavor aims to 
maximize the margin between different LTCD4 count 
categories, effectively capturing the decision boundaries that 
best segregate these categories. Kernel functions, 
thoughtfully selected, facilitate nonlinear transformations, 

International Journal of Machine Learning, Vol. 14, No. 3, 2024

100



enabling the algorithm to capture intricate relationships that 
may exist between TLC and LTCD4 count categories. The 
training process involves identifying support vectors, which 
are the critical data points influencing the position and 
orientation of the optimal hyperplane [33]. Subsequently, 
mathematical optimization techniques are used to iteratively 
modify hyperplane parameters, aiming for maximum 
segregation between the binary LTCD4 count categories. In 
the ensuing scholarly discourse, the results are situated within 
the wider context of immunology, emphasizing the 
algorithm's adeptness in discerning complex relationships in 
data and its sensitivity to optimal feature selection. 
Recognizing the mathematical elegance of the algorithm and 
the challenges inherent in its kernelized operations, potential 
challenges, such as vulnerability to outliers and nuances in 
parameter tuning, are considered and addressed [34]. SVM 
can be described as follows: 

d) Artificial neural networks
ANNs are conceptual methodologies inspired by biological

neural networks and proven effective and applicable in 
predicting the relationship between dependent and 
independent parameters. The forecasting capability of ANNs 
is significantly influenced by its structure, comprising an 
input layer, hidden layers, and an output layer. Each layer 
consists of an interconnected arrangement of units referred to 
as neurons or nodes, which excel in processing extensive 
parallel calculations and representing knowledge [35]. This 
algorithm, inspired by the structure and functioning of the 
human brain, meticulously navigates the intricacies of 
immunological data. ANNs comprise interconnected layers 
of nodes, or neurons, where each connection is assigned a 
weight [36]. These weights are iteratively adjusted during the 
training process to optimize the model's performance. The 
architecture includes an input layer representing features, 
hidden layers facilitating complex transformations, and an 
output layer providing predictions [37]. The nonlinear 
activation functions inherent in each neuron empower the 
network to capture intricate relationships within the data. 
Findings derived from the ANNs model reveal insights into 
the complex and nonlinear dynamics existing between TLC 
and binary LTCD4 count categories. The model's adaptability 
allows it to identify patterns that may pose challenges for 
conventional algorithms. The interpretability concern 
associated with neural networks is mitigated through the 
scrutiny of influential neurons and rankings based on feature 
importance. ANNs can be described as follows: 

+ b)

e) Naive Bayes
Operating within the Bayesian paradigm, this algorithm

navigates the complexities of immunological data with the 
precision required for clinical decision-making [38]. NB, 
rooted in probabilistic reasoning, uses Bayes' theorem to 
estimate the probability of a patient belonging to a specific 
LTCD4 count category given their TLC. The “naive” 
assumption underlying this algorithm is the independence of 

predictor variables, an oversimplification that nevertheless 
enables computational efficiency and expeditious model 
training [39]. In the context of our investigation, this implies 
assuming independence between TLC and LTCD4 count 
categories. The algorithm iteratively calculates the 
probability of a patient falling into each LTCD4 count 
category, given their TLC. The decision criterion involves 
selecting the category with the highest probability [39]. This 
Bayesian approach accommodates incremental updates to 
probabilities as new data are introduced, fostering 
adaptability to evolving clinical scenarios. The model's 
simplicity, interpretability, and computational efficiency 
make it an attractive option for certain binary classification 
tasks, albeit with the acknowledgment of its “naive” 
independence assumption. Although the algorithm's 
oversimplification may be perceived as a limitation, its 
robustness and ease of interpretation contribute to its 
relevance in specific clinical contexts. NB can be described 
as follows: 

P(H|E) = 

D. Assessment of the Quality of the Model
Various performance measures are frequently used to

assess the quality of classification models. They are taken 
from the contingency table [40]. The contingency table 
allows the evaluation of the performance by calculating true 
positive, false positive, false negative, and true negative. In 
this work, positive predictive value, sensitivity, accuracy, G-
mean, F1 score, and area under the curve (AUC) 
measurements were used. The metrics for model quality 
assessment are presented and described as follows: 

Recall also called the true-positive rate (TPR) or 
sensitivity, is defined as the proportion of correctly 
classified positives. Recall is a particularly substantial 
metric of classifier performance in this case. 

Precision is a measure of accuracy outlining the relevance 
ratio of the predicted elements, i.e., the percentage of truly 
predicted events from all predicted events. 

G-mean is considered a metric of stability between the
correct classification of positive and negative classes
viewed independently. It is usually adopted to resist the
imbalances in the dataset [41].

F1 score is a highly informative measure as it considers 
both precision and recall measures, thus taking the class-
balance issue into account. 

The positive predictive value (PPV) reflects the 
proportion of positive results. It answers the question, “If 
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I have a positive test, what is the probability that I have 
the disease?” 

across various lymphocyte counts. The model yields high 
AUC values (92.01%), signifying commendable 
discriminative power. However, a notable trade-off between 
precision and recall is observed, requiring careful 
consideration of this balance in the clinical context. RF 
(Table 2) emerges as a robust performer, exhibiting 
noteworthy performance across diverse lymphocyte counts. 
Its resilience in handling imbalanced datasets, reflected in 
high G-mean values (88.18%), positions it as a strong 
candidate. The model's competitive AUC (93.2%) values 
underscore its efficacy in discriminating between positive and 
negative instances. ANNs (Table 3) displays also competitive 
performance, characterized by high precision (90%) and 
recall (85%) in most cases. Its adaptability in capturing 
complex patterns within the data, coupled with high AUC 
values [93%], highlights its effectiveness in predicting 
LTCD4 counts. SVM (Table 4) demonstrates strong and 
consistent performance, particularly excelling in precision 
(91%) and recall (95%). The high AUC values (97%) affirm 
its ability to effectively discriminate between positive and 
negative instances. SVM’s efficiency in handling intricate 
data relationships positions it as a promising choice for 
LTCD4 count prediction. Although NB (Table 5) exhibits 
generally good performance, its metrics tend to be slightly 
lower compared with those of other models. 

Fig. 5. Performance of all models to predict CD4 T lymphocytes 
<200/mm3 using the threshold 1100/mm3 of lymphocyte count. 

Table 1. Positive predictive value, recall, F1-score, G-mean, AUC and precision using Logistic Regression to predict CD4 T lymphocytes <200/mm3 using 
different threshold of total lymphocyte count 

Models lymphocyte count  Positive predictive value Recall F1-score G-mean AUC Precision 

Logistic regression 

1000 78.26 72 75 75.06 87 78.5 
1100 84 83 83.22 83.22 92.01 85.33 
1200 85 60 70.03 71.13 86 76 
1300 82.14 61.33 70.22 71.0 88.05 75.6 
1400 62 76 68.26 72.7 84.25 70.5 
1500 80.5 72 76.05 76.11 87.18 79.5 
1600 75.14 70.6 73.10 73 88.52 77 
1700 64.13 78.6 70.65 71.02 81 73 

Table 2. Positive predictive value, recall, F1-score, G-mean, AUC and precision using Random Forest to predict CD4 T lymphocytes <200/mm3 using 
different threshold of total lymphocyte count 

Models lymphocyte count Positive predictive value Recall F1-score G-mean AUC Precision 

Random forest 

1000 85.71 75 80.17 79.05 91 86.05 
1100 93.33 82.35 87.66 88.18 93.2 88.57 
1200 84.62 73.33 79 81.45 93 88.37 
1300 90.4 82.61 86.45 87.02 92 87.23 
1400 73.6 78 75.7 79.6 92 80 
1500 89.74 85 87.20 88.57 90 89.13 
1600 77.6 75 76.37 75 89 75 
1700 81 70 75.26 77 80 79.31 
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AUC measures the overall performance of the binary 
classification model. Both TPR and false-positive rates 
range between 0 and 1. The AUC measures the probability 
that the model will assign a randomly selected positive 
instance a higher predicted probability compared with a 
randomly selected negative instance [42]. 

The data were partitioned into training and validation sets 
for model formation and validation 10-fold cross-validation 
was adopted. This method is recognized for its susceptibility 
to yield minimal bias and variance in contrast with the other 
validation methods, including the leave-one-out method [43]. 
Moreover, k-fold cross-validation has been known to prevent 
the overfitting issue in the estimation of performance [44]. 
Data were trained using nine subsets of the input space, and 
the remaining subset was used to evaluate the performance of 
predictive learners. The training was repeated 10 times, 
leaving out one subset that had already been used as a training 
dataset in the previous training. 

III. RESULTS AND DISCUSSION

To demonstrate the validity of the classification models, 
the optimization of the parameters for each classifier was 
performed. To cope with unbalanced data, SMOTE has been 
used to rebalance classes; when it comes to unbalanced data, 
accuracy may suffer because of bias toward the majority class 
[21]. Therefore, it is essential to select the appropriate 
measures to evaluate the classifier. Several metrics measure 
the model's performance, such as AUC, positive predictive 
value, sensitivity, G-mean, and F1 score. The average 
prediction of these performances is based on cross-validation, 
and the results for different classification models are 
presented in Tables 1–5 and Fig. 5. Based on the results of 
different models, it appears that the threshold of lymphocyte 
counts of 1100 had the best performance to predict LTCD4 
count. LR (Table 1) demonstrates consistent performance 

⚫



  

Table 3. Positive predictive value, recall, F1-score, G-mean, AUC and precision using Neural Network to predict CD4 T lymphocytes <200/mm3 using 
different threshold of total lymphocyte count 

Models lymphocyte count Positive predictive value Recall F1-score G-mean AUC Precision 
 
 
 
Neural network 

1000 80.3 81 80.6 83.5 82.4 76 
1100 89.50 85 87.2 90 93 90 
1200 80.7 85.1 80.31 83 82 76.3 
1300 80 84.21 82.05 85.64 85.6 78 
1400 87.50 77.78 82.53 82.73 85.2 82.7 
1500 83.33 77.78 75.67 78.88 86.3 79.07 
1600 79.3 71.43 77 79.5 75.54 81 
1700 73.5 75 74.24 74.2 70 76.74 

 
Table 4. Positive predictive value, recall, F1-score, G-mean, AUC and precision using Support Vector Machine to predict CD4 T lymphocytes <200/mm3 

using different threshold of total lymphocyte count 
Models lymphocyte count Positive predictive value Recall F1-score G-mean AUC Precision 
 
 
 
SVM 

1000 82 85 83.4 81.5 95 82 
1100 87 95 91 92 97 91 
1200 80 85 84.2 84 98 84 
1300 77 81 79 81.4 95.9 82 
1400 81 83 82 84 95 84 
1500 85 68 75.5 82.04 96.3 95 
1600 89 84 86.4 88.3 95.07 90 
1700 81 93 86 86.2 96 86 

 

 
Average life expectancy has increased significantly over 

the past century as a result of advances in technology [32]. 
Healthcare is one of the largest industries in the world that 
can capitalize on the advances in technology [45]. The term 
“machine learning” is used to describe various statistical 
techniques that allow computers to learn from experiences 
without being explicitly programmed. ML has many 
applications in healthcare systems, such as big data tools and 
mandatory procedures, like electronic health records [13]. 
ML enhances the quality of automation and smart decision-
making in primary and tertiary care and public health systems, 
which could be the biggest effect of ML tools and can 
improve the quality of life of billions of people worldwide 
[46]. As cutting-edge technology grows in popularity in the 
healthcare industry, it produces high-performance computing, 
fast, reliable, and able to process large and complex data. 
Automated ML helps health professionals deliver high-
quality patient care, with more efficiency [47], and to make 
better-informed decisions. The use of ML in healthcare 
settings allows physicians to recommend treatments or even 
reduce drastically its severity. It is especially important in 
patients with HIV infection, where lymphocyte depletion, 
mainly of the LTCD4 cell subset due to immunodeficiency, 
has been recognized as a hallmark for monitoring patients 
with HIV infection [48]. Enhanced accessibility to 
monitoring tools, particularly LTCD4 count and viral load 
testing for individuals undergoing antiretroviral therapy, 
holds significant importance [49, 50]. Nonetheless, in low-
income countries, restricted availability of advanced 
immunoassays necessitates reliance on clinical staging for 
patient follow-up. Ideally, the WHO advocates for the routine 
adoption of combined immunological and virologic 

monitoring in all patients with HIV infection [51]. However, 
the analysis of viral load and LTCD4 count requires not only 
sophisticated equipment but also highly skilled personnel 
(WHO, 2006) [52]. This gives rise to substantial financial 
constraints, especially in settings with limited resources [53]. 
Consequently, there is a pressing need for more cost-effective 
alternative approaches. Thus, a threshold analysis was 
performed in this study using ML and DL algorithms to 
determine the ability of TLC to predict LTCD4 count. The 
results of this study demonstrate that near-accurate predicted 
levels were achieved using SVM, ANNs, LR, RF, and NB 
with an “1100” lymphocyte count as a threshold. SVM 
outperforms all algorithms with a classification precision of 
91%. However, high-precision algorithms are not always 
synonymous with better performance. Therefore, the choice 
of algorithm should consider the specific context and 
requirements of the application. High-precision algorithms 
may not always be the best choice if they come with 
significant computational costs or lack interpretability [54, 
55]. A balanced approach that takes into account multiple 
performance metrics, computational efficiency, and model 
interpretability is essential for selecting the most appropriate 
algorithm for a given task. This comprehensive evaluation 
framework ensures that the chosen algorithm delivers optimal 
performance across all relevant dimensions, rather than 
excelling in just one. This balanced view is supported by 
several corroborative studies, which affirm the reliability of 
these principles and the importance of considering a broad 
range of performance metrics when evaluating algorithmic 
performance [56, 57]. Other metrics such as AUC are 
considered robust measures for imbalanced data [58]. AUC is 
a pivotal metric, providing a comprehensive assessment of 
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Table 5. Positive predictive value, recall, F1-score, G-mean, AUC and precision using Naïve Baiyes to predict CD4 T lymphocytes <200/mm3 using 

different threshold of total lymphocyte count 
Models lymphocyte count Positive predictive value Recall F1-score G-mean AUC Precision 
 
 
 
Naive baiyes 

1000 80 79 79.5 82 89 82 
1100 97 86 89 80.3 90 85 
1200 82 86 84 86 91 86 
1300 85 86 85.4 87 93 87 
1400 78 73 75.17 79 85 80 
1500 77 81 79 81.5 89 82 
1600 84 75 79.24 81.7 87.8 83 
1700 73 75 73.9 76.9 82 77 

 



discrimination ability. The AUC values for five different 
algorithms with an “1100” lymphocyte count as a threshold 
are as follows: LR (92.01%), RF (93.2%), ANNs (93%), 
SVM (97%), and NB (90%). These percentages represent the 
models' ability to distinguish between positive and negative 
instances, with higher values indicating superior 
discriminatory power. The practical implications of a 5% 
difference in AUC between SVM and LR models are 
noteworthy. In predictive modeling, a higher AUC indicates 
improved discrimination, indicating that the SVM model, 
with its 97% AUC, exhibits superior performance compared 
with the LR model, which has an AUC of 92.01%. However, 
it is crucial to interpret these differences contextually. 
Although the SVM model excels in discrimination, achieving 
a 5% higher AUC, the LR model's unique strength lies in its 
interpretability. LR allows for the calculation of marginal 
effects for each variable, providing insights into how changes 
in predictors affect the probability of a positive outcome. This 
interpretability is particularly valuable in real-world 
applications and decision-making scenarios, offering a 
transparent understanding of the contribution of individual 
features to the predicted outcome. In the context of HIV 
prediction tasks, this 5% difference in AUC could translate to 
a more nuanced understanding of the discriminative 
capabilities of the SVM model over LR. Although SVM 
excels in capturing complex, nonlinear relationships, LR's 
interpretability allows for the identification of specific factors 
contributing to the likelihood of HIV prediction. This insight 
is crucial in a medical context, where understanding the 
influence of various variables on the prediction can inform 
targeted interventions and decision-making processes. In 
other words, the 5% difference in AUC between SVM and 
LR models signifies a trade-off between discriminative power 
and interpretability. The SVM model demonstrates superior 
discrimination, whereas the LR model offers a transparent 
understanding of variable contributions. Depending on the 
specific goals of the HIV prediction task, stakeholders may 
prioritize either model based on their distinct strengths – the 
nuanced interpretability of LR or the discriminative 
capability of SVM. Other evaluation metrics such as recall, 
positive predictive value, G-mean, and F1 score showed 
superior performance for SVM over the rest of the algorithms 
used in this paper. Hence, SVM can be used to develop cost-
effective web-based prediction models to help forecast 
patients' future LTCD4 count changes without performing 
costly LTCD4 immunoassay. Actually, in many developing 
countries, the main challenges are the scarcity of expensive 
machines such as FCM, frequent machine breakdowns, lack 
of timely and proper maintenance, and lack of reagents [59–
61]. With large datasets available on HIV/AIDS, the use of 
data-based predictive models is increasingly being explored. 
As a result, the use of these models could be an alternative to 
overcoming LTCD4 account challenges in resource-
constrained contexts. Furthermore, a study that used decision 
trees and RF algorithms revealed that the TLC, hemoglobin, 
and total platelet counts have significant prognostic value for 
monitoring HIV/AIDS clinical progression [62]. Comparable 
predictive performance accuracies of data mining algorithms 
were reported by previous studies [63, 64]. An RF algorithm 
was applied to HIV FCM data to predict LTCD4 immune 
reconstitution outcomes [64]. Wang et al. compared RF and 

SVM algorithms to accurately predict the virologic response 
of patients with antiretroviral treatment [65]. RF has 
identified that the LTCD4 count cutoff value of 400 cells/µL 
was a power classifier [65]. A study from the UK reported 
that RF and SVM models can produce predictions of 
virological response to HIV treatment [65]. In light of our 
findings and the existing body of research, ML algorithms 
emerge as a compelling solution for predicting LTCD4 
counts in resource-constrained settings. It is recommended 
that governments leverage big data methodologies to 
implement predictive models for LTCD4 counts. The insights 
gained from this study not only advance the field of HIV 
prediction but also offer valuable methodologies that can be 
translated to other domains, including sustainable energy 
management. For instance, in areas prone to natural disasters 
or those undergoing rapid environmental changes, accurately 
predicting resource needs and understanding the effect of 
these changes is critical. Our approach can be tailored to 
address specific local conditions, providing targeted solutions 
that improve resilience and sustainability [66]. By integrating 
ML techniques into the design of energy optimization 
strategies, we can enhance the adaptability and 
responsiveness of these strategies to local ecological 
disturbances [67, 68]. Nevertheless, our study has several 
limitations. The dataset has a low number of observations. 
ML/DP algorithms usually work best when used with a large 
number of data points and variables [69]. Therefore, one of 
the limitations of this study is that it did not include important 
variables that are known to be potentially associated with the 
LTCD4 count such as the viral load [63], types of 
opportunistic infections, and nutritional status of the patient. 
Future studies need to consider including these variables if a 
more robust classification result is to be achieved. However, 
because of resource constraints, viral load is unavailable in 
many developing countries [70]. Hence, HIV care in these 
countries is dependent on periodic LTCD4 count and WHO 
clinical staging. Future studies also need to test more 
algorithms, preferably ones that can predict the absolute 
count. 

IV. CONCLUSION

The data of this study allowed defining a threshold of 
lymphocyte counts of 1100 to predict the LTCD4 count using 
machine learning models: Random Forest, Naive Bayes, 
Support Vector Machines, Logistic Regression, and Artificial 
Neural Networks. In accordance with similar studies, the 
results of this study indicate that machine learning algorithms 
have the potential to replace costly immunoassays in 
resource-limited regions by building web-based system 
prediction that can help providers monitor patients' health 
status and make recommendations for better management, 
prognosis, and resource allocation. 
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