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Abstract—Pneumonia is an inflammation of the lungs which 
is caused by bacteria, viruses, mold, and less commonly by 
environmental toxins. Pneumonia is extremely prevalent 
worldwide and is the number one cause of death among children 
under the age of five and is the most common reason for 
hospitalization for adults. Chest X-rays are a common medical 
tool for diagnosing this illness, but must be analyzed by trained 
radiologists, which is often time consuming and expensive. 
Therefore, it would be beneficial to have an accurate automated 
system for diagnosing pneumonia from radiological diagnostic 
imaging. A variety of machine learning techniques have been 
applied to the problem of medical image diagnostics and have 
exceeded the accuracy of the average radiologist. Medical 
datasets often suffer from a sparsity of training examples, so 
data augmentation is often necessary.  Here we implement an 
auxiliary classifier generative adversarial network method 
which generates synthetic X-ray images which augment the 
training of a discriminator network.  The described method has 
an accuracy of 97.7% when trained on the Pneumonia MNIST 
dataset, which is composed of low-resolution pediatric chest X-
rays. Given the common difficulty of acquiring significantly 
sized medical datasets, the network was trained on a range of 
datasets sizes to determine the impact on performance given a 
smaller population of pneumonia examples. Even when trained 
on a subsample containing only 20 examples, the network 
achieves an impressive 84.54% accuracy.  This system could be 
used in areas lacking proper medical personnel or act as a 
verification tool for diagnosticians. 

Keywords—auxiliary classifier generative adversarial 
network, Auxiliary Classifier Generative Adversarial Network 
(AC-GAN), neural network, pneumonia, X-ray, pediatric, 
machine learning, medical diagnostics 

I. INTRODUCTION

Pneumonia is a serious and potentially life-threatening 
respiratory infection that is caused by a variety of pathogens, 
including bacteria, viruses, mold, and is less commonly 
caused by environmental toxins. Pneumonia is characterized 
by an infection in the lungs, which leads to inflammation and 
the accumulation of fluid in the air spaces. It is a leading 
cause of death among children under the age of five 
worldwide [1], but it can impact people of all ages. 1.5 million 
people in the U.S. visit the emergency department each year 
due to this affliction [2] and in 2019, 2.5 million people died 
from pneumonia worldwide [3]. 

Diagnosing pneumonia can be challenging and often 
requires the analysis of chest X-rays by trained radiologists. 
However, this process can be time consuming, expensive, and 
subject to significant occurrence of misdiagnoses [4–6]. To 
address this challenge, researchers have developed a variety 
of machine learning techniques that are capable of diagnosing 
pneumonia from radiological diagnostic imaging with high 
accuracy. These techniques often outperform the accuracy of 
the average radiologist and have the potential to improve the 

efficiency and effectiveness of pneumonia diagnosis. 
One approach that has been shown to be highly accurate is 

the use of an Auxiliary Classifier Generative Adversarial 
Network (AC-GAN). This method involves the training of 
two neural networks: a discriminator network that is trained 
to distinguish between real and synthetic X-ray images, and a 
generator network that is trained to generate synthetic X-ray 
images that are indistinguishable from real ones. These 
synthetic X-ray images are used to augment the training of 
the discriminator network, improving its ability to accurately 
distinguish between real and synthetic X-ray images [7]. 

In this paper, we describe an auxiliary classifier GAN (AC-
GAN) method for generating synthetic X-ray images to 
augment the training of a discriminator network for the 
diagnosis of pneumonia. The AC-GAN method was trained 
on the Pneumonia MNIST dataset [8], which is composed of 
low-resolution pediatric chest X-rays. The described method 
achieved an accuracy of 97.7%, demonstrating its potential 
for use as an automated system for diagnosing pneumonia 
from radiological diagnostic imaging.  

The use of machine learning techniques such as the 
described AC-GAN method has the potential to revolutionize 
how pneumonia is diagnosed and improve the efficiency and 
effectiveness of healthcare diagnostics. A potential 
application of this method is for machine learning-based 
decision support systems for radiologists. These systems 
could provide an additional layer of verification for 
radiologists when interpreting chest X-ray images, 
potentially leading to more accurate diagnoses [9]. This 
system could be particularly useful in areas where there is a 
shortage of trained medical personnel [10].   

The remainder of the paper is organized as follows: Section 
II, Literature Review; Section III, Materials and Methods; 
Section IV, Results and Discussion; and Section V, 
Conclusion. 

II. LITERATURE REVIEW

Neural network-based methods are growing in popularity 
and are increasingly finding a wide range of implementations 
over every imaginable field.  Neural networks applied to 
medical imaging diagnostics have shown promising results in 
a wide variety of medical applications.  Data from medical 
diagnostic tools such as Magnetic Resonance Imaging (MRI), 
Computer Tomography (CT), X-ray images, EKG, and 
ultrasound. X-ray, MRI, CT, and EKG have trained deep 
learning algorithms, and have been shown to effectively 
detect and diagnose a wide range of diseases [11]. 
Researchers have implemented neural network techniques to 
detect COVID-19, breast cancer, and Parkinson’s [12]. 
Machine learning has been shown to exceed the diagnostic 
accuracy of trained medical personnel over many medical 
domains.   
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During the COVID-19 pandemic’s global spread, Marques 
et al. (2020) leveraged the EfficientNet architecture within a 
convolutional neural network (CNN) framework to develop 
an automated diagnostic tool for detecting COVID-19 from 
chest X-ray images. By conducting binary and multi-class 
classification experiments, the research achieved remarkable 
accuracy rates of 99.62% and 96.70%, respectively. These 
results underscore the potential of advanced deep learning 
techniques in enhancing medical diagnostics, offering a 
significant tool for healthcare professionals in managing the 
pandemic [13]. 

Alamir et al. performed an in- depth meta-analysis of 
various GAN networks, including cGAN, IAGAN, and AC-
GAN, in medical applications using data from MRI, CT, X-
ray, and ultrasound images.  Their paper covered a variety of 
diagnostic analyses related to diseases of the brain, heart, 
liver, lung, and kidney, highlighting their applications in 
medical imaging for tasks such as cross-modality translation, 
data augmentation, anomaly detection, classification, and 
image reconstruction [14].  

Akpinar [15] offered a comprehensive comparison of 
different deep convolutional neural networks (DCNNs). 
Specifically, AlexNet, ResNet-50, and GoogLeNet were 
applied to chest X-ray datasets for pneumonia classification. 
This study not only compared the performance of these 
models but also examined various pre-processing techniques, 
identifying the most effective model with a top accuracy of 
91.45%. 

Ayan et al. [16] explored the efficacy of two convolutional 
neural network (CNN) models, Xception and Vgg16, for 
diagnosing pneumonia, which utilized transfer learning and 
fine-tuning methodologies during the training phase. 
Comparative analysis revealed that the Vgg16 model slightly 
outperformed Xception in overall accuracy with scores of 
87% and 82%.  

Röglin et al. [17] introduced innovative methods to 
generate synthetic data from a modest dataset comprised of 
2D MRI scans of the spine. By evaluating the synthetic data 
with a classification network, the study demonstrates the 
beneficial impact of synthetic data augmentation on 
improving the original data’s classification results. One 
method proved efficient in generating synthetic imagery from 
fewer than 50 images, presenting a viable strategy for 
augmenting datasets related to rare diseases.  

Cala et al. [18] leveraged the strengths of ACGANs by 
generating images conditional on labels, to augment data for 
pneumonia detection from chest X-ray images. The 
integration of ACGAN-generated images with pretrained 
CNN models, especially ResNet-18 and variants, markedly 
improving model performance. This enhancement 
underscores the effectiveness of ACGAN-generated images 
in introducing variability to the training set. 

III. MATERIALS AND METHODS 

A. Overview of AC-GAN Methodology 
The Auxiliary Classifier Generative Adversarial Network 

(AC-GAN) is a machine learning technique that is used to 
classify data and generate synthetic data that is 
indistinguishable from real data. The network consists of two 
primary components: the discriminator and the generator 
networks. The discriminator network is trained to distinguish 

between real and synthetic data, as well as classes in the data.  
The generator network is trained to generate synthetic data 
that is indistinguishable from real data.  The block diagram of 
the AC-GAN network architecture is depicted in Fig. 1. 

 

 
Fig. 1. AC-GAN network. 

 
The AC-GAN technique is an extension of the standard 

Generative Adversarial Network (GAN) architecture. The 
GAN architecture is trained using a min-max function, which 
is a type of optimization that involves finding the balance 
between the two conflicting objectives. This function causes 
the generator network to minimize the performance of the 
discriminator network, while causing the discriminator 
network to maximize its performance.  

Min
𝐷𝐷

max
𝐺𝐺

 𝑉𝑉(𝐷𝐷,𝐺𝐺) = 𝐸𝐸𝑥𝑥∼P𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[log𝐷𝐷(𝑥𝑥)]                      

+𝐸𝐸𝑧𝑧∼𝑃𝑃𝑧𝑧(𝑍𝑍)[𝑙𝑙𝑙𝑙𝑙𝑙(1 −𝐷𝐷(𝐺𝐺(𝑧𝑧))]                    (1) 

The “min-max” objective (Equation 1) is composed of two 
parts: the “min” component, which represents the 
optimization problem for the discriminator network (D), and 
the “max” component, which represents the optimization 
problem for the generator network (G). The min-max 
objective can be considered a two-player zero-sum game, 
where the discriminator attempts to maximize its 
performance while the generator is trying to minimize its 
performance. The goal of the equation is to find a balance 
between these two objectives, such that the generator 
generates realistic synthetic data that is indistinguishable 
from real data, and the discriminator accurately distinguishes 
between real and synthetic data. This formula expresses the 
adversarial nature of the technique [19]. 

The min-max objective is defined as the sum of two values: 
1) The value of the log probability that the discriminator 
assigns to real data, 𝐸𝐸𝑥𝑥∼P𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[log𝐷𝐷(𝑥𝑥)] . This term 
represents the performance of the discriminator on real data.  
2) The value of the log probability that the discriminator 
assigns to synthetic data, 𝐸𝐸𝑧𝑧∼𝑃𝑃𝑧𝑧(𝑍𝑍)�log (1 −𝐷𝐷�𝐺𝐺(𝑧𝑧)��. This 
term represents the performance of the discriminator on 
synthetic data generated by the generator. By optimizing the 
min-max objective, the generator can continuously improve 
its ability to generate synthetic data that is indistinguishable 
from real data, and the discriminator can improve its ability 
to distinguish between real and synthetic data. This process 
repeats until the generator and discriminator reach a Nash 
equilibrium, when they generate and distinguish synthetic 
and real data with equal ability. 

The difference between the two architectures is that the 
AC-GAN includes an additional classifier component that is 
trained to predict the class label of the input data. This 
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classifier network is known as the auxiliary classifier.  The 
overall goal of the AC-GAN is to find a balance between 
these two objectives, such that the generator network 
generates synthetic data that is indistinguishable from real 
data, and the discriminator network accurately distinguishes 
between real and generated data, as well as distinguish 
between the data class labels [20, 21]. The advantage of this 
process is that the generator acts to augment the actual data 
with generated information, and essentially learns the 
features in the dataset from this generative perspective.  In 
data domains where there is a sparsity of labeled examples, 
commonly the data is modified by mathematical 
transformations, or by adding noise, which serves to augment 
the supply of examples which helps the network algorithm 
generalize and improve accuracy [22]. The use of this 
technique may eliminate the need for traditional 
augmentation methods [23]. In this paper no additional 
augmentation was required to produce high levels of accuracy. 

The objective function for the AC-GAN is composed of 
two parts: 

𝐿𝐿𝑠𝑠 = 𝐸𝐸[log𝑃𝑃(𝑆𝑆 = real ∣ 𝑋𝑋real )])] 
+𝐸𝐸[log𝑃𝑃(𝑆𝑆 = fake ∣ 𝑋𝑋fake )]                      (2) 

where 𝐿𝐿𝑠𝑠 in Eq. (2) is the likelihood of predicting the source, 
and S is the source and X the input image, and P is the 
probability. 

𝐿𝐿𝑐𝑐 = 𝐸𝐸[log𝑃𝑃(𝐶𝐶 = 𝑐𝑐 ∣ 𝑋𝑋real )] 
+𝐸𝐸[log𝑃𝑃(𝐶𝐶 = 𝑐𝑐 ∣ 𝑋𝑋fake )]                         (3) 

where 𝐿𝐿𝑐𝑐 in Eq. (2) is the likelihood of predicting the class, 
and c is the class label.   

The latent space z in an ACGAN is a representation of data 
in a lower-dimensional space that is learned by the model.  In 
this case, random latent space values were presented to the 
input of the generator network, which was used to generate 
synthetic image examples.  This random latent space value 
can be thought of a “seed” for generating images.  These 
synthetic images were sent to the input of the classifier 
network which attempts to both classify the image type and 
determines if it is real or generated by the generator. Note that 
the generator begins with a smaller dimension latent space 
value and expands on this information layer by layer in the 
network into a higher dimensional image. Conversely, the 
classifier takes the higher dimension image data and 
compresses it layer by layer in the network into the low 
dimensional classes and real/synthetic outputs [24]. 

B. Network Architecture  
Discriminator: The purpose of the discriminator is to 

classify the input images so therefore the outputs of the 
discriminator consist of the real/not real output and the class 
label outputs. The real/not real output uses the sigmoid 
activation function and indicates the probability of whether 
the input image is real or generated by the generation network.  
The class label out output is a probability of the image 
belonging to each class via the SoftMax activation function, 
like any given multi-class classification neural network 
model, and is optimized using categorical cross entropy.  

Generator: The output of the generator network is the 
image intended to fool the discriminator.  The inputs are the 
latent dimension and real/not real.  The image output is 28×

28 which matches the size of the training data.  

 
Fig. 2. Generator network. 

 

 
Fig. 3. Discriminator network. 
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The network parameters and layer types for the generator 
and discriminator are detailed in Figs. 2–3. 

C. Dataset 
The machine learning techniques in this paper have been 

trained and tested using the Pneumonia MNIST dataset. The 
Pneumonia MNIST dataset has been widely used for the 
development and evaluation of machine learning algorithms 
for automated pneumonia diagnosis and are composed of 
low-resolution pediatric chest X-ray images [25]. The dataset 
consists of 5,232 images divided into two classes: normal and 
pneumonia. The images were obtained from children aged 1 
to 5 years and were annotated by trained radiologists. This 
dataset was originally composed of 5,856 anterior-posterior 
(front view) chest X-Ray images which have a range of sizes: 
(384×127)–(2,916×2,713).  The final images in the dataset 
are one byte grayscale values from 0 to 255 and have been 
cropped and resized to a resolution of 28×28 pixels. The 
dataset consists of 5,332 training images and 524 test images. 
The training data contains 1,835 normal and 3,497 
pneumonia examples, while the test data consists of 135 
normal and 389 pneumonia samples. Fig. 4 displays two 
pneumonia and two normal images from the data set.  

A significant challenge in the use of automated pneumonia 
diagnosis is the variability in the appearance of pneumonia on 
chest X-ray images. Pneumonia can manifest as a range of 
patterns on chest X-ray images, including nodules, infiltration, 
and consolidation, which can be difficult for machine 
learning algorithms to classify accurately. Also, the 
extremely low resolution of the Pneumonia MNIST images 
can make it difficult to discern the subtle features that may be 
predictive of pneumonia. 

D. Implementation 
The implementation of the Auxiliary Classifier Generative 

Adversarial Network (AC-GAN) was carried out using 
Python, a versatile programming language known for its 
efficacy in data analysis and machine learning tasks. The 
open-source libraries TensorFlow, Keras, and Scikit-learn 

each played valuable roles in the development process. 
TensorFlow, renowned for its powerful computational 
abilities, was employed for building and training neural 
network models, thanks to its robust handling of large 
datasets and its capability to perform complex numerical 
computations. Keras, an open-source neural network library, 
was utilized as an interface for TensorFlow, providing a more 
user-friendly platform to rapidly design the neural network 
architecture. Scikit-learn was implemented for pre-
processing the data and for evaluating the model’s 
performance using various metrics. 

The training and testing were conducted on the Kaggle 
platform, which provided a conducive environment for 
machine learning experiments. The use of Kaggle’s P100 
GPU acceleration was a strategic choice, significantly 
reducing the computation time and enhancing the efficiency 
of the training process. This setup was particularly 
advantageous for handling the intensive computational 
demands of training the AC-GAN model. 

 

 
Fig. 4. Pneumonia MNIST dataset: pneumonia and normal images. 

 
Table 1: Performance metrics for full dataset 

Training Examples Normal/Pneumonia Accuracy Precision Sensitivity Specificity F1 AUC 
1835/3497 0.9779 0.9701 0.9846 0.9556 0.9701 0.9968 

 
For data augmentation, we moved away from standard 

techniques and instead capitalized on the unique strengths of 
the AC-GAN’s generator network. This method allowed us 
to synthetically expand our dataset, producing additional 
training images. This approach not only supplemented our 
dataset but also introduced a level of diversity in the training 
examples, which is often crucial for the robustness and 
generalizability of machine learning models. By generating 
new, synthetic images, the model was exposed to a broader 
range of data scenarios, aiding in its ability to learn and adapt 
more effectively. 

IV. RESULTS AND DISCUSSION 
After training, the generator network synthesizes realistic 

X-ray images that closely mimic those from the dataset. Fig. 
5 depicts two synthesized images from the trained generator 
network. These images are difficult to distinguish from the 
originals in Fig. 4. 

 
Fig. 5. Normal (left) and Pneumonia (right) synthesized images from the 

generator network. 
 

The F1, precision, sensitivity, specificity, and accuracy 
metrics were employed to evaluate the performance of the 
network. These metrics are calculated using the following 
formulas: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                            (4) 
 

International Journal of Machine Learning, Vol. 14, No. 3, 2024

80



  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                           (5) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                          (6) 

   𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  

               (7) 

  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+ 𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                     (8) 

Each reflects a different aspect of the diagnostic ability of 
the network. True Positives (TP) refer to the instances where 
the network correctly identified pneumonia cases, whereas 
True Negatives (TN) indicate the correctly identified normal 
cases. Conversely, False Negatives (FN) represent the 
pneumonia cases that were incorrectly classified as normal, 
and False Positives (FP) denote normal cases mistakenly 
identified as pneumonia. These metrics are crucial for 
understanding the model’s diagnostic accuracy in different 
scenarios.  These values are shown in Table 1. 

Fig. 6 depicts a collation of these metrics in a confusion 
matrix. This matrix is a valuable tool for visualizing the 
model’s performance across all categories, offering an at-a-
glance understanding of its accuracy in diagnosing 
pneumonia using the full Pneumonia MNIST dataset. The 
confusion matrix not only quantifies the true and false 
diagnoses but also illustrates the balance between sensitivity 
and specificity, two key indicators of a diagnostic tool’s 
effectiveness. 

Comparative results including area under the curve and 
accuracy values are shown in Table 2. The ACGAN method 
is compared to several of the popular CNN models, such as 
ResNet, AutoKeras, and Google AutoML Vision. The 
proposed ACGAN method outperformed all other methods. 

While the Pneumonia MNIST dataset contains a generous 
number of example images, large medical datasets are often 
difficult to acquire due to the rarity of certain conditions.  To 
evaluate the adaptability and effectiveness of the ACGAN 

technique on smaller samples, the full dataset was divided 
into a range of smaller symmetrical datasets.  Detailed in 
Table 3, the network was also trained on 2000, 200, 20, and 
10 image datasets composed of half normal and half 
pneumonia images. There was only a very small difference of 
0.27% in accuracy between the full 1835/2497 test dataset 
and the reduced, 1000/1000 version. Stepping down the 
training set by an order of magnitude to 100/100 reduced the 
accuracy to 95.04%, which is still an excellent result. The 
miniscule 10/10 training set saw a significant performance 
decrease to 84.54%, but this is still a good level of 
performance, especially considering the size of the dataset. 

 

 
Fig. 6. Confusion matrix for ACGAN trained on complete dataset. 

 
Table 2. Comparative performance metrics 

Performance Comparison 
Network AUC Accuracy 

ResNet-18  0.956 86.4% 
ResNet-50 0.962 88.4% 
Auto-sklearn 0.942 85.5% 
AutoKeras 0.947 87.8% 
Google AutoML Vision 0.991 94.6% 
ACGAN (Proposed) 0.997 98.7% 

 

Table 3. Performance metrics for network trained on reduced training sets 
Training Examples Norm/Pneumonia Accuracy Precision Sensitivity Specificity F1 AUC 

1835/3497 0.9779 0.9701 0.9846 0.9556 0.9701 0.9968 
1000/1000 0.9752 0.9645 0.9794 0.9629 0.9678 0.9929 
100/100 0.9504 0.9318 0.9614 0.9185 0.9657 0.9828 

10/10 0.8454 0.7958 0.8714 0.7704 0.8065 0.8765 
5/5 0.7881 0.7250 0.8432 0.6296 0.7301 0.8466 

 

 
Fig. 7. Confusion matrices for (a) 1000/1000, (b) 100/100, (c) 10/10, and (d) 5/5 training sets. 
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Halving the dataset to 5/5 dropped the performance to 
78.81%, which is still a commendable result, considering the 
extreme sparsity of examples. 

Fig. 7 provides representations in the form of confusion 
matrices (a) through (d) for each of the four reduced datasets. 
These matrices illustrate the performance of our model across 
different training scales, offering a clear interpretation of the 
results. Each confusion matrix corresponds to a specific 
subset of the data – 1000/1000, 100/100, 10/10, and 5/5 – and 
showcases the model’s ability to correctly identify cases of 
pneumonia versus normal cases in each scenario. 

This series of experiments, conducted with datasets of 
varying sizes, not only underscores the resilience and 
adaptability of the ACGAN technique but also emphasizes its 
invaluable potential in contexts where medical data is scarce 
or hard to obtain. The ability of the ACGAN model to 
generate high-quality synthetic data plays a pivotal role in this 
context. By supplementing limited datasets with these 
synthetic images, the network effectively broadens its 
exposure to diverse data scenarios. This adversarial 
augmentation is crucial for enhancing the model’s capability 
to generalize from smaller datasets, a key challenge in the 
field of medical diagnostics. The successful application of the 
ACGAN technique in such constrained data environments 
illustrates its promise in advancing diagnostic accuracy where 
data limitations are a significant obstacle. 

V. CONCLUSION 
Pneumonia is the leading cause of death of children 1 to 5 

years of age worldwide, a sobering statistic that underscores 
the urgent need for improved diagnostic methods. Even when 
radiological imaging equipment is available, there exists a 
shortage of radiologists who can interpret diagnostic images, 
which leads to increased mortality from this treatable illness. 

This paper presents the Auxiliary Classifier Generative 
Adversarial Network (AC-GAN), which demonstrates 
remarkable diagnostic accuracy in identifying pneumonia 
from chest X-rays. With an accuracy rate of 97.7%, our AC-
GAN network not only surpasses other advanced neural 
network models but also outperforms expert radiologists, 
especially when analyzing low-resolution images. Such a 
high level of accuracy is pivotal in settings where high-
resolution imaging is not available. Furthermore, the unique 
image augmentation capability of our model shows 
significant promise, maintaining a high level of diagnostic 
performance even with limited data. Impressively, it achieves 
an accuracy of 84.54% when trained on datasets as small as 
20 patient images, demonstrating its potential in resource-
constrained environments. 

It is hoped that this work could lead to the development of 
machine learning-based decision support systems for 
radiologists, or even a fully automated system for the 
diagnosis of pneumonia. A system based on the techniques 
described herein could lead to more accurate and consistent 
diagnoses, which could potentially reduce worldwide 
mortality. Further research is needed to assess the 
effectiveness of this method in clinical settings, as well as its 
applicability to other medical domains. 
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