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Abstract—Shipping of the goods is crucial for the 
development of the present economy. The transportation may 
be realized in many ways. This work focuses on the Full Truck 
Load (FTL) road transportation model. Such services are often 
realized using external fleet, and then there is a need for a tool 
that compares such offers, i.e. which allows to estimate the 
desired shipping cost. Generally, the FTLs fit to the long range 
routes. Estimation of such contracts is common and can be 
realized with different approaches, like calculators or 
sophisticated machine learning solutions. Apart of that, the 
need for the shipment cost estimation is also required for short 
and very short routes, which frequently support long routes. 
The rules for pricing of the FTL short routes differs from the 
long ones and thus the approaches used differ as well. This work 
presents custom approach specifically focused on that task. The 
assessment is performed using real multi-year contract data of 
several shipping companies operating in the European market. 

Keywords—cost estimation, full truck loads, machine 
learning, regression, clustering, DBSCAN 

I. INTRODUCTION

Full truckload (FTL) constitutes a popular form of goods 
shipping with the goods filling an entire truck. It works well 
for large volumes with one load covering the whole truck. 
There exists an alternative method, i.e. the less than truckload 
(LTL), in which a truck transports partial loads to different 
locations within a single route. This paper focuses on the FTL 
approach, however from a rare and a very specific 
perspective. 

This work considers the case of the external fleet contract 
pricing [1]. It assumes that the contractor uses its own 
dynamic pricing approach [2]. The challenge becomes more 
demanding in case of short routes, when the fundamental 
relationships with fuel costs and the driver work time have a 
secondary meaning. External fleet long range contracts 
pricing can be solved with the use of popular fright cost 
calculators [3], or with the use of artificial intelligence (AI) 
and machine learning (ML) methods [1, 4]. 

The short range external fleet FTL transportation cost 
estimation is not common in the literature. Actually, this 
aspect remains hidden in the overall task and researchers 
practically do not distinguish short routes as separate ones. 
Our observations during the realization of the project are 
clear, despite the modeling method, which we have tested. 
The biggest challenge in the external fleet FTL contracts cost 
estimation and the highest prediction errors appear for the 
short routes and low costs. The general absolute residuum 
measures might seem to be low, while the relative indexes 
remain suspiciously high due to the share of the low cost 

routes. Therefore, we have decided to look closer at this 
aspect and to decompose the problem into two subproblems. 
This work addresses the more challenging task of the short 
routes, while the longer ones are already covered [1]. The 
FTL cost estimation subject is described in Section II. The 
case study and used data are presented in Section III. This 
work proposes a specific approach presented in Section IV. 
Section V assesses the results, and the paper is concluded in 
Section VI. 

II. FTL COST ESTIMATION MODELS

The FTL freight cost estimation model is needed as 
external fleets mostly use dynamic pricing strategies [5]. Any 
additional information about potential cost sources helps, 
especially at the stage of model structure definition. Probably 
a combination of market and non-market factors might be 
useful [6]. Appropriate choice of the input features makes the 
estimation more reliable [7]. 

Contract dependent factors describe the type of the truck 
and the needed specific equipment, ADR (l'Accord europèen 
relatif au transport international des marchandises 
Dangereuses par Route – hazardous materials) or driver 
certificates. Pickup and unload locations determine the route, 
its length and estimated travel time. The loading location and 
its time must be coordinated with the actual drivers 
availability. The literature prefers the blind machine learning 
approaches [8–11] or less frequently complex hybrid ones [1]. 
Those blind ML approaches just take the data as it is and do 
evaluations. Once the data are wrong, falsified, or incomplete, 
the obtained model and its predictions would not work. We 
must remember that wrong data at the input give, wrong 
prediction at the output, no matter how sophisticated the 
model is. 

III. THE CASE STUDY 

The data, which are used to assess the method originate 
from the real data of sample Polish road shipping companies 
[10]. Original dataset consists of some 414,000 records. The 
data, which are taken into account in the current research are 
limited only to the short range contracts, what limits the 
number of data to 18,895 records from the time period from 
January 1st, 2016 to April 30th, 2022. These record are used 
as the training dataset. Separate records starting from May 
1st, 2022 until August 1st, 2022 are taken into consideration 
during validation. The dataset was subject to careful analysis 
and filtering, specifically targeting short-range freight 
originating from and destined for the same regional cluster 
[1]. Finally, validation set includes 619 (see Table 1). 

International Journal of Machine Learning, Vol. 14, No. 3, 2024

70doi: 10.18178/ijml.2024.14.3.1161



Table 1. Number of data records 

 raw data data after pre-processing 

training 414 404 18 895 

validation 14 968 619 

 

A. Data Preprocessing and Features Selection 
Each data record is explained by 22 inputs (independent 

variables). This number is limited to 12, the most important 
ones. This preprocessing is done using the process 
knowledge, shipping operators expertise and data analysis.  

Furthermore, the initial data processing revealed the 
presence of missing data. A number of records within the 
database had missing values that potentially might affect the 
modeling and the training. It was observed that these voids 
occurred consistently across the dataset and could be divided 
into three major groups: missing values for freight distance, 
missing maximum trailer capacity and missing value for 
effective tonne-kilometer of the freight. 

One has to remember that the analysis uses real shipping 
company database, which might have human errors, 
erroneous input values or just the missed ones. 

A precise effort is done to address the recovery of missing 
data. Through an in-depth examination of the data and 
consultations with industry experts, three methods of data 
recovery are employed. 

Firstly, it is observed that missing values for freight 
distance are a result of data export errors. Certain records 
display identical values for total distance traveled and 
distance traveled without load. Given that these records 
feature at least one recorded load and unload event, it would 
be implausible for the entire distance to be covered without a 
load. In such cases, it was assumed that the distance without 
load is considered to be zero. 

Secondly, for instances where maximum trailer capacity 
information is missing, insights from an expert indicated that 
this resulted from a practice of using an empty field to 
indicate the utilization of the default 22-tonne trailer. Data 
are filled according to this information. 

However, the recovery of missing values for tonne-
kilometers proves to be the most perplexing. For the majority 
of records, this value is calculated as follows. Let  
represents the measured distance of the freight, and  the 
measured weight of freight. The transportation work ( ) can 
be determined by Eq. (1) 

 

 . (1) 
 

It is observed that a recovery method based on replacing 
the measured weight with the maximum capacity would not 
suffice, as not all transports utilized the trailer's full capacity. 
To address this fact, a straightforward approximation 
approach is used. First, the weight to capacity ratio  is 
calculated across whole data set, for every filled data point j, 
as presented by Eq. (2) 

 

  (2) 

 

Then, the approximated transportation work is adjusted 
according to the calculated ratio. For every missing data point 

i, the transportation work is calculated as Eq. (3) 
 

 . (3) 

IV. CUSTOM COST PREDICTION MODEL 
The modeling consist of two main phases: structure 

identification (often called as the model design) and its 
parameters identification (denoted as model training).  

A. Model Design 
The first step in model evaluation is to determine, which 

parameters should be included. The dataset contains x 
parameters, and to assess which of them significantly 
influenced the model's quality, a correlation analysis is run. 
For all parameters, the Pearson correlation coefficient 
between parameters and the actual cost value is calculated. In 
order to further expand the input data space, a kernel method 
is used. A series of base functions were proposed to transform 
the original parameters. For the newly obtained inputs, 
another correlation analysis is conducted. 

Based on the correlation analysis, the model construction 
began. Initially, outputs were selected based on the highest 
Pearson correlation coefficient [12]. Then, additional inputs 
are added according to their correlation coefficient values. 
After each addition of a new input, its impact on the model's 
quality is examined. If it significantly affected the model's 
quality, the parameter is considered as important, and is 
added as a consecutive input variable. All inputs are 
presented in Table 2. 

During the model creation process, a significant impact of 
the presence of a refrigeration unit during transportation was 
noticed. A considerable price difference was observed for 
transports with similar parameters but differing in the 
presence of a refrigeration unit. Due to this observation, it 
was decided to create separate models for transports with a 
refrigeration unit and those without. Let  be the trainable 
model coefficients. The final form of the model equations is 
presented in Eq. (4). 
 

 (4) 

 
Table 2. Model inputs 

Kernel 
symbol Kernel description 

 Free term (always 1) 
 Total freight distance 
 Distance traveled with cargo 
 Minimum estimated transit time 

 Maximum estimated transit time 

 Transportation lead time 
 Transportation work – tonne-kilometers 
 Number of loadings 
 Number of unloadings 
 Fuel price 
 Time elapsed since transport completion 
 Total freight distance minus distance traveled with cargo 
 Total freight distance times fuel price 
 Transportation lead time times fuel price 
 Presence of refrigeration unit (1 if present, 0 if not) 
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B. Model Training 
The full original dataset is divided into clusters based on 

regional and transportation specifics using the DBSCAN 
algorithm [13], as described in [1]. Regional characteristics 
of the transported freight may include the state of roads, road 
tolls, long-term freight deals, and much more. The inability 
to identify all regional factors with high certainty leads to the 
search of an alternative, more reasonable solutions. In order 
to reflect these specifics, a cluster-based modeling approach 
is introduced. 

In this approach, the dataset is split into groups, enabling 
the training of multiple models. This ensures that each model 
can capture regional characteristics without requiring explicit 
identification. After all, these specific characteristics is 
deeply embedded within the data. The division of the data is 
presented in Fig. 1 and Fig. 2. 

 

 
Fig. 1. Data points distribution among clusters. 

The Fig. 2 reveals another issue – the training data is not 
uniformly distributed across the devised limits. From the 
presented clustering, three distinct classes of datasets emerge. 
These classes are denoted in this paper as: core, derived, and 
void clusters. Let  represents the minimum number of 
data points necessary for a data to be considered feasible for 
learning purposes. Utilizing this criterion, we categorize the 
dataset clusters according to the following logics: clusters 
containing at least  data points are classified as the core 
clusters. Clusters with fewer points than  yet containing 
at least one point, are classified as the derived clusters. 
Finally, cluster datasets that do not contain any points are 
classified as void clusters. The design parameter value of  
is referred as the ‘training sufficiency threshold’. 

 

 
Fig. 2. Zoomed in data points distribution among clusters. 

The training of cluster models is conducted in two stages. 
Initially, base cluster models ae trained using corresponding 
data sets as normal. Next, the derived models are trained 
using the 'data shuffling' technique. This method is used to 
increase the number of data points in sets containing less than 

 samples. 'Data shuffling' is performed as follows:  
1) Data points of a cluster to be trained are used to 

calculate the objective function output for every base 
model.  

2) The best fitting model is chosen and the 
corresponding data points are introduced to the 
original data set creating a shuffled data set. 

3) The derived cluster model is trained using shuffled 
data set and modified objective function.  

Let assume that the  represents the original objective 
function,  – a priority scalar and ,  base and derived 
data points from the shuffled data set. Then, the shuffled 
objective function is represented by eq. (5) 

 

 . (5) 
 

The approach of data shuffling, as presented, aims at 
taking advantage of similarities between clusters and 
converge similar trajectory in different focal points – derived 
data samples. 

Given the lack of data to train the void models, it is agreed 
to generate void model output with a simple algorithm. The 
proposed idea is to calculate outputs of every base and 
derived cluster model, and then use mean of results as an 
output of the void model. In practical applications, such 
predictions would be flagged as less certain (low quality 
value), as they wouldn’t be supported by the dedicated data. 

Models are trained by minimizing the error between 
observed data and the model's output. The objective function 
is straightforward, taking the model's parameters as 
arguments and returning the error value for those parameters. 
For the purpose of comparison, two types of errors are used 
– mean square error (MSE) and mean absolute error (MAE) 
[14]: 

 

  (6) 

 
 

 
(7) 

 
To implement the training algorithm, the fmincon function 

from the Matlab Optimization Toolbox is used. 
The last addition to the designed objective function stems 

from a practical challenge associated with the real-world 
application of the cost prediction model. From a practical 
standpoint, when a company employs the model to predict 
freight costs and uses these predictions to formulate prices 
for their clients, two scenarios must be taken into account.  

In the first scenario, consider a situation where the model's 
prediction error is negative – indicating that the model 
overestimated the cost. In such a case, if the offered price is 
accepted, the error would lead to additional revenue for the 
company, as it anticipates higher freight costs. 

On the contrary, in the second scenario, if the model's 
prediction error is positive, it may result in an unforeseen 
additional cost for the company. In extreme cases, this 
unexpected cost might even surpass the markup of the freight 
price. Based on the aforementioned scenarios, an asymmetry 
of error effects can be observed. 

To address this asymmetry, the objective function is 
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adjusted, leading to the introduction of the “underestimation 
penalty”. The mechanism of underestimation penalty relies 
on discerning the sign of error, when calculating the objective 
function. Let   represents the underestimation penalty 
coefficient. Consequently, the objective function is defined 
by eqs. (8) and (9). 

 

  (8) 
 

 

  (9) 
 

V. RESULTS 

In the following paragraphs results of the modeling is done. 
Actually, four  different models are assessed: 
mod1: performance index: MSE and ξ=1.0,  
mod2: performance index: MSE and ξ=1.5, 
mod3: performance index: MAE and ξ=1.0,  
mod4: performance index: MAE and ξ=1.5. 

The models are compared with different performance 
indexes. Three main integral indexes: mean square error 
(MSE), mean integral absolute error (IAE) and mean 
percentage integral absolute error (MAPE) are used [14]: 

 
 

 
 

(10) 

 
Apart of standard integral indexes, three statistical 

measures are also considered: normal standard deviation 
(stDev), the robust estimator of standard deviation in form of 
the logistic psi-function estimator [15] (RstDev) and the scale 
factor (b) of the Laplace distribution as in eq. (11), sometimes 
called as the double exponential probabilistic density 
function. 

 
   

(11) 
 
The residuum analysis begins with the evaluation of the 

selected performance indices. Table 3 shows values of the 
evaluated measures. Observation of their values reveals the 
fact that they have extremely large values except the one 
index – the robust standard deviation. This suggest that the 
residua include some extremely large values.  
 
Table 3. Residuum analysis of the considered models for all clusters (green 

color highlights the best predictions according to the selected measure) 

  mod1 mod2 mod3 mod4 

MSE 2.134E+21 1.438E+21 2.054E+27 2.054E+27 

MAE 3.216E+09 2.640E+09 3.155E+12 3.155E+12 

MAPE 5.902E+07 4.845E+07 5.791E+10 5.791E+10 

stDev 4.612E+10 3.786E+10 4.525E+13 4.525E+13 

RstDev 83.45 83.06 65.43 79.39 

scale b 6.400E+09 5.254E+09 6.280E+12 6.280E+12 
 

The review shows that probably there are extremely wrong 
predictions. And its’s the fact. They appear for the cluster that 

have no data as shown in the predictions dataset in Table 4. 
From one perspective it is obviously wrong and should never 
happen. However, it happens. The removal of such data 
without any interpretation or hesitation is an adhockery. 
Simple comparison of a single index might not reveal such a 
situation. Therefore, it’s an occasion to show how to deal 
with such cases. 

At first, we see that the case is detected through the 
comparison of the normal standard deviation and its robust 
counterpart [16, 17]. It is even better observed in the 
prediction error histogram and fitting of the considered 
distribution (normal, robust and Laplace) to it. Fig. 3 presents 
the histogram of the model mod3 prediction error with fitted 
distributions. We clearly see that only robust function works, 
as it is able to deal with outliers, even such the extreme ones. 
A comparison of obtained four robust distributions is shown 
in Fig. 4. 

 
Table 4. Sample of the predictions dataset with highlighted in red color 

extreme outliers for cluster no 30 

group cost m1Cost m2Cost m3Cost m4Cost 

…      

17 611.8 499.0 533.6 1034.6 1656.9 

17 934.0 1112.7 1154.9 400.0 77.5 

17 116.1 535.9 564.3 1038.4 1722.5 

17 1075.9 971.4 1006.2 873.9 549.7 

30 11903.2 6.63E+11 5.45E+11 6.51E+14 6.51E+14 

30 2650.0 6.63E+11 5.45E+11 6.51E+14 6.51E+14 

30 11203.0 6.63E+11 5.45E+11 6.51E+14 6.51E+14 

34 6353.0 3570.8 9472.3 4577.2 4425.4 

…      

 

 
Fig. 3. Sample histogram plots with the fitted Laplace, normal and robust 

Gaussian distributions for the mod3. 

 
Fig. 4. Comparison of the robust Gaussian PDFs. 
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The review of the results points out that once the extreme 
outliers are considered the model mod2 is the best one. The 
robust index RstDev points out the model mod3. This 
observation is quite obvious as model mod2 is derived 
through the minimization of the MSE index, while mod3 is 
derived using the MAE index. We clearly see that outliers 
affect the prediction models assessment, especially the 
extreme ones. Finally, the quality of the models is compared 
using the box plot (see Fig. 5), which is independent on the 
data statistical properties and therefore objectively visualizes 
unspecified data. 

Now, let see what happens once we remove those three 
extreme outliers. Table 5 presents the respective indexes. We 
clearly see that the values for indexes are comparable.  

 

 
Fig. 5. Box plot models’ comparison for all data. 

Moreover, the model mod3 is indicated as the best one, 
which means that the outliers do not affect the assessment. 
The model mod1 is pointed out by MAPE index, which can 
be caused by the fact that mod1 gives better prediction for 
lower costs, contrary to the mod3. 

 
Table 5. Residuum analysis of the considered models with rejected an 

extremely outlying cluster 

 mod1r mod2r mod3r mod4r 

MSE 1400829 1108582 621617 989934 

MAE 201.7 190.3 179.3 190.8 

MAPE 35.56 37.63 37.10 39.31 

stDev 1183.9 1053.7 788.5 995.8 

RstDev 82.57 82.11 64.63 78.29 

scale b 209.8 189.7 167.8 192.3 

 

 
Fig. 6. Sample histogram plots with the fitted distributions for the mod34 

(extreme outliers removed). 

Next, the histograms are evaluated. Fig. 6 presents 
histogram plot for the best performing model mod3r, while 

Fig. 7 similar plot for the worst model mod1r. We see that 
gaussian distribution is significantly flat, what is caused by 
still existing and serious outlying residua. Laplace 
distribution is less affected by them, however only the robust 
version of the Gaussian distribution represents data 
properties to the highest possible extent. 

The comparison of all four models is shown in Fig. 8, 
presenting all fitted robust distributions in a single plot. We 
can better observe the prediction error improvement. The 
model mod3r significantly outperforms the others. 

 

 
Fig. 7. Sample histogram plots with the fitted distributions for the mod1r 

(extreme outliers removed). 

 
Fig. 8. Comparison of the robust Gaussian PDFs for the data without 

extreme outliers. 

Analogously to the all data case, the Fig. 9 displays the 
boxplot for the case of data without extreme outliers. The 
very good thing is that the boxplots are very similar, what 
means that this form of the residuum analysis is not affected 
by the outliers, even the extreme ones. 
 

 
Fig. 1. Comparison of the models with the box plot for the data without 

extreme outliers. 

This part of the analysis does  not depend on the extreme 
outliers, as their position on the plots is far away of the 
diagrams borders and as they are not. 

The comparison of the IAE and MAPE suggest that the 
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estimation quality may be related to the shipping cost. One 
of the ways to detect it is to analyze the predicted versus the 
real costs relationship. Fig. 10 shows this plot for all four 
models. 

The review of this plot allows to confirm several 
hypotheses. First, the majority of observations are for low 
costs with a few larger outliers. We also see, which models 
better work for these outlying observations. The extreme cost 
of 14000 exhibits the lowest residuum for the model mod3, 
while the mod1 model is the worst.  

However the lowest costs are the most interesting from the 
process perspective, as short routs should be realized with 
low costs, while high values are human errors or rare, 
probably hybrid contracts (parts of intermodal routes).  

 

 
Fig. 10. The predicted versus real cost for all models 

Fig. 11 presents the same plot, but focused on the low cost 
predictions. We observe the impact of the underestimation 
penalty coefficient , as the predicted costs of mod2 are 
higher the those for mod1 and similar relationship is visible 
for mod3 and mod4.  

 

 
Fig. 11. The predicted versus real cost for all models – highlighted low 

costs 

The dependance between an error and the route cost can be 
better visualized with the diagram shown in Fig. 12, which 
presents the relation between prediction error and the real 
shipping cost. This dependence is well visualized with the 3rd 
order polynomial fitting of the residuum to the real cost. 

The interpretation of this relationship is disturbed by the 
outlying contracts. Fig. 13 highlights the prediction errors for 
route costs below 1200 PLN. This pictures confirms the 
effect of the underestimation penalty coefficient . 

Finally, Fig. 14 shows the same data but for o group of the 
lowest costs, less than 300 PLN. One should assume that this 
part of data should be the most representative for contracts. 
We observe clear relation prediction cost versus the real cost. 
And this part of contracts are predicted in a more reliable way 
than the others. 

 
Fig. 12. The relationship between the model quality (prediction error) and 

the route shipping cost. 

 
Fig. 13. The relationship between the model quality (prediction error) and 

the route shipping cost – highlighted low costs. 

 
Fig. 14. The relationship between the model quality (prediction error) and 

the route shipping cost – highlighted the lowest costs. 

Above analysis and stipulations show the subject of the 
short FTL routes predictions is more difficult than the long 
routes predictions [1]. 

As the subject is very specific, therefore the specific 
approach is used, as classical methods as the Extreme 
Gradient Boosting XGBoost [18] or k-NN (k Nearest 
Neighbors) estimator [19] are not sufficient. 

One may feel dissatisfied due to the lack of comparison of 
the presented results with other solutions. The explanation 
for this fact has already been mentioned in the introduction. 
This task is not considered separately in the literature so far 
and it is difficult to refer to similar works. 

Observation of the results enables not only to indicate 
prediction effectiveness. The fact that a particular estimators 
is better or worse according to some index is insufficient. It’s 
worth to try to trace the reasons for such results using a  root-
cause analysis [20]. 

V. CONCLUSIONS 
This paper presents a proposal for the novel cost modeling 

approach for the FTL contracts in case of the dynamic pricing 
of the third-party transportation companies. The solution 
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focuses on the short routes, which appear to be much more 
difficult and are seriously affected by the outliers, even the 
extreme ones. There are several reasons for these outlying 
data: human errors, interconnected contracts or a subscription 
model of pricing. 

In the presented example, the non-Gaussian nature of the 
phenomenon and the distribution of errors is demonstrated, 
which should preclude the use of the MSE index or the 
Gaussian normal PDF. Shipping processes are associated 
with a lot of outliers resulting in fat tails. An this is a classic 
human  behavior on data. 

The subject demands further understanding of the 
fundamental process behind the process, deep  understanding 
of human influence. 

The analysis of the FTL shipping is an ongoing challenge. 
The deeper we dig into the subject, the more options appear. 
As usual, the further you go, the more complicated things 
become.  

Customize solutions sometimes work, sometimes not. The 
intuition, which is behind them might be misleading. But still, 
we believe that it’s better to use even the small trace of the 
information then use blind man black box approach. 

Discussion of the method and its limitations suggest 
directions for further improvement. One perspective 
direction is to accommodate the approach using more 
specific understanding of the real shipping contracts behind 
the data. The next is to find the balance between relative and 
absolute errors. However, it should be remembered that this 
issue is universal and applies to the modeling task as such, 
regardless of the method used and the field of application. 
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