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Abstract—This paper explores the three variants of Long 

Short-Term Memory (LSTM) deep learning models for the 
analysis and prediction of univariate time series data to develop 
better understanding of the spread of COVID-19 pandemic. 
The COVID-19 pandemic continues to significantly impact 
public health, medical and industrial infrastructure, and the 
economy. Many researchers are working on various 
computational and mathematical models to analyze the 
underlying causes of transmission and spread of COVID-19. 
Accurate predictive models for COVID-19 will be significant as 
they will help us better manage the resources of health care 
professionals and medication to combat the COVID-19 
pandemic. This study explores three deep learning models 
based on the Long Short-Term Memory (LSTM) cells to 
analyze and predict sequential data. These models are vanilla 
LSTM, bidirectional LSTM, and stacked LSTM. The models 
were trained and tested using the univariate time series data of 
daily trends in number of COVID-19 cases in the United States. 
Data was collected from the Centers for Disease Control and 
Prevention website (CDC) from January 23, 2020, to May 25, 
2022. The models were trained using the first 743 samples and 
tested on the last 104 samples. The models were implemented 
using TensorFlow, and KerasTuner was used to optimize the 
hyperparameters of LSTM networks. The prediction accuracy 
of three models was compared using the metric of Mean 
Absolute Percentage Error (MAPE). It was found that 
bidirectional LSTM gave the best accuracy. 
 
Keywords—Long Short-Term Memory (LSTM), deep 

learning, univariate time series, data, COVID-19, comparison 
of different LSTM models 

I. INTRODUCTION 

In 2019, scientists discovered a novel coronavirus, later 
called COVID-19 in Wuhan, China. COVID-19 is a highly 
transmissible respiratory disease that transfers from person to 
person through contact [1]. Soon after its discovery, the 
disease rapidly spread across the world. In March 2020, the 
World Health Organization (WHO) proclaimed COVID-19 a 
global pandemic, given that it was affecting all countries 
worldwide. The Centers for Disease Control and Prevention 
(CDC) confirmed the first case of COVID-19 in the United 
States on January 20, 2020, in Washington, DC. More than 
486 million COVID-19 cases and over six million deaths 
were documented. 

Accurate prediction of the COVID cases will enable the 
medical community to better manage the staffing and other 
infrastructure needed to handle the new patients. The 
conventional techniques for times series prediction are based 
on mathematical and statistical methods and other generic 
machine learning models. The shallow neural network-based 
techniques are not efficient in handling the long-term 

dependencies in sequential data [2]. 
Deep learning techniques have been deployed effectively 

in many complex real world prediction issues, including time 
series forecasting [3]. Deep learning has proven its ability to 
be successful at navigating the noise and chaos in time series 
predictions. LSTM is not only effective at capturing 
information about sequence, but also can be customized to 
only use relevant features from the training data and 
incorporate temporal correlations. In this research, several 
forecasting models are evaluated for time series prediction of 
confirmed cases, deaths, and recoveries. 

II. LITERATURE REVIEW 

Different mathematical and machine learning models have 
been used to investigate the pandemic parameters and 
eventually guide the pandemic response. For instance, 
Cooper, Mondal, and Antonopoulos [4] analyzed the 
effectiveness of modeling on the pandemic by proposing the 
well-known SIR model. The SIR model can provide insights 
about and predict the spread of the virus in communities and 
populations that recorded data alone cannot provide. The 
researchers looked at the evolution of different populations 
over time and tracked a variety of factors to see how the 
disease progressed in these groups. They concluded that 
COVID-19 can be contained if appropriate limits and strong 
policies are put in place to control infection rates early in the 
spread of disease. 

Several machine learning and deep learning models have 
been trained to diagnose and predict COVID-19. [5] applied 
statistical and machine learning approaches using data 
collected through an online questionnaire to predict potential 
patients of COVID-19. Based on their research, the 
Multi-Layer Perceptron and the Support Vector Machine 
have proven to be most accurate. Domenico Benvenuto [6] 
found that an autoregression ARIMA-based model to predict 
the spread of COVID-19 is successful in short-term 
prediction but not long-term prediction. [7] investigated the 
accuracy of the 2 recurrent neural network model of long 
short-term memory (LSTM), bidirectional LSTM, and 
encoder-decoder LSTM models for predicting short-term 
COVID-19 infection. Their results revealed that the 
univariate encoder-decoder-LSTM model delivers the best 
test performance compared to the rest. In other comparisons 
too, LSTM has proven to have a strong forecasting accuracy. 
In looking at various models’ ability to forecast the stock 
market, including LSTM, SVM, back propagation, and 
Kalman filter for different epochs varying from 10 to 100, 
LSTM demonstrated high accuracy and low variance [8]. [9] 
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compared the performance of different LSTM architectures 
for COVID-19 dataset of India. [10] compared different 
LSTM architectures and hybrid CNN-LSTM for Indian 
Covid-19 dataset. But the hyperparameters were tuned 
manually. However, both [9, 10] relied on Indian COVID 19 
dataset. 

III. BACKGROUND 

A. Time Series Data 

Time series is a sequence of data points recorded over time 
generally equally spaced. It tracks how a given set of data 
changes over time and specifies what factors influence it 
from period to period. Examples of a time series are the daily 
value of the stock market or monthly rainfall over several 
years. 

Any time series can have statistical properties. They may 
include the mean, median, mode, and standard deviation. If 
the statistical properties don’t vary over time, this refers to a 
stationary time series. If they do vary over time, the time 
series is said to be nonstationary. For example, monthly totals 
of international air passengers are considered a stationary 
time series, while the price of bitcoin is a nonstationary time 
series due to many fluctuations over time. Time series data is 
often used in statistical and machine learning applications for 
various tasks such as prediction, classification, and clustering. 
In this research, we have used time-series data to make a 
scientific prediction. 

B. Recurrent Neural Network 

Recurrent neural networks are a type of neural network 
with a feedback loop which enables the output of the current 
node to be fed back into the input. RNNs allow the network 
to keep information from previous steps and use them to 
predict future values. They apply a recurrence relation at 
every time step to process a sequence. RNNs have hidden 
states which function as memory stores for all the 
information computed. RNN is one of the most widely 
implemented deep learning techniques. It has been utilized in 
large applications such as Google Voice, Siri, and Google 
Translate [11]. 

Fig. 1 represents the folded and unfolded RNN. The folded 
version illustrates the general structure of RNN, which has 
input (xt), hidden state (ht), and output (yt).  

 

 
Fig. 1. Folded and unfolded RNN [11]. 

 

A loop allows information to be passed from one step of 
the network to the next. The unfolded diagram represents the 
repeating module in an RNN. The individual’s time steps are 
unrolled across time. Even though the unfolded RNN shows 
several hidden states, it is always within the same block. The 
hidden state can capture past information about the sequence 
up to the current time step. It carries past information by 

applying a linear combination of the previous step and the 
current input. Then it runs them through an activation 
function to obtain the current time output. The key feature of 
RNN is that it uses the same function with the same set of 
parameters at every time step. RNN can model sequential 
data by propagating through time, i.e., both forward and 
backward propagation between units, from the last 
processing level to the first level. 

C. Vanishing Gradient Problem 

The recurrent neural network model can be effective when 
working with short-term contexts but has a long-term 
dependency issue called the “vanishing gradient”. The 
vanishing gradient was first discovered by Joseph Horichter 
in 1991 and later by Yashua Benjio in 1994.  

In a short-term model, the gradient of a loss function in 
each iteration is used to update neural network parameters, 
thus allowing the network to learn. It measures how much the 
function’s output changes if a small change occurs at the 
input. The vanishing gradient problem happens when the 
gradient from backpropagation cannot reach the earlier states, 
and its values become too small, causing the model to stop or 
slow down learning. The RNN doesn’t learn long-range 
dependencies and suffers from short-term memory problems. 
LSTM can overcome these problems effectively [12]. 

D. LSTM 

Long short-term memory, known as LSTM, is a kind of 
recurrent neural network capable of learning long-term 
dependencies. Sepp Hochreiter and Juergen Schmidhuber 
[12] introduced it to address the problem of long-term 
dependencies. LSTM networks have the same control flow as 
a re current neural network. It processes data sequentially, 
passing on information as it propagates forward. Unlike 
RNNs, the operations within the LSTM cell allows the 
network to forget or retain information for a long period of 
time. 

1) LSTM cells 

The core concept of LSTM is cell state and its various 
gates. Fig. 2 shows a basic LSTM cell.  

 

 
Fig. 2. The LSTM cell [13]. 

 

The cell state behaves like long-term memory, which 
stores longer term dependency and patterns. It transfers 
relative information throughout the sequence chain; even 
information from an earlier time step can be transmitted all 
the way to the last time step, thus reducing the effect of 
short-term memory. In the cell state, the gradient is stabilized 
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due to the gate mechanism. It is therefore less likely to have a 
vanishing gradient issue, which is the main problem with 
training RNN. The cell state consists of three gates: an input, 
a forget, and an output gate. The gates are the mechanisms 
that control how information flows into and out of the cell 
state. They allow or deny data the ability to pass through 
during the training process based on the data’s importance in 
making predictions. Gates consist of a sigmoid neural net 
layer with a point-wise multiplication operation. 

2) Repeating LSTM structure 

Fig. 3 shows an illustration of the repeating LSTM 
module. 

 

 
Fig. 3. The repeating LSTM structure [13]. 

 

E. Stacked LSTM 

The original LSTM model consists of a single hidden 
LSTM layer followed by a feedforward output layer. An 
LSTM model with more than one LSTM layer is a stacked 
LSTM architecture. Fig. 4 shows an example of a stacked 
LSTM model. Stacking hidden LSTM layers make the model 
deeper. The depth of neural networks is generally related to 
greater accuracy. The more hidden layers there are, the more 
each layer can recombine learned representation from 
preceding layers and create new representations with higher 
degrees of abstraction [12]. 

 

 
Fig. 4. Stacked LSTM [13]. 

 

F. Bidirectional LSTM 

A bidirectional LSTM is a type of recurrent neural network 
that is trained in two directions (forward and backward) at 
once and can utilize information from both sides. Fig. 5 
shows a bidirectional LSTM. It duplicates the LSTM layer so 
that there are now two layers that are aligned side-by-side. 

 

 
Fig. 5. The unfolded bidirectional LSTM. [14] 

 
Bidirectional LSTM structures use two independent 

LSTM networks. One network is trained in the forward data 

sequence. The other one is trained in a reversed data 
sequence. The individual LSTM cells can learn the context 
from future information by providing a reversed copy of the 
input data. It allows the network to understand the 
relationships between values in both directions. At any 
timestep, the output from each forward and backward cell 
output is concatenated through the activation function to 
produce a single output. Hence the network, at any time, can 
process both the past and future information compared to the 
unidirectional LSTM’s ability to process only past 
information. 

IV. DATASET AND PREPROCESSING 

This section shows how the LSTM network was used to 
predict the daily new cases of COVID-19. The vanilla LSTM, 
stacked LSTM, and bidirectional LSTM were used to 
develop the neural network models. All three models have 
been applied to the same dataset. The accuracy of the models 
is compared by calculating the minimum absolute percentage 
error (MAPE). The models will be fitted using the efficient 
ADAM optimization algorithm and the mean squared error as 
a loss function. The proposed LSTM models were 
implemented in Python 3.9 using Keras API running on top 
of TensorFlow 2.6. 

 
Table 1. Tabular sample of new daily cases in the United States 

Date New Cases 7-Day Moving Avg Historic Cases 
May 25, 2022 160580 110304 0 
May 24, 2022 134330 108925 0 
May 24, 2022 113095 108294 0 
May 23, 2022 49097 109067 0 
May 22, 2022 41447 109740 0 

 

A. Dataset 

The dataset represents the COVID-19 daily trend in the 
United States from January 23, 2020, to May 25, 2022, [1]. In 
addition to the number of new cases, the dataset includes 
Date, 7-day moving average, and Historical Cases. Table 1 
shows the tabular sample of the new daily cases in the United 
States between for 4 days. The dataset is used in the 
univariate time-series format since we only considered new 
COVID-19 cases that are reported daily. Fig. 6 shows the raw 
data of new daily COVID cases as retrieved from the CDC 
website. It shows it peaked in early 2021, that is attributed to 
the Alpha variant, and then it peaked again in January 2022 
that is attributed to the Delta variant. 

 

 
Fig. 6. Graph of new daily cases in the USA. 
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B. Data Pre-processing 

Data preprocessing is the process of preparing raw data in 
a proper format that the model can accept. In this research, 
data preprocessing consists of moving average, scaling data, 
splitting data, and processing the time series data for 
supervised learning. 

1) Moving average 

Moving average, also called rolling average, also known 
as a rolling mean, is a statistic that is calculated by taking the 
mean of a data set over a certain period of time. It is used to 
smooth data performance by filtering out “noise” caused by 
random data fluctuations. Moving average on time series data 
is used to smooth out irregularities (peaks and valleys) to 
observe overall trends better. There are different moving 
averages, but the simple moving average (SMA) is the most 
common. The SMA is calculated by taking the average of the 
past n data points, where n is the number of time steps. A time 
step is the basic unit of measure used in time series data. A 
time step can be any length of time, such as 1 year, 1 month or 
even 1 hour, which is daily in our case. For example, if the 
time steps are 20, the SMA will be the average of the past 20 
data points. The moving average can be used to identify the 
direction of the trend, as well as support and resistance levels. 
If the value is above the moving average, it is typically seen 
as an upward trend. Similarly, if the value is below the 
moving average, it is seen as an indication of a downward 
trend. Fig. 7 shows the moving average graph of the COVID 
data. 

 

 
Fig. 7. Smoothng of a noise data (yellow curve) with a moving average 

(black curve). 
 

2) Data scaling 

Data preprocessing is essential to achieve better data 
quality before further processing. When a model receives 
non-scalable data, network learning and convergence may be 
reduced and impact the performance of the model in an 
adverse fashion. Data processing transforms the raw data into 
a more appropriate format for modeling. One common 
practice is to normalize the data, that involves scaling the data 
within a specified range. Scaling the data helps the LSTM 
model to learn and converge faster. Scaling also reduces the 
complexity of our models and can make our results easier to 
interpret. 

3) Train/test sets 

Machine Learning models are designed to predict the 
future value of a given data. The goal is to estimate the 
machine learning model’s performance on new data that the 
model has not previously seen. The original data is divided 
into two subsets: training and testing sets. A training set is 
used to train and build the model by learning the parameters 
of the model based on the training set. train. Testing data is a 

data set used to evaluate the performance of a machine 
learning model. This data is used to assess the model’s 
performance on unseen data. The data was parsed as 90% 
training and 10% testing for developing and training the 
model. An additional 3% of the data was used for validation 
of the model which was not used for testing or training the 
model. 

V. DESIGN AND IMPLEMENTATION 

A. Sliding Window Technique 

Most machine learning problems use a supervised learning 
algorithm in order to make predictions, since the input and 
output are given. Using previous time steps to predict the 
next time step is called the sliding window method or lag 
method. We use the sliding window technique to restructure 
data into a machine learning problem in order to use all the 
tools and techniques available to train and optimize our 
model [15]. Table 2 shows the data which has a moving 
window of size 4 to parse the CDC data as four inputs and 
one output. 

 
Table 2. Sliding window for time series. The window size is four 

Date Input1(t-4) Input2 (t-3) Input3(t-2) Input4(t-1) Output 

Mar 1, 
2020 

51 70 78 130 146 

Mar 2, 
2020 

70 78 130 146 214 

Mar 3, 
2020 

78 130 146 214 390 

Mar 4, 
2020 

130 146 214 390 498 

Mar 5, 
2020 

146 214 390 498 530 

 

The training dataset for our deep neural network required 
sliding windows x (input) and y (output) of a window size of 
20. Both the x and y windows slide by a single increment to 
generate training data, as illustrated in Fig. 8. 

 

 
Fig. 8. The COVID-19 data showing the x and y sliding window. 

 

B. Hyperparameters of LSTM Network Architecture 

LSTM network architecture has a significant impact on 
network performance. There are parameters and 
hyperparameters in every machine learning task. The 
network learns parameters by training and adjusting them 
through backpropagation. However, there is no rule for 
designing and selecting hyperparameters, even though they 
significantly affect the accuracy of the model [16]. They are 
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either adjusted by the user employing optimization 
algorithms, or trial and error. The typical hyperparameters 
are as follows: 

1) Number of hidden layers 

The number of layers between the input and output layers 
are called hidden layers. 

2) Number of neurons in the hidden layers 

The number of neurons in the input layer is equal to the 
number of features in the data, which is one in our case. The 
number of neurons in the output depends on whether the 
model is used as a regressor or classifier. Since we are 
dealing with a regression problem, we only have one output. 
But the number of neurons in hidden layer needs to be 
determined. 

3) Number of nodes in dense layer 

A dense layer is basically a layer where each node receives 
input from all of the nodes in the previous layer. Therefore, 
they are densely connected. 

4) Number of time steps 

It is the Sequence Length that the LSTM will receive when 
making predictions. 

5) Number of epochs 

One Epoch is when an entire dataset is passed forward and 
backward through the neural network once. 

6) Batch size 

Total number of training examples present in one batch. 
Batch Size is the number of samples we send to the model at a 
time. 

Table 3 shows the hyperparameters that were selected for 
optimization and their optimized values. 

 
Table 3. Optimal hyperparameters after tuning 

Hyperparameters Range Optimal Hyperparameters 
Number of hidden layers 1 to 5 3 

Number of nodes per 
LSTM layer 

50 to 500 150,50 

Number of nodes in dense 
layer 

32 to 512 32 

Time Step 5 to 50 20 
Epochs 1 to 1000 200 

Batch Size 1 to 64 16 
 

C. Keras Tuner 

KerasTuner has developed a hypertuner which configures 
a space search in order to deploy a search algorithm, which 
finds the best hyperparameter combination [17]. We 
implemented a hypermodel using the model building 
function. It tries to find the values of the hyperparameters 
which minimize the loss function of the machine learning 
model. A model-building function is a function that takes the 
argument ’hp’, which stands for hyper parameters. It defines 
the hyperparameters as inputs and returns a compiled Keras 
model. We applied the same method to optimize the number 
of nodes in the dense layer, number of epochs, batch size and 
time steps. Given the model, the next step is to initiate the 
tuner to perform hyper tuning. There are four different tuners 
in KerasTuner - RandomSearch, Hyperband, 
BayesianOptimization, and Sklearn. We chose the 

RandomSearch tuner, which is a space search algorithm that 
randomly samples values for the hyperparameters of a 
machine learning model. We chose RandomSearch because 
our study is focused on the performance comparison of three 
different LSTM architectures. 

D. Vanilla LSTM Model 

Fig. 9 depicts the structure of vanilla LSTM. First, the 
LSTM layer receives the input sequence. It passes them to the 
LSTM cells, which are equal to the sequence length. Then, 
the output of LSTM cells passes through all the 32 nodes of 
dense layer and the nodes in final layer predict the target 
value. LSTM receives 3-dimensional input shape of [batch 
size, timestep, feature]. A batch is comprised of one or more 
samples. In our models we have 16 batches comprised of 20 
samples (timesteps). The time step is 20, which means that 
the LSTM will take input data with 20-time steps. There is 
only one feature which is number of new cases since we are 
dealing with univariate time series. As Fig. 10 shows the 
number of LSTM cells is same as number of timesteps and 
number of units is the dimension of the hidden state (or the 
output). The model has 20 LSTM cells and 150 nodes in each 
cell. 

 

 
Fig. 9. The proposed vanilla LSTM architecture. 

 

 
Fig. 10. Interpreting LSTM cells and number of units [18]. 

 

E. Stacked LSTM Model 

Multiple hidden LSTM layers can be stacked one on top of 
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another in what is referred to as a “stacked” LSTM model. 
Fig. 11 shows a stacked LSTM structure.  

 
Fig. 11. Proposed stacked LSTM structure. 

 

 
Fig. 12. Proposed bidirectional LSTM structure. 

 
Each LSTM layer requires a three-dimensional input, and 

it will produce a two-dimensional output as an interpretation 
of the end of the sequence. Since we have more than one 
LSTM layer, the output should pass to the next layer but in 
the form of a three-dimensional input. We can address this 
issue by having the LSTM output a value for each time step in 
the input data by setting the ‘return sequences=True’ 
argument on the layer. This allows us to have 3D output from 
the hidden LSTM layer as input into the next. We defend a 
stacked LSTM model with three LSTM layers. All the model 
configurations are same as Vanilla LSTM model, except for 
the number of layers and the number of nodes. The first 
LSTM layer contains 150 neurons, the second and third 

layers are set to 50 neurons, and they are followed by two 
fully connected layers (dense layers). 

F. Bidirectional LSTM Model 

We can implement a bidirectional LSTM for a univariate 
time series forecast by wrapping the first hidden layer in a 
wrapper layer called Bidirectional layer. Fig. 12 shows a 
bidirectional LSTM structure. Bidirectional LSTM can read 
input both forward and backward. The main advantage of 
using a bidirectional LSTM is that it can learn long-term 
dependencies from both the left and right context. A 
bidirectional LSTM is a neural network that contains two 
hidden layers, one for the forward context and one for the 
backward context. The hidden layers are connected to the 
input and output layers. The hidden layers are also connected 
to each other, so that the network can learn from both the past 
and future contexts. 

G. Flowchart 

Fig. 13 shows our proposed implementation of the LSTM 
networks for each of the three different architectures: Vanilla, 
Bidirectional, and Stacked LSTM architectures. 

 
Fig. 13. Proposed implementation for comparing three different LSTM 

architectures. 

VI. RESULTS 

A. Accuracy of Vanilla LSTM 

Fig. 14 represents the predicted values vs actual values. It 
can be seen that while the model has followed the trend 
properly, the accuracy of the model is not very good, as 
shown by the non-overlapping lines. 
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Fig. 14. Performance of vanilla LSTM. 

 

B. Accuracy of Stacked LSTM 

Fig. 15 represents the predicted values vs actual values 
resulting from the stacked LSTM. It can be seen that some 
regions in the figure still do not overlap. However, the 
accuracy is better compared to the vanilla LSTM models. 

 

 
Fig. 15. Performance of stacked LSTM. 

 

C. Accuracy of Bidirectional LSTM 

Fig. 16 represents the predicted values vs actual values 
resulting from the bidirectional LSTM. 

 

 
Fig. 16. Performance of bidirectional LSTM. 

 

D. Predictions for the Next 50 Days 

 

 
Fig. 17. Predictions. 

The bidirectional model was used to predict the daily new 
cases of COVID-19 in the next 50 days after the trained 
database cut-off date (May 25, 2022), as shown in Fig. 17. 

VII. COMPARISON OF ACCURACY OF ALL THREE MODELS 

We found that bidirectional-LSTM has the best 
performance accuracy of all the tested models. Table 4 shows 
the performance comparison of all three models. 

 
Table 4. Accuracy comparison of various LSTM architectures 

Model MAPE Scores 
Vanilla LSTM 0.01 
Stacked LSTM 0.003 

Bidirectional LSTM 0.002 

VIII. CONCLUSION 

The performance analysis of three different deep neural 
network architectures based on LSTM viz. Vanilla LSTM. 
Stacked LSTM and Bidirectional LSTM was carried out 
using the univariate time series data, pertaining to COVID-19. 
The models were implemented in Python platform using 
Keras API built on TensorFlow. The models were compared 
using metric of mean absolute percentage error (MAPE). The 
performance of the Bidirectional LSTM model was the best. 

In future work, these models can be tested on multivariant 
time series data sets. In COVID-19 data we can include 
vaccination data and lockdowns. Current models in this 
research can be compared with other models like LSTM 
Encoder-Decoder. 
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