

Long Short-Term Memory (LSTM) Based Deep Learning
Models for Predicting Univariate Time Series Data

Ashish Kharel*, Zeinab Zarean, and Devinder Kaur

EECS Department, University of Toledo, Toledo, USA
Email: akharel@rockets.utoledo.edu (A.K.); zzarean@rockets.utoledo.edu (Z.Z.); dkaur@rockets.utoledo.edu (D.K.)

*Corresponding author
Manuscript received June 8, 2023; revised July 28, 2023; accepted August 24, 2023; published March 20, 2024

Abstract—This paper explores the three variants of Long

Short-Term Memory (LSTM) deep learning models for the
analysis and prediction of univariate time series data to develop
better understanding of the spread of COVID-19 pandemic.
The COVID-19 pandemic continues to significantly impact
public health, medical and industrial infrastructure, and the
economy. Many researchers are working on various
computational and mathematical models to analyze the
underlying causes of transmission and spread of COVID-19.
Accurate predictive models for COVID-19 will be significant as
they will help us better manage the resources of health care
professionals and medication to combat the COVID-19
pandemic. This study explores three deep learning models
based on the Long Short-Term Memory (LSTM) cells to
analyze and predict sequential data. These models are vanilla
LSTM, bidirectional LSTM, and stacked LSTM. The models
were trained and tested using the univariate time series data of
daily trends in number of COVID-19 cases in the United States.
Data was collected from the Centers for Disease Control and
Prevention website (CDC) from January 23, 2020, to May 25,
2022. The models were trained using the first 743 samples and
tested on the last 104 samples. The models were implemented
using TensorFlow, and KerasTuner was used to optimize the
hyperparameters of LSTM networks. The prediction accuracy
of three models was compared using the metric of Mean
Absolute Percentage Error (MAPE). It was found that
bidirectional LSTM gave the best accuracy.

Keywords—Long Short-Term Memory (LSTM), deep

learning, univariate time series, data, COVID-19, comparison
of different LSTM models

I. INTRODUCTION

In 2019, scientists discovered a novel coronavirus, later
called COVID-19 in Wuhan, China. COVID-19 is a highly
transmissible respiratory disease that transfers from person to
person through contact [1]. Soon after its discovery, the
disease rapidly spread across the world. In March 2020, the
World Health Organization (WHO) proclaimed COVID-19 a
global pandemic, given that it was affecting all countries
worldwide. The Centers for Disease Control and Prevention
(CDC) confirmed the first case of COVID-19 in the United
States on January 20, 2020, in Washington, DC. More than
486 million COVID-19 cases and over six million deaths
were documented.

Accurate prediction of the COVID cases will enable the
medical community to better manage the staffing and other
infrastructure needed to handle the new patients. The
conventional techniques for times series prediction are based
on mathematical and statistical methods and other generic
machine learning models. The shallow neural network-based
techniques are not efficient in handling the long-term

dependencies in sequential data [2].
Deep learning techniques have been deployed effectively

in many complex real world prediction issues, including time
series forecasting [3]. Deep learning has proven its ability to
be successful at navigating the noise and chaos in time series
predictions. LSTM is not only effective at capturing
information about sequence, but also can be customized to
only use relevant features from the training data and
incorporate temporal correlations. In this research, several
forecasting models are evaluated for time series prediction of
confirmed cases, deaths, and recoveries.

II. LITERATURE REVIEW

Different mathematical and machine learning models have
been used to investigate the pandemic parameters and
eventually guide the pandemic response. For instance,
Cooper, Mondal, and Antonopoulos [4] analyzed the
effectiveness of modeling on the pandemic by proposing the
well-known SIR model. The SIR model can provide insights
about and predict the spread of the virus in communities and
populations that recorded data alone cannot provide. The
researchers looked at the evolution of different populations
over time and tracked a variety of factors to see how the
disease progressed in these groups. They concluded that
COVID-19 can be contained if appropriate limits and strong
policies are put in place to control infection rates early in the
spread of disease.

Several machine learning and deep learning models have
been trained to diagnose and predict COVID-19. [5] applied
statistical and machine learning approaches using data
collected through an online questionnaire to predict potential
patients of COVID-19. Based on their research, the
Multi-Layer Perceptron and the Support Vector Machine
have proven to be most accurate. Domenico Benvenuto [6]
found that an autoregression ARIMA-based model to predict
the spread of COVID-19 is successful in short-term
prediction but not long-term prediction. [7] investigated the
accuracy of the 2 recurrent neural network model of long
short-term memory (LSTM), bidirectional LSTM, and
encoder-decoder LSTM models for predicting short-term
COVID-19 infection. Their results revealed that the
univariate encoder-decoder-LSTM model delivers the best
test performance compared to the rest. In other comparisons
too, LSTM has proven to have a strong forecasting accuracy.
In looking at various models’ ability to forecast the stock
market, including LSTM, SVM, back propagation, and
Kalman filter for different epochs varying from 10 to 100,
LSTM demonstrated high accuracy and low variance [8]. [9]

International Journal of Machine Learning, Vol. 14, No. 1, 2024

30doi: 10.18178/ijml.2024.14.1.1154

compared the performance of different LSTM architectures
for COVID-19 dataset of India. [10] compared different
LSTM architectures and hybrid CNN-LSTM for Indian
Covid-19 dataset. But the hyperparameters were tuned
manually. However, both [9, 10] relied on Indian COVID 19
dataset.

III. BACKGROUND

A. Time Series Data

Time series is a sequence of data points recorded over time
generally equally spaced. It tracks how a given set of data
changes over time and specifies what factors influence it
from period to period. Examples of a time series are the daily
value of the stock market or monthly rainfall over several
years.

Any time series can have statistical properties. They may
include the mean, median, mode, and standard deviation. If
the statistical properties don’t vary over time, this refers to a
stationary time series. If they do vary over time, the time
series is said to be nonstationary. For example, monthly totals
of international air passengers are considered a stationary
time series, while the price of bitcoin is a nonstationary time
series due to many fluctuations over time. Time series data is
often used in statistical and machine learning applications for
various tasks such as prediction, classification, and clustering.
In this research, we have used time-series data to make a
scientific prediction.

B. Recurrent Neural Network

Recurrent neural networks are a type of neural network
with a feedback loop which enables the output of the current
node to be fed back into the input. RNNs allow the network
to keep information from previous steps and use them to
predict future values. They apply a recurrence relation at
every time step to process a sequence. RNNs have hidden
states which function as memory stores for all the
information computed. RNN is one of the most widely
implemented deep learning techniques. It has been utilized in
large applications such as Google Voice, Siri, and Google
Translate [11].

Fig. 1 represents the folded and unfolded RNN. The folded
version illustrates the general structure of RNN, which has
input (xt), hidden state (ht), and output (yt).

Fig. 1. Folded and unfolded RNN [11].

A loop allows information to be passed from one step of
the network to the next. The unfolded diagram represents the
repeating module in an RNN. The individual’s time steps are
unrolled across time. Even though the unfolded RNN shows
several hidden states, it is always within the same block. The
hidden state can capture past information about the sequence
up to the current time step. It carries past information by

applying a linear combination of the previous step and the
current input. Then it runs them through an activation
function to obtain the current time output. The key feature of
RNN is that it uses the same function with the same set of
parameters at every time step. RNN can model sequential
data by propagating through time, i.e., both forward and
backward propagation between units, from the last
processing level to the first level.

C. Vanishing Gradient Problem

The recurrent neural network model can be effective when
working with short-term contexts but has a long-term
dependency issue called the “vanishing gradient”. The
vanishing gradient was first discovered by Joseph Horichter
in 1991 and later by Yashua Benjio in 1994.

In a short-term model, the gradient of a loss function in
each iteration is used to update neural network parameters,
thus allowing the network to learn. It measures how much the
function’s output changes if a small change occurs at the
input. The vanishing gradient problem happens when the
gradient from backpropagation cannot reach the earlier states,
and its values become too small, causing the model to stop or
slow down learning. The RNN doesn’t learn long-range
dependencies and suffers from short-term memory problems.
LSTM can overcome these problems effectively [12].

D. LSTM

Long short-term memory, known as LSTM, is a kind of
recurrent neural network capable of learning long-term
dependencies. Sepp Hochreiter and Juergen Schmidhuber
[12] introduced it to address the problem of long-term
dependencies. LSTM networks have the same control flow as
a re current neural network. It processes data sequentially,
passing on information as it propagates forward. Unlike
RNNs, the operations within the LSTM cell allows the
network to forget or retain information for a long period of
time.

1) LSTM cells

The core concept of LSTM is cell state and its various
gates. Fig. 2 shows a basic LSTM cell.

Fig. 2. The LSTM cell [13].

The cell state behaves like long-term memory, which
stores longer term dependency and patterns. It transfers
relative information throughout the sequence chain; even
information from an earlier time step can be transmitted all
the way to the last time step, thus reducing the effect of
short-term memory. In the cell state, the gradient is stabilized

International Journal of Machine Learning, Vol. 14, No. 1, 2024

31

due to the gate mechanism. It is therefore less likely to have a
vanishing gradient issue, which is the main problem with
training RNN. The cell state consists of three gates: an input,
a forget, and an output gate. The gates are the mechanisms
that control how information flows into and out of the cell
state. They allow or deny data the ability to pass through
during the training process based on the data’s importance in
making predictions. Gates consist of a sigmoid neural net
layer with a point-wise multiplication operation.

2) Repeating LSTM structure

Fig. 3 shows an illustration of the repeating LSTM
module.

Fig. 3. The repeating LSTM structure [13].

E. Stacked LSTM

The original LSTM model consists of a single hidden
LSTM layer followed by a feedforward output layer. An
LSTM model with more than one LSTM layer is a stacked
LSTM architecture. Fig. 4 shows an example of a stacked
LSTM model. Stacking hidden LSTM layers make the model
deeper. The depth of neural networks is generally related to
greater accuracy. The more hidden layers there are, the more
each layer can recombine learned representation from
preceding layers and create new representations with higher
degrees of abstraction [12].

Fig. 4. Stacked LSTM [13].

F. Bidirectional LSTM

A bidirectional LSTM is a type of recurrent neural network
that is trained in two directions (forward and backward) at
once and can utilize information from both sides. Fig. 5
shows a bidirectional LSTM. It duplicates the LSTM layer so
that there are now two layers that are aligned side-by-side.

Fig. 5. The unfolded bidirectional LSTM. [14]

Bidirectional LSTM structures use two independent

LSTM networks. One network is trained in the forward data

sequence. The other one is trained in a reversed data
sequence. The individual LSTM cells can learn the context
from future information by providing a reversed copy of the
input data. It allows the network to understand the
relationships between values in both directions. At any
timestep, the output from each forward and backward cell
output is concatenated through the activation function to
produce a single output. Hence the network, at any time, can
process both the past and future information compared to the
unidirectional LSTM’s ability to process only past
information.

IV. DATASET AND PREPROCESSING

This section shows how the LSTM network was used to
predict the daily new cases of COVID-19. The vanilla LSTM,
stacked LSTM, and bidirectional LSTM were used to
develop the neural network models. All three models have
been applied to the same dataset. The accuracy of the models
is compared by calculating the minimum absolute percentage
error (MAPE). The models will be fitted using the efficient
ADAM optimization algorithm and the mean squared error as
a loss function. The proposed LSTM models were
implemented in Python 3.9 using Keras API running on top
of TensorFlow 2.6.

Table 1. Tabular sample of new daily cases in the United States

Date New Cases 7-Day Moving Avg Historic Cases
May 25, 2022 160580 110304 0
May 24, 2022 134330 108925 0
May 24, 2022 113095 108294 0
May 23, 2022 49097 109067 0
May 22, 2022 41447 109740 0

A. Dataset

The dataset represents the COVID-19 daily trend in the
United States from January 23, 2020, to May 25, 2022, [1]. In
addition to the number of new cases, the dataset includes
Date, 7-day moving average, and Historical Cases. Table 1
shows the tabular sample of the new daily cases in the United
States between for 4 days. The dataset is used in the
univariate time-series format since we only considered new
COVID-19 cases that are reported daily. Fig. 6 shows the raw
data of new daily COVID cases as retrieved from the CDC
website. It shows it peaked in early 2021, that is attributed to
the Alpha variant, and then it peaked again in January 2022
that is attributed to the Delta variant.

Fig. 6. Graph of new daily cases in the USA.

International Journal of Machine Learning, Vol. 14, No. 1, 2024

32

B. Data Pre-processing

Data preprocessing is the process of preparing raw data in
a proper format that the model can accept. In this research,
data preprocessing consists of moving average, scaling data,
splitting data, and processing the time series data for
supervised learning.

1) Moving average

Moving average, also called rolling average, also known
as a rolling mean, is a statistic that is calculated by taking the
mean of a data set over a certain period of time. It is used to
smooth data performance by filtering out “noise” caused by
random data fluctuations. Moving average on time series data
is used to smooth out irregularities (peaks and valleys) to
observe overall trends better. There are different moving
averages, but the simple moving average (SMA) is the most
common. The SMA is calculated by taking the average of the
past n data points, where n is the number of time steps. A time
step is the basic unit of measure used in time series data. A
time step can be any length of time, such as 1 year, 1 month or
even 1 hour, which is daily in our case. For example, if the
time steps are 20, the SMA will be the average of the past 20
data points. The moving average can be used to identify the
direction of the trend, as well as support and resistance levels.
If the value is above the moving average, it is typically seen
as an upward trend. Similarly, if the value is below the
moving average, it is seen as an indication of a downward
trend. Fig. 7 shows the moving average graph of the COVID
data.

Fig. 7. Smoothng of a noise data (yellow curve) with a moving average

(black curve).

2) Data scaling

Data preprocessing is essential to achieve better data
quality before further processing. When a model receives
non-scalable data, network learning and convergence may be
reduced and impact the performance of the model in an
adverse fashion. Data processing transforms the raw data into
a more appropriate format for modeling. One common
practice is to normalize the data, that involves scaling the data
within a specified range. Scaling the data helps the LSTM
model to learn and converge faster. Scaling also reduces the
complexity of our models and can make our results easier to
interpret.

3) Train/test sets

Machine Learning models are designed to predict the
future value of a given data. The goal is to estimate the
machine learning model’s performance on new data that the
model has not previously seen. The original data is divided
into two subsets: training and testing sets. A training set is
used to train and build the model by learning the parameters
of the model based on the training set. train. Testing data is a

data set used to evaluate the performance of a machine
learning model. This data is used to assess the model’s
performance on unseen data. The data was parsed as 90%
training and 10% testing for developing and training the
model. An additional 3% of the data was used for validation
of the model which was not used for testing or training the
model.

V. DESIGN AND IMPLEMENTATION

A. Sliding Window Technique

Most machine learning problems use a supervised learning
algorithm in order to make predictions, since the input and
output are given. Using previous time steps to predict the
next time step is called the sliding window method or lag
method. We use the sliding window technique to restructure
data into a machine learning problem in order to use all the
tools and techniques available to train and optimize our
model [15]. Table 2 shows the data which has a moving
window of size 4 to parse the CDC data as four inputs and
one output.

Table 2. Sliding window for time series. The window size is four

Date Input1(t-4) Input2 (t-3) Input3(t-2) Input4(t-1) Output

Mar 1,
2020

51 70 78 130 146

Mar 2,
2020

70 78 130 146 214

Mar 3,
2020

78 130 146 214 390

Mar 4,
2020

130 146 214 390 498

Mar 5,
2020

146 214 390 498 530

The training dataset for our deep neural network required
sliding windows x (input) and y (output) of a window size of
20. Both the x and y windows slide by a single increment to
generate training data, as illustrated in Fig. 8.

Fig. 8. The COVID-19 data showing the x and y sliding window.

B. Hyperparameters of LSTM Network Architecture

LSTM network architecture has a significant impact on
network performance. There are parameters and
hyperparameters in every machine learning task. The
network learns parameters by training and adjusting them
through backpropagation. However, there is no rule for
designing and selecting hyperparameters, even though they
significantly affect the accuracy of the model [16]. They are

International Journal of Machine Learning, Vol. 14, No. 1, 2024

33

either adjusted by the user employing optimization
algorithms, or trial and error. The typical hyperparameters
are as follows:

1) Number of hidden layers

The number of layers between the input and output layers
are called hidden layers.

2) Number of neurons in the hidden layers

The number of neurons in the input layer is equal to the
number of features in the data, which is one in our case. The
number of neurons in the output depends on whether the
model is used as a regressor or classifier. Since we are
dealing with a regression problem, we only have one output.
But the number of neurons in hidden layer needs to be
determined.

3) Number of nodes in dense layer

A dense layer is basically a layer where each node receives
input from all of the nodes in the previous layer. Therefore,
they are densely connected.

4) Number of time steps

It is the Sequence Length that the LSTM will receive when
making predictions.

5) Number of epochs

One Epoch is when an entire dataset is passed forward and
backward through the neural network once.

6) Batch size

Total number of training examples present in one batch.
Batch Size is the number of samples we send to the model at a
time.

Table 3 shows the hyperparameters that were selected for
optimization and their optimized values.

Table 3. Optimal hyperparameters after tuning

Hyperparameters Range Optimal Hyperparameters
Number of hidden layers 1 to 5 3

Number of nodes per
LSTM layer

50 to 500 150,50

Number of nodes in dense
layer

32 to 512 32

Time Step 5 to 50 20
Epochs 1 to 1000 200

Batch Size 1 to 64 16

C. Keras Tuner

KerasTuner has developed a hypertuner which configures
a space search in order to deploy a search algorithm, which
finds the best hyperparameter combination [17]. We
implemented a hypermodel using the model building
function. It tries to find the values of the hyperparameters
which minimize the loss function of the machine learning
model. A model-building function is a function that takes the
argument ’hp’, which stands for hyper parameters. It defines
the hyperparameters as inputs and returns a compiled Keras
model. We applied the same method to optimize the number
of nodes in the dense layer, number of epochs, batch size and
time steps. Given the model, the next step is to initiate the
tuner to perform hyper tuning. There are four different tuners
in KerasTuner - RandomSearch, Hyperband,
BayesianOptimization, and Sklearn. We chose the

RandomSearch tuner, which is a space search algorithm that
randomly samples values for the hyperparameters of a
machine learning model. We chose RandomSearch because
our study is focused on the performance comparison of three
different LSTM architectures.

D. Vanilla LSTM Model

Fig. 9 depicts the structure of vanilla LSTM. First, the
LSTM layer receives the input sequence. It passes them to the
LSTM cells, which are equal to the sequence length. Then,
the output of LSTM cells passes through all the 32 nodes of
dense layer and the nodes in final layer predict the target
value. LSTM receives 3-dimensional input shape of [batch
size, timestep, feature]. A batch is comprised of one or more
samples. In our models we have 16 batches comprised of 20
samples (timesteps). The time step is 20, which means that
the LSTM will take input data with 20-time steps. There is
only one feature which is number of new cases since we are
dealing with univariate time series. As Fig. 10 shows the
number of LSTM cells is same as number of timesteps and
number of units is the dimension of the hidden state (or the
output). The model has 20 LSTM cells and 150 nodes in each
cell.

Fig. 9. The proposed vanilla LSTM architecture.

Fig. 10. Interpreting LSTM cells and number of units [18].

E. Stacked LSTM Model

Multiple hidden LSTM layers can be stacked one on top of

International Journal of Machine Learning, Vol. 14, No. 1, 2024

34

another in what is referred to as a “stacked” LSTM model.
Fig. 11 shows a stacked LSTM structure.

Fig. 11. Proposed stacked LSTM structure.

Fig. 12. Proposed bidirectional LSTM structure.

Each LSTM layer requires a three-dimensional input, and

it will produce a two-dimensional output as an interpretation
of the end of the sequence. Since we have more than one
LSTM layer, the output should pass to the next layer but in
the form of a three-dimensional input. We can address this
issue by having the LSTM output a value for each time step in
the input data by setting the ‘return sequences=True’
argument on the layer. This allows us to have 3D output from
the hidden LSTM layer as input into the next. We defend a
stacked LSTM model with three LSTM layers. All the model
configurations are same as Vanilla LSTM model, except for
the number of layers and the number of nodes. The first
LSTM layer contains 150 neurons, the second and third

layers are set to 50 neurons, and they are followed by two
fully connected layers (dense layers).

F. Bidirectional LSTM Model

We can implement a bidirectional LSTM for a univariate
time series forecast by wrapping the first hidden layer in a
wrapper layer called Bidirectional layer. Fig. 12 shows a
bidirectional LSTM structure. Bidirectional LSTM can read
input both forward and backward. The main advantage of
using a bidirectional LSTM is that it can learn long-term
dependencies from both the left and right context. A
bidirectional LSTM is a neural network that contains two
hidden layers, one for the forward context and one for the
backward context. The hidden layers are connected to the
input and output layers. The hidden layers are also connected
to each other, so that the network can learn from both the past
and future contexts.

G. Flowchart

Fig. 13 shows our proposed implementation of the LSTM
networks for each of the three different architectures: Vanilla,
Bidirectional, and Stacked LSTM architectures.

Fig. 13. Proposed implementation for comparing three different LSTM

architectures.

VI. RESULTS

A. Accuracy of Vanilla LSTM

Fig. 14 represents the predicted values vs actual values. It
can be seen that while the model has followed the trend
properly, the accuracy of the model is not very good, as
shown by the non-overlapping lines.

International Journal of Machine Learning, Vol. 14, No. 1, 2024

35

Fig. 14. Performance of vanilla LSTM.

B. Accuracy of Stacked LSTM

Fig. 15 represents the predicted values vs actual values
resulting from the stacked LSTM. It can be seen that some
regions in the figure still do not overlap. However, the
accuracy is better compared to the vanilla LSTM models.

Fig. 15. Performance of stacked LSTM.

C. Accuracy of Bidirectional LSTM

Fig. 16 represents the predicted values vs actual values
resulting from the bidirectional LSTM.

Fig. 16. Performance of bidirectional LSTM.

D. Predictions for the Next 50 Days

Fig. 17. Predictions.

The bidirectional model was used to predict the daily new
cases of COVID-19 in the next 50 days after the trained
database cut-off date (May 25, 2022), as shown in Fig. 17.

VII. COMPARISON OF ACCURACY OF ALL THREE MODELS

We found that bidirectional-LSTM has the best
performance accuracy of all the tested models. Table 4 shows
the performance comparison of all three models.

Table 4. Accuracy comparison of various LSTM architectures

Model MAPE Scores
Vanilla LSTM 0.01
Stacked LSTM 0.003

Bidirectional LSTM 0.002

VIII. CONCLUSION

The performance analysis of three different deep neural
network architectures based on LSTM viz. Vanilla LSTM.
Stacked LSTM and Bidirectional LSTM was carried out
using the univariate time series data, pertaining to COVID-19.
The models were implemented in Python platform using
Keras API built on TensorFlow. The models were compared
using metric of mean absolute percentage error (MAPE). The
performance of the Bidirectional LSTM model was the best.

In future work, these models can be tested on multivariant
time series data sets. In COVID-19 data we can include
vaccination data and lockdowns. Current models in this
research can be compared with other models like LSTM
Encoder-Decoder.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Dr. Kaur proposed the main idea related to this work.
Ashish Kharel proposed the research plan and wrote the
paper and Zeinab Zarean executed the research plan and
performed statistical analysis on the data. Ashish Kharel and
Zeinab Zarean worked under the supervision of Dr. Kaur.

REFERENCES
[1] Centers for Disease Control and Prevention. Trends in number of

COVID-19 cases and deaths in the US reported to cdc, by state/territory.
[Online]. Available:
https://covid.cdc.gov/covid-data-tracker/#trends_dailycases

[2] R. Ma, X. Zheng, P. Wang, H. Liu, and C. Zhang. (2021). The
prediction and analysis of COVID-19 epidemic trend by combining
lstm and markov method. [Online]. Available:
https://www.nature.com/articles/s41598-021-97037-5

[3] G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. D. Filippo, A. D.
Matteo, and M. Colaneri. (2020). Modelling the COVID-19 epidemic
and implementation of population-wide interventions in Italy. [Online].
Available: https://pubmed.ncbi.nlm.nih.gov/32322102/

[4] I. Cooper, A. Mondal, and C. G. Antonopoulos. (2020). A sir model
assumption for the spread of COVID-19 in different communities.
[Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321055/

[5] E. Fayyoumi, S. Idwan, and H. AboShindi. (2020). Machine learning
and statistical modelling for prediction of novel COVID-19 patients
case study: Jordan. [Online]. Available:
https://thesai.org/Publications/ViewPaper?Volume=11Issue=5Code=I
JACSASerialNo=18

[6] D. Benvenuto, M. Giovanetti, L. Vassallo, S. Angeletti, and M.
Ciccozzi. (2020). Application of the arima model on the COVID-2019
epidemic dataset. [Online]. Available:

International Journal of Machine Learning, Vol. 14, No. 1, 2024

36

https://www.sciencedirect.com/science/article/pii/S235234092030234
1

[7] R. Chandra, A. Jain, and D. S. Chauhan. (2022). Deep learning via lstm
models for COVID-19 infection forecasting in India. [Online].
Available: https://doi.org/10.1371/journal.pone.0262708

[8] D. Karmiani, R. Kazi, A. Nambisan, A. Shah, and V. Kamble. (2019).
Comparison of predictive algorithms: Back-propagation, svm, lstm and
kalman filter for stock market. [Online]. Available:
https://ieeexplore.ieee.org/document/8701258

[9] A. Raj, N. R. Umrani, S. G. R. S. Audichya, A. Kodipalli, and R. J.
Martis, “Forecast of COVID-19 using deep learning,” presented at
2021 IEEE International Conference on Electronics, Computing and
Communication Technologies (CONECCT), Bangalore, India, 2021,
pp. 1-5. doi: 10.1109/CONECCT52877.2021.9622721

[10] H. Verma, S. Mandal, and A. Gupta. Temporal deep learning
architecture for prediction of COVID-19 cases in India. [Online].
Available:
https://www.sciencedirect.com/science/article/pii/S095741742200103
8

[11] S. Raschka and V. Mirjalili, Python Machine Learning. 3rd Edition.
Birmingham, UK: Packt Publishing, 2019.

[12] S. Hochreiter and J. Schmidhuber. Long short-term memory. [Online].
Available: https://dl.acm.org/doi/abs/10.1162/neco.1997.9.8.1735

[13] C. Olah. (2015). [Online]. Available: Understanding lstm networks.
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

[14] Ihianle, I. Nwajana, A. Ebenuwa, S. Otuka, R. Owa, K. Orisatoki, and
Mobolaji, “A deep learning approach for human activities recognition
from multimodal sensing devices,” IEEE Access, 2020.

[15] A. Vidhya. (2022). Explained deep sequence modeling with rnn and
lstm.

[16] F. Shahid, A. Zameer, and M. Muneeb. (2020). Predictions for
COVID-19 with deep learning models of lstm, gru and bi-lstm.
[Online]. Available:
https://www.sciencedirect.com/science/article/pii/S096007792030608
1

[17] Sandha, S. Singh et al., “Mango: A python library for parallel
hyperparameter tuning,” presented at ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2020.

[18] S. Verma. Understanding input and output shapes in LSTM — keras.
(2019). [Online]. Available:
https://shiva-verma.medium.com/understanding-input-and-outputshap
e-in-lstm-keras-c501ee95c65e/

Copyright © 2024 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

International Journal of Machine Learning, Vol. 14, No. 1, 2024

37

	IJML-10026

