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Abstract—In this paper, we investigate deep Q-learning 
algorithms to optimize gas production planning in stochastic 
conditions. To demonstrate the value of reinforcement learning 
for gas production planning, we model the physical behavior of 
an industrial asset - an Air Separation Unit – based on historical 
data, electricity prices and customers’ consumption patterns. 

We use the well-established reinforcement learning 
framework with non-episodic tasks and discounted rewards 
designed to minimize production costs and discourage 
insufficient production. We compare reinforcement learning 
agents to agents based on MILP (Mixed Integer Linear 
Programming) solvers. MILP solvers are currently used by 
energy-intensive industries to plan production based on 
imperfectly forecasted states. With these solvers, taking forecast 
uncertainty into account leads to high computational 
complexity (stochastic methods) or potentially conservative 
results (robust optimization). While demonstrating similar 
results in low-uncertainty scenarios, the DQN agents have 
shown better resilience to high amplitude uncertainties. They 
have demonstrated an efficient risk-averse strategy that 
outperforms the MILP baseline. DQN algorithms also gain 
advantage with their ability to be trained on infinite horizons, 
compared to MILP solvers where the state at the end of a finite 
horizon is set manually. 

Keywords——reinforcement learning, stochastic 
environment, production scheduling, air separation 

I. INTRODUCTION

A. Background, Related Work

Industrial gas companies (IGC) are electricity-intensive
businesses that require large electricity consumption [1]. 
Their competitiveness depends on their ability to adapt to the 
fluctuations in the cost of electricity. Storage tanks are 
commonly used to decouple production from consumption, 
which enables adaptation to short-term cost variations. 

Academic and industrial works have shown the ability of 
deterministic algorithms to reduce energy costs of air 
separation unit (ASU) processes through stock management 
[2, 3]. The rise of intermittent renewable energy sources and 
worldwide events disturbing the stability of energy supply 
push forward the need for more resilient asset management 
that would take into account these uncertainties in the cost. 

Among various stochastic and robust optimization 
algorithms [4], reinforcement learning and 
deep-reinforcement learning have been foreseen to solve 
combinatorial, partly unknown, and non-linear 
decision-making problems. Reinforcement learning has 
already been successful in optimizing real-life complex 
problems in stochastic environments [5, 6]. Within the realm 

of industrial gas companies, deep reinforcement learning 
algorithms have recently been shown to outperform classical 
linear model controllers when used for the purpose of optimal 
process control of an ASU [7]. 

In spite of all promising experiments, RL algorithms 
remain rare in industrial operational decision-making 
processes. This paper introduces deep Q-learning methods to 
optimize an ASU production planning under uncertainty. The 
experiment methods are then compared with currently used 
deterministic tools, MILP solvers. 

B. The ASU Production Planning Problem

An Air Separation Unit (ASU) is an industrial plant built to
separate air into its main components (nitrogen, oxygen and 
sometimes argon), usually via fractional distillation. These 
products are considered commodities that are sold to 
industrial clients. Customers expect their supplier to be able 
to provide the required quantities of product on an on demand 
basic, without having first announced their consumption. 

Air Separation Units are typically electricity-intensive 
plants where a large portion of operating costs come from 
electricity consumption. It is commercially important to 
minimize these costs, both during design and operation. 
These plants can be designed to produce molecules either in 
gaseous or liquid form. When in liquid form, the product can 
be stored for long periods, creating the opportunity to 
decouple production from consumption. 

In this paper, we consider the production planning problem 
to answer the following question: “Given an expected 
consumption profile by customers and expected market price 
of electricity. When should an ASU produce, and what 
product should it prioritize?”. A formal description of this 
problem is given in (1). 

C. Industrial Use-Case

The use-case considered in this study is an Air Liquide
ASU located in France. A simplified representation of the 
system is shown in Fig. 1. The process uses electricity to 
power a main compressor and two liquefiers. Three final 
products are sold to consumers: liquefied oxygen (LOX), 
gaseous nitrogen (GAN) and liquefied nitrogen (LIN). 
Liquefied molecules may be stored in tanks, whereas gaseous 
molecules cannot be stored. The oxygen liquefier can only 
operate if liquid nitrogen is simultaneously vaporized to 
assist in generating cold. The plant is operated in a way such 
that all incoming customer requests are satisfied at all times. 
The ASU storage capacity represents typically a few days’ 
worth of production. 
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Fig. 1. Simplified description of the Air Separation Unit use-case 
(LOX: liquid oxygen, GOX: gaseous oxygen, GAN: gaseous nitrogen, LIN: 

liquid nitrogen). 

D. Linear Programming Solutions

A standard approach to plan production is to formulate the
problem as a Mixed Integer Linear Program (MILP). It is not 
the objective of this paper to fully describe existing MILP 
methods. We will therefore only give a brief overview of the 
approach. The problem is discretized at an hourly scale over a 
one week period, with the following objective and 
constraints: 

Objective: 

minimize
  

  

𝛾 𝑃 𝐶 1  

with: 
𝑃 : The electricity price forecasted for time 𝑡. 
𝐶 : The overall plant electricity consumption for time 𝑡. 

Subject to constraints: 
Tank storage: 

𝐿 ,  𝐿 ,  𝑄 ,  𝑄 ,

𝑄 , 𝑄 , 2

𝐿 ,  𝐿 , 𝑄 ,  𝑄 , 𝑄 ,

∀ 𝑡 0 3

0 𝐿 , 𝐿        ∀𝑡 0, ∀𝑝 ∈ 𝐿𝐼𝑁, 𝐿𝑂𝑋 4  

Final tank level: 
𝐿 , 𝐿 ,  5  

𝐿 , 𝐿 ,  6  

with 𝐿 ,  and 𝐿 ,  parameters chosen by the 
operator. 

Power consumption: 

𝐶 𝑎 ∗ 𝑄 , 𝑎 ∗ 𝑄 , 𝑎 ∗  𝑄 ,

 𝑎 ∗ 𝑄 , 𝑎 ∗  𝑄 , 7

LIN assist: 

𝑎 ∗ 𝑄 ,  𝑄 , 8  

Production: 

𝑄 ,  𝑎 ∗ 𝑄 , 9  

𝑄 ,  𝑎 ∗ 𝑄 , 10  

0 𝑄 ,  𝑄 , 11  

Satisfy customer orders: 

𝑄 ,  𝑄 ,

∀𝑡 0, ∀𝑝 ∈ 𝐿𝐼𝑁, 𝐿𝑂𝑋, 𝐺𝐴𝑁 12  

with: 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎 , 𝑎  values fitted to represent the 
real-world plant behavior. 

Variables named 𝑄  represent flows in 𝑁𝑚 /ℎ  and 
variables named 𝐿 represent tank levels in Liters. 

The decision variables 𝑄 ,  and 𝑄 ,  represent the 
possibility - not shown on Fig. 1 - to buy an unlimited 
quantity of liquefied nitrogen and oxygen from an external 
supplier if the plant’s production capacity is insufficient. 
With these decision variables, the MILP problem is 
guaranteed to have a feasible solution. 

The problem is repeatedly solved every time new inputs 
(electricity price or customer delivery forecasts) are received. 
The production schedule is based on the hourly values taken 

by decision variables 𝑄 , , 𝑄 , , 𝑄 ,  and 

𝑄 , . 

E. Limitations of MILP Solvers

Limited horizon effect:  
Calculation is done at a fixed horizon, which requires 

operators to explicitly force storage levels at the end of a 
one-week period. These decisions are taken by ASU 
operators and are not optimized by the solver; hence, these 
decisions may be suboptimal. 

Forecast error effect: 
MILP solvers do not account for forecast error in their 

inputs, and may return solutions that are not robust to small 
differences between forecasts and reality. 

Problem linearization: 
MILP solvers rely on describing the dynamic behavior of 

an ASU with linear expressions for the problem resolution to 
remain computationally feasible. Many physical laws are not 
linear; hence, the problem solved is not fully representative 
of the actual plant behavior. 
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II. A REINFORCEMENT LEARNING APPROACH FOR ASU
PRODUCTION PLANNING 

A. Problem Statement

We reformulate the ASU Production Planning problem
within the classical reinforcement learning framework [8] 
with discounted rewards and non-episodic tasks. We design 
the reward to minimize production costs and discourage 
insufficient production. RL agents interact hourly with the 
environment. Their actions define the plant’s operating 
parameters 𝑄 , , 𝑄 , , 𝑄 ,  and 𝑄 ,  for the next 
hour. Stochasticity is built into the environment as the agents 
observe imperfect forecasts of future prices and 
consumptions. More details regarding the learning 
environment design are given below. 

State: 
The agent observes the current status of the plant (LIN and 

LOX storage levels, time of day, day of week) and hourly 
forecasts for electricity price, GAN consumption, LIN 
consumption and LOX consumption over a 1-week horizon. 

Actions: 
Actions define the ASU setpoint for 𝑄 , , 𝑄 , , 

𝑄 ,  and 𝑄 ,  within the next hour. These actions must 
meet the following rules representing the fact that the plant 
does not have infinite production capabilities. 

0 𝑄 ,  𝑎 13  

0  𝑄 , 𝑎 ∗ 𝑄 , 14  

0  𝑄 , 𝑎 ∗ 𝑄 , 15  

with 𝑎 , 𝑎  and 𝑎  fitted to represent the real-world plant 
behavior. 

Reward: 
Recall that the overall objective of the ASU Scheduling 

Problem is to minimize a sum of electricity costs subject to a 
constraint that all customer orders must be satisfied, as shown 
in formula (1). 

We approximate this problem with the relaxed formula 
below, where the new term 𝐺  represents a penalty when the 
customer orders constraint is not satisfied. 

minimize 𝛾 𝑃 𝐶 𝐺 16  

We define the penalty term 𝐺 𝐿 ∗ 500 €/𝑀𝑊ℎ, where 
𝐿  is the energy consumption that would have been required 
to produce the customer order that cannot be fulfilled at 
timestep 𝑡. 

Recognizing in the formula above the formulation for 
discounted future rewards, we define 𝑅  the reward received 
by an agent at each timestep as: 

𝑅  𝑃 𝐶 𝐿 ∗ 500 €/𝑀𝑊ℎ 

Note that unlike usual, agents are required to minimize the 
sum of rewards received. 

Discount factor: 

We use a factor 𝛾 0.9995 to discount future rewards. 
This value is chosen such that the cumulative discount rate 
over one week 𝛾 is approximately0.9 . Sensitivity tests 
conducted during the study have not shown a significant 
impact when varying 𝛾. 

B. Discrete Actions

To allow agents to sample from a finite set of actions, a
conversion layer was implemented to transform nine discrete 
actions into continuous parameters 𝑄 , , 𝑄 , , 

𝑄 ,  and 𝑄 , . 

This conversion layer enforces the rules: 
1) The main compressor may only run at 0%, 65% or 100%

of its maximum capacity.
2) The oxygen liquefier is either turned off, or liquefies all

the available gaseous oxygen.
3) The nitrogen liquefier is either turned off, or liquefies

all the available gaseous nitrogen.
4) The 𝑄 ,  flow is set to the minimum amount required 

for LOX production. 
We summarize the list of discrete actions available to the 

agent and the corresponding continuous values taken by 
flowrates in the ASU in Table 1 below. 

Table 1. Discrete to continuous action transformation  

Action 𝑄 , 𝑄 , 𝑄 , 𝑄 ,

1 0 0 0 0 

2 0.65 ∗ 𝑎  0 0 0 

3 0.65 ∗ 𝑎  0 0 all GAN available 

4 0.65 ∗ 𝑎  0.65 ∗ 𝑎 𝑎  𝑄 , 𝑎 0 

5 0.65 * 𝑎  0.65 ∗ 𝑎 𝑎  𝑄 , 𝑎 all GAN available 

6 𝑎  0 0 0 

7 𝑎  0 0 all GAN available 

8 𝑎  𝑎 𝑎  𝑄 , 𝑎 0 

9 𝑎  𝑎 𝑎  𝑄 , 𝑎 all GAN available 

Using discrete actions implies that the agent only has 
access to a subset of the permissible action space. Discrete 
agents are therefore handicapped when compared to 
continuous agents.  

This conversion layer makes the environment compatible 
both with agents using discrete action spaces (such as DDQN 
[9] for example) or continuous control schemes (such as Soft
Actor Critic [10] for example). 

C. Baseline

We define a baseline agent encapsulating the MILP solvers
described in section Linear Programming Solutions. An 
optimization is run every hour using one-week horizon 
forecasts observed from the environment. Storage levels at 
the end of the horizon are constrained to be strictly above that 
tank’s average level at that time of the week in historical plant 
data. This baseline agent serves as a reference for what can be 
achieved with MILP solvers. The agent is implemented in 
Python, using the OR-Tools library. 

It can be noted that the baseline is placed in an 
advantageous position. Indeed, MILP problems are seldom 
solved every hour, they would typically be solved every 2-3 
days at a 2 week horizon. Moreover we recall that this MILP 
problem’s variables are continuous whereas RL agents are 
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limited to discrete actions. 

III. LEARNING ENVIRONMENT

A. Historical Data

Four years of hourly historical data for electricity prices
and customer consumption were obtained, as well as 18 
months of historical electricity price forecasts: 500 different 
forecasts made daily, at the hourly time scale, over a 2 weeks 
horizon. 

Electricity prices were retrieved from the website of 
ENTSO-E, the European Network of Transmission System 
Operators. The customer consumption database was 
extracted internally. Price forecasts were obtained from a 
commercial vendor. 

Based on this historical data, we generate synthetic 
scenarios which will be implemented and played out within 
our Gym environment [11]. 

B. Synthetic Scenario Generation

Fig. 2. Examples of 2-week extracts of historical data (a) and synthetic 
scenario (b) for the time-series electricity price, LIN demand, LOX demand 

and GAN demand. 

We implemented a custom bootstrap resampling algorithm 
to generate synthetic time series from historical data. This 
algorithm splits historical data into 24-hour windows, 
shuffles and then groups the windows to create a synthetic 
new series. The shuffle and group procedure is constrained 
to: 
1) preserve daily and weekly seasonalities from historical

data (prices are low during nights and week-ends)
2) ensure smooth junction between two consecutive

sampled windows (prices do not jump suddenly at
midnight)

3) preserve the underlying structure of historical data by
prohibiting transitions between two windows unlikely
to follow each other (prices rarely go from very high to
very low within a day)

In using this method, we make several assumptions: 
1) Yearly seasonalities have limited impact on the optimal

policy. We expect this to be true as the typical storage
time frame on an ASU is measured in weeks.

2) The time series representing electricity price and
customer demand are not conditionally dependent on
each other.

3) The times series used as historical data are stationary, or
can be transformed to be stationary

This algorithm allows us to generate an infinite number of 
scenarios representative of historical data, without the risk 
that a reinforcement learning agent overfits on repeated 
observations from the environment. 

We show in Fig. 2 an example of historical and synthetic 
time series. These figures illustrate that we were able to 
capture the historical series’ behavior and reproduce it in the 
synthetic scenarios. 

C. Imperfect Forecasts

The environment is partially observable as agents are only
allowed to plan production based on imperfect forecasts. 
For customer gas consumption, the forecast is based on the 
average consumption over the past three days. 

For customer liquid consumption, this imperfection is 
modeled as a random multiplicative error sampled weekly 
from a Gaussian distribution centered on 1 with 0.15 standard 
deviation. This model is consistent with Air Liquide logistics 
experience. 

For electricity prices, this imperfection is modeled as an 
additive forecast error. Let us denote 𝛿 𝑒 , 𝑓  the forecast 
error made by the forecast emitted at time 𝑒  for time 𝑓 . 
Analysis of historical data shows that a correlation exists 
between 𝛿 𝑒 , 𝑓  and 𝛿 𝑒 , 𝑓  with a Pearson coefficient 
above 50% for 𝑘 up to approximately 5 hours. Strong 
correlation also exists between between 𝛿 𝑒 , 𝑓  and 
𝛿 𝑒 , 𝑓  with a Pearson coefficient above 50% for 𝑘 up to 
14 days. 

We implemented a custom algorithm to generate synthetic 
forecasts errors replicating the characteristics observed in 
historical data. 

IV. RESULTS

We define three environments ( 𝐸 , 𝐸  and 𝐸 ) with 
varying levels of stochasticity. Stochasticity is minimal if 
agents observe future electricity prices and consumptions 
without any forecast error. Stochasticity levels can be 
controlled with a multiplicative coefficient applied to 

synthetic forecast errors. Environments 𝐸 , 𝐸  and 𝐸  
respectively have forecast errors with  0 , 1  or 3  times the 
amplitude of real-life errors. 

We implement two agents 𝐴 and 𝐴  in Python using the 
Jax, Haiku, and Coax libraries. These agents are trained in the 
corresponding 𝐸  and 𝐸  environments using the DDQN 
algorithm with Prioritized Experience Replay and N-Step 
transitions. Training runs required 18 million interaction 
steps with the environment over the course of 48 hours to 
converge, representing approximately 2000 years of 
simulated operation. 

The agents (Baseline, 𝐴 and 𝐴 ) are tested in all 
environments with fixed seeds such that all agents are placed 
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in comparable scenarios. The agents’ performance is 
measured by their total undiscounted reward over a hundred 
thousand timesteps (approximately twelve years of simulated 
operation). Recall that the reward represents the cost of 
production and must therefore be minimized. Test scores are 
homogeneous to M€ spent for production and summarized in 
Table 2. 

Table 2. Agents test scores within each environment 

Environment Baseline  Agent 𝐴  Agent 𝐴  

𝐸  105 102 110 

𝐸  106 106 111 

𝐸  131 162 116 

The overall best performance is achieved by a 
reinforcement learning agent. We hypothesize that the 
Baseline MILP agent can be hindered by minor uncertainties 
remaining in customer delivery profiles and suboptimal 
constraints that are placed on storage levels at the end of the 
forecast horizon Reinforcement learning agents can learn 
policies that are not limited to the observable horizon of the 
environment. 

Within the highly stochastic 𝐸  environment, agent 𝐴  has 
learned the most effective risk-averse strategy. This is 
expected as 𝐴  is the only agent to have encountered forecast 
errors during training. In fact, the stability of that agent’s 
score across all environments suggests that it has learned a 
policy not reliant on the quality of forecasts received as 
observations. 

It is highly surprising that agent 𝐴  is the worst performer 
in environment 𝐸  where it has been trained. We are still 
investigating this observation. 

Table 3. Agent behavior in environment E1 

Criteria Baseline  Agent 𝐴  Agent 𝐴  
% of reward due to 
insufficient storage 

22% 6% 1% 

%likely suboptimal 
action 

0% 7% - 

In Table 3, we analyze the agents’ behavior in environment 
𝐸  according to the criteria below. 

Remembering that the reward is designed to carry two 
signals (minimize the cost of production, discourage 
insufficient storage), we measure the proportion of both 
signals within the total reward received by each agent. The 
baseline agent is significantly more penalized for insufficient 
production (22%) than reinforcement learning agents (6%). 
This is likely due to the ability of MILP solvers to target very 
precisely zero storage level, combined with the randomness 
of customer consumption. 

Some actions were marked as likely suboptimal based on 
expert rules such as: “If a tank is already full, it is 
unnecessary to produce more liquid as it cannot be stored”. 
While the baseline agent makes no such mistakes, agent A0 
has a very high proportion (7%) of likely suboptimal actions. 
Such information may be used in future training to 
heuristically guide trained agents towards better policies. 

We also tested the agents within other environments where 
forecast errors were only applied to electricity prices or 
customer consumption, but not both. The agents’ test scores 

were minimally impacted by electricity price forecast errors 
whereas they were strongly influenced by customer 
consumption forecast errors. 

V. DISCUSSION

We note that any difference between real-world scenarios 
and our synthetic scenarios would be detrimental to the 
performance of RL agents while the baseline agent would be 
unaffected. Therefore, the performance shown in this article 
should be considered as an upper bound of what could be 
observed in the real world. While more effort can be made to 
improve the quality of synthetic scenarios (e.g. handle yearly 
seasonalities or consider the impact of electricity price on 
customer demand). In the future, we will prioritize 
developments in the agents instead of more sophisticated 
scenario generation. 

Indeed, the agents trained in this article use a relatively 
basic flavor of the deep Q-Learning algorithm, without recent 
extensions such as Distributional Reinforcement 
Learning.  Given the stochastic nature of our environment, 
we expect a distributional approach would have been 
beneficial for the agents’ performance. 

We observe that the parameterization of insufficient 
production penalization has a strong effect on optimal 
policies: further work is required to ensure fair balance 
between storage level optimization and risk of insufficient 
production. 

In this article, we used a simplified representation of an 
ASU’s dynamic behavior. Future work will incorporate a 
more representative ASU model within the same training 
framework. 

VI. CONCLUSION

Our work lays the foundation for future research in 
applying reinforcement learning for ASU production 
planning by establishing representative environment 
dynamics, realistic scenarios and a strong baseline against 
which RL agents may be compared. 

We applied a deep Q-learning approach to plan industrial 
air gasses production in stochastic conditions. The RL trained 
agents show ability to minimize the energy costs while 
ensuring sufficient levels of production. Their performance 
remains stable despite varying degrees of data uncertainty: 
matching the MILP baseline in low-uncertainty scenarios and 
outperforming it in realistic and high-uncertainty cases. The 
developed agents are resilient to customers’ consumption 
forecast errors. 

VII. ACCEPTABILITY

An important step to bring RL agents in operational use for 
ASU production planning is to assert their reliability on the 
field. This entails pilot phases during which operational 
teams can gauge the trust they place in trained deep 
reinforcement learning agents, ensuring actions taken are 
both explainable and safe to guide industrial operations. 

APPENDIX 

A. Electricity Price Forecast Error

We plot in Fig. 3 (a) the correlation between forecast errors
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𝛿 𝑒 , 𝑓  and 𝛿 𝑒 , 𝑓  within historical forecasts emitted. 𝑒  
represents the time at which the forecast was made. 𝑓  and 𝑓  
represent two different timesteps at which this forecast made 
a prediction. With this plot we try to answer the question: If 
Monday's forecast overestimates the electricity price for 
Wednesday at 1PM, is that same forecast also likely to 
overestimate the price for Wednesday at 2PM? Light colored 
values indicate strong correlations. Patterns emerge where 
forecast errors are strongly correlated when up to 5 hours 
apart or 24 hours apart. 

We also plot in Fig. 3 (b) the same correlation for the 
synthetic forecast errors that were generated. As the figures 
are similar, we are satisfied that we were able to capture the 
historical forecast errors’ behavior and reproduce it in our 
synthetic scenarios. 

 
(a) 

 
(b) 

Fig. 3. Forecast error correlation within forecasts, compared between 
historical data (a) and synthetic scenarios (b). 

 

Historical and synthetic scenarios were also compared on a 
variety of different metrics not detailed in this article, we 
were satisfied that the learning environment is sufficiently 
representative of real-world dynamics for agents to learn 
meaningful policies. 

B. Training Procedure 

Agent 𝐴  was trained from scratch in environment 𝐸 . 
Agent 𝐴  was trained in environment 𝐸  starting from the 

weights learned by 𝐴  in 𝐸 . We summarize in Table IV the 
hyper parameters used during the final training of agents 𝐴  
and 𝐴 . 
 

Table 4. Training hyper parameters 

Learning rate 10  
Batch size 256 

Optimizer Adam 

N-steps 3 

Replay buffer size 300000 

Epsilon 
(exploration) 

Starts at 0.99, linearly decreases 
towards 0.1 over 1M iterations, then 

0.05 after 500k more iterations 

PER 𝛼 0.6 

PER 𝛽 
Starts at 0.4 and linearly increases to 

reach 1 after 1M iterations 
Neural network 

architecture 
1 hidden layer with 100 neurons, 

Leaky ReLU activation 
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