
An Industrial Use-Case for Reinforcement Learning:
Optimizing a Production Planning in Stochastic Conditions

Paul Berhaut*, Ikhlass Yaya-Oyé, and Axelle Albot

Air Liquide SA, 75 Quai d’Orsay, 75007 Paris, France
paul.berhaut@airliquide.com (P.B.), ikhlass.yaya-oye@airliquide.com (I.Y.O.), axelle.albot@airliquide.com(A.A.)

*Corresponding author
Manuscript received March 31, 2023; revised April 25, 2023; accepted May 15, 2023; published February 7, 2024

Abstract—In this paper, we investigate deep Q-learning
algorithms to optimize gas production planning in stochastic
conditions. To demonstrate the value of reinforcement learning
for gas production planning, we model the physical behavior of
an industrial asset - an Air Separation Unit – based on historical
data, electricity prices and customers’ consumption patterns.

We use the well-established reinforcement learning
framework with non-episodic tasks and discounted rewards
designed to minimize production costs and discourage
insufficient production. We compare reinforcement learning
agents to agents based on MILP (Mixed Integer Linear
Programming) solvers. MILP solvers are currently used by
energy-intensive industries to plan production based on
imperfectly forecasted states. With these solvers, taking forecast
uncertainty into account leads to high computational
complexity (stochastic methods) or potentially conservative
results (robust optimization). While demonstrating similar
results in low-uncertainty scenarios, the DQN agents have
shown better resilience to high amplitude uncertainties. They
have demonstrated an efficient risk-averse strategy that
outperforms the MILP baseline. DQN algorithms also gain
advantage with their ability to be trained on infinite horizons,
compared to MILP solvers where the state at the end of a finite
horizon is set manually.

Keywords——reinforcement learning, stochastic
environment, production scheduling, air separation

I. INTRODUCTION

A. Background, Related Work

Industrial gas companies (IGC) are electricity-intensive
businesses that require large electricity consumption [1].
Their competitiveness depends on their ability to adapt to the
fluctuations in the cost of electricity. Storage tanks are
commonly used to decouple production from consumption,
which enables adaptation to short-term cost variations.

Academic and industrial works have shown the ability of
deterministic algorithms to reduce energy costs of air
separation unit (ASU) processes through stock management
[2, 3]. The rise of intermittent renewable energy sources and
worldwide events disturbing the stability of energy supply
push forward the need for more resilient asset management
that would take into account these uncertainties in the cost.

Among various stochastic and robust optimization
algorithms [4], reinforcement learning and
deep-reinforcement learning have been foreseen to solve
combinatorial, partly unknown, and non-linear
decision-making problems. Reinforcement learning has
already been successful in optimizing real-life complex
problems in stochastic environments [5, 6]. Within the realm

of industrial gas companies, deep reinforcement learning
algorithms have recently been shown to outperform classical
linear model controllers when used for the purpose of optimal
process control of an ASU [7].

In spite of all promising experiments, RL algorithms
remain rare in industrial operational decision-making
processes. This paper introduces deep Q-learning methods to
optimize an ASU production planning under uncertainty. The
experiment methods are then compared with currently used
deterministic tools, MILP solvers.

B. The ASU Production Planning Problem

An Air Separation Unit (ASU) is an industrial plant built to
separate air into its main components (nitrogen, oxygen and
sometimes argon), usually via fractional distillation. These
products are considered commodities that are sold to
industrial clients. Customers expect their supplier to be able
to provide the required quantities of product on an on demand
basic, without having first announced their consumption.

Air Separation Units are typically electricity-intensive
plants where a large portion of operating costs come from
electricity consumption. It is commercially important to
minimize these costs, both during design and operation.
These plants can be designed to produce molecules either in
gaseous or liquid form. When in liquid form, the product can
be stored for long periods, creating the opportunity to
decouple production from consumption.

In this paper, we consider the production planning problem
to answer the following question: “Given an expected
consumption profile by customers and expected market price
of electricity. When should an ASU produce, and what
product should it prioritize?”. A formal description of this
problem is given in (1).

C. Industrial Use-Case

The use-case considered in this study is an Air Liquide
ASU located in France. A simplified representation of the
system is shown in Fig. 1. The process uses electricity to
power a main compressor and two liquefiers. Three final
products are sold to consumers: liquefied oxygen (LOX),
gaseous nitrogen (GAN) and liquefied nitrogen (LIN).
Liquefied molecules may be stored in tanks, whereas gaseous
molecules cannot be stored. The oxygen liquefier can only
operate if liquid nitrogen is simultaneously vaporized to
assist in generating cold. The plant is operated in a way such
that all incoming customer requests are satisfied at all times.
The ASU storage capacity represents typically a few days’
worth of production.

International Journal of Machine Learning, Vol. 14, No. 1, 2024

18doi: 10.18178/ijml.2024.14.1.1152

Fig. 1. Simplified description of the Air Separation Unit use-case
(LOX: liquid oxygen, GOX: gaseous oxygen, GAN: gaseous nitrogen, LIN:

liquid nitrogen).

D. Linear Programming Solutions

A standard approach to plan production is to formulate the
problem as a Mixed Integer Linear Program (MILP). It is not
the objective of this paper to fully describe existing MILP
methods. We will therefore only give a brief overview of the
approach. The problem is discretized at an hourly scale over a
one week period, with the following objective and
constraints:

Objective:

minimize
௦௨௕௝௘௖௧ ௧௢ ௖௢௡௦௧௥௔௜௡௧௦

ሺଶሻ ௧௢ ሺଵଶሻ

෍ 𝛾௧𝑃௧𝐶௧

ஶ

௧

ሺ1ሻ

with:
𝑃௧: The electricity price forecasted for time 𝑡.
𝐶௧: The overall plant electricity consumption for time 𝑡.

Subject to constraints:
Tank storage:

𝐿௧ାଵ,௅ூே ൑ 𝐿௧,௅ூே ൅ 𝑄௧,௅ூே
௟௜௤௨௘௙௜௘௥ ൅ 𝑄௧,௅ூே

௘௫௧௘௥௡௔௟

െ𝑄௧,௅ூே
௟௜௡ೌೞೞ೔ೞ೟ െ 𝑄௧,௅ூே

௖௟௜௘௡௧ ሺ2ሻ

𝐿௧ାଵ,௅ை௑ ൑ 𝐿௧,௅ை௑ ൅ 𝑄௧,௅ை௑
௟௜௤௨௘௙௜௘௥ ൅ 𝑄௧,௅ை௑

௘௫௧௘௥௡௔௟ െ 𝑄௧,௅ை௑
௖௟௜௘௡௧

∀ 𝑡 ൒ 0 ሺ3ሻ

0 ൑ 𝐿௧,௣ ൑ 𝐿௣
௠௔௫ ∀𝑡 ൒ 0, ∀𝑝 ∈ ሼ𝐿𝐼𝑁, 𝐿𝑂𝑋ሽ ሺ4ሻ

Final tank level:
𝐿்,௅ூே ൒ 𝐿௙௜௡௔௟,௅ூே ሺ5ሻ

𝐿்,௅ை௑ ൒ 𝐿௙௜௡௔௟,௅ை௑ ሺ6ሻ

with 𝐿௙௜௡௔௟,௅ூே and 𝐿௙௜௡௔௟,௅ை௑ parameters chosen by the
operator.

Power consumption:

𝐶௧ ൌ 𝑎଴ ∗ 𝑄௧,௔௜௥
௖௢௠௣௥௘௦௦௢௥ ൅ 𝑎ଵ ∗ 𝑄௧,௅ூே

௟௜௤௨௘௙௜௘௥ ൅ 𝑎ଶ ∗ 𝑄௧,௅ூே
௘௫௧௘௥௡௔௟

൅ 𝑎ଷ ∗ 𝑄௧,௅ை௑
௟௜௤௨௘௙௜௘௥ ൅ 𝑎ସ ∗ 𝑄௧,௅ை௑

௘௫௧௘௥௡௔௟ ሺ7ሻ

LIN assist:

𝑎ହ ∗ 𝑄௧,௅ை௑
௟௜௤௨௘௙௜௘௥ ൑ 𝑄௧,௅ூே

௔௦௦௜௦௧ ሺ8ሻ

Production:

𝑄௧,௅ூே
௟௜௤௨௘௙௜௘௥ ൑ 𝑎଺ ∗ 𝑄௧,௔௜௥

௖௢௠௣௥௘௦௦௢௥ ሺ9ሻ

𝑄௧,௅ை௑
௟௜௤௨௘௙௜௘௥ ൑ 𝑎଻ ∗ 𝑄௧,௔௜௥

௖௢௠௣௥௘௦௦௢௥ ሺ10ሻ

0 ൑ 𝑄௧,௔௜௥
௖௢௠௣௥௘௦௦௢௥ ൑ 𝑄௠௔௫,௔௜௥

௖௢௠௣௥௘௦௦௢௥ ሺ11ሻ

Satisfy customer orders:

𝑄௧,௣
௖௟௜௘௡௧ ൌ 𝑄௧,௣

௖௟௜௘௡௧ೝ೐೜ೠ೐ೞ೟೐೏

∀𝑡 ൒ 0, ∀𝑝 ∈ ሼ𝐿𝐼𝑁, 𝐿𝑂𝑋, 𝐺𝐴𝑁ሽ ሺ12ሻ

with: 𝑎଴, 𝑎ଵ, 𝑎ଶ, 𝑎ଷ, 𝑎ସ, 𝑎ହ, 𝑎଺, 𝑎଻ values fitted to represent the
real-world plant behavior.

Variables named 𝑄 represent flows in 𝑁𝑚ଷ/ℎ and
variables named 𝐿 represent tank levels in Liters.

The decision variables 𝑄೟,ಽ಺ಿ
೐ೣ೟೐ೝ೙ೌ೗ and 𝑄೟,ಽೀ೉

೐ೣ೟೐ೝ೙ೌ೗ represent the
possibility - not shown on Fig. 1 - to buy an unlimited
quantity of liquefied nitrogen and oxygen from an external
supplier if the plant’s production capacity is insufficient.
With these decision variables, the MILP problem is
guaranteed to have a feasible solution.

The problem is repeatedly solved every time new inputs
(electricity price or customer delivery forecasts) are received.
The production schedule is based on the hourly values taken

by decision variables 𝑄೟,ೌ೔ೝ
೎೚೘೛ೝ೐ೞೞ೚ೝ , 𝑄೟,ಽ಺ಿ

೗೔೜ೠ೐೑೔೐ೝ , 𝑄೟,ಽೀ೉
೗೔೜ೠ೐೑೔೐ೝ and

𝑄೟,ಽ಺ಿ
ೌೞೞ೔ೞ೟.

E. Limitations of MILP Solvers

Limited horizon effect:
Calculation is done at a fixed horizon, which requires

operators to explicitly force storage levels at the end of a
one-week period. These decisions are taken by ASU
operators and are not optimized by the solver; hence, these
decisions may be suboptimal.

Forecast error effect:
MILP solvers do not account for forecast error in their

inputs, and may return solutions that are not robust to small
differences between forecasts and reality.

Problem linearization:
MILP solvers rely on describing the dynamic behavior of

an ASU with linear expressions for the problem resolution to
remain computationally feasible. Many physical laws are not
linear; hence, the problem solved is not fully representative
of the actual plant behavior.

International Journal of Machine Learning, Vol. 14, No. 1, 2024

19

II. A REINFORCEMENT LEARNING APPROACH FOR ASU
PRODUCTION PLANNING

A. Problem Statement

We reformulate the ASU Production Planning problem
within the classical reinforcement learning framework [8]
with discounted rewards and non-episodic tasks. We design
the reward to minimize production costs and discourage
insufficient production. RL agents interact hourly with the
environment. Their actions define the plant’s operating
parameters 𝑄೟,ೌ೔ೝ

೎೚೘೛ೝ೐ೞೞ೚ೝ, 𝑄೟,ಽ಺ಿ
೗೔೜ೠ೐೑೔೐ೝ, 𝑄೟,ಽೀ೉

೗೔೜ೠ೐೑೔೐ೝ and 𝑄೟,ಽ಺ಿ
ೌೞೞ೔ೞ೟ for the next

hour. Stochasticity is built into the environment as the agents
observe imperfect forecasts of future prices and
consumptions. More details regarding the learning
environment design are given below.

State:
The agent observes the current status of the plant (LIN and

LOX storage levels, time of day, day of week) and hourly
forecasts for electricity price, GAN consumption, LIN
consumption and LOX consumption over a 1-week horizon.

Actions:
Actions define the ASU setpoint for 𝑄೟,ೌ೔ೝ

೎೚೘೛ೝ೐ೞೞ೚ೝ , 𝑄೟,ಽ಺ಿ
೗೔೜ೠ೐೑೔೐ೝ ,

𝑄೟,ಽೀ೉
೗೔೜ೠ೐೑೔೐ೝ and 𝑄೟,ಽ಺ಿ

ೌೞೞ೔ೞ೟ within the next hour. These actions must
meet the following rules representing the fact that the plant
does not have infinite production capabilities.

0 ൑ 𝑄௧,௔௜௥
௖௢௠௣௥௘௦௦௢௥ ൑ 𝑎଼ ሺ13ሻ

0 ൑ 𝑄௧,௅ூே
௟௜௤௨௘௙௜௘௥ ൑ 𝑎ଽ ∗ 𝑄௧,௔௜௥

௖௢௠௣௥௘௦௦௢௥ ሺ14ሻ

0 ൑ 𝑄௧,௅ை௑
௟௜௤௨௘௙௜௘௥ ൑ 𝑎ଵ଴ ∗ 𝑄௧,௔௜௥

௖௢௠௣௥௘௦௦௢௥ ሺ15ሻ

with 𝑎଼, 𝑎ଽ and 𝑎ଵ଴ fitted to represent the real-world plant
behavior.

Reward:
Recall that the overall objective of the ASU Scheduling

Problem is to minimize a sum of electricity costs subject to a
constraint that all customer orders must be satisfied, as shown
in formula (1).

We approximate this problem with the relaxed formula
below, where the new term 𝐺௧ represents a penalty when the
customer orders constraint is not satisfied.

minimize ෍ 𝛾௧ሺ𝑃௧𝐶௧ ൅ 𝐺௧ሻ
ஶ

௧

ሺ16ሻ

We define the penalty term 𝐺௧ ൌ 𝐿௧ ∗ 500 €/𝑀𝑊ℎ, where
𝐿௧ is the energy consumption that would have been required
to produce the customer order that cannot be fulfilled at
timestep 𝑡.

Recognizing in the formula above the formulation for
discounted future rewards, we define 𝑅௧ the reward received
by an agent at each timestep as:

𝑅௧ ൌ 𝑃௧𝐶௧ ൅ 𝐿௧ ∗ 500 €/𝑀𝑊ℎ

Note that unlike usual, agents are required to minimize the
sum of rewards received.

Discount factor:

We use a factor 𝛾 ൌ 0.9995 to discount future rewards.
This value is chosen such that the cumulative discount rate
over one week 𝛾ଵ଺଼ is approximately0.9 . Sensitivity tests
conducted during the study have not shown a significant
impact when varying 𝛾.

B. Discrete Actions

To allow agents to sample from a finite set of actions, a
conversion layer was implemented to transform nine discrete
actions into continuous parameters 𝑄೟,ೌ೔ೝ

೎೚೘೛ೝ೐ೞೞ೚ೝ , 𝑄೟,ಽ಺ಿ
೗೔೜ೠ೐೑೔೐ೝ ,

𝑄೟,ಽೀ೉
೗೔೜ೠ೐೑೔೐ೝ and 𝑄೟,ಽ಺ಿ

ೌೞೞ೔ೞ೟.

This conversion layer enforces the rules:
1) The main compressor may only run at 0%, 65% or 100%

of its maximum capacity.
2) The oxygen liquefier is either turned off, or liquefies all

the available gaseous oxygen.
3) The nitrogen liquefier is either turned off, or liquefies

all the available gaseous nitrogen.
4) The 𝑄೟,ಽ಺ಿ

ೌೞೞ೔ೞ೟ flow is set to the minimum amount required
for LOX production.

We summarize the list of discrete actions available to the
agent and the corresponding continuous values taken by
flowrates in the ASU in Table 1 below.

Table 1. Discrete to continuous action transformation

Action 𝑄௧,௔௜௥
௖௢௠௣௥௘௦௦௢௥ 𝑄௧,௅ை௑

௟௜௤௨௘௙௜௘௥ 𝑄௧,௅ூே
௟௜௡௔௦௦௜௦௧ 𝑄௧,௅ூே

௟௜௤௨௘௙௜௘௥

1 0 0 0 0

2 0.65 ∗ 𝑎଼ 0 0 0

3 0.65 ∗ 𝑎଼ 0 0 all GAN available

4 0.65 ∗ 𝑎଼ 0.65 ∗ 𝑎଼𝑎ଵ଴ 𝑄௧,௅ை௑
௟௜௤௨௘௙௜௘௥𝑎ହ 0

5 0.65 * 𝑎଼ 0.65 ∗ 𝑎଼𝑎ଵ଴ 𝑄௧,௅ை௑
௟௜௤௨௘௙௜௘௥𝑎ହ all GAN available

6 𝑎଼ 0 0 0

7 𝑎଼ 0 0 all GAN available

8 𝑎଼ 𝑎଼𝑎ଵ଴ 𝑄௧,௅ை௑
௟௜௤௨௘௙௜௘௥𝑎ହ 0

9 𝑎଼ 𝑎଼𝑎ଵ଴ 𝑄௧,௅ை௑
௟௜௤௨௘௙௜௘௥𝑎ହ all GAN available

Using discrete actions implies that the agent only has
access to a subset of the permissible action space. Discrete
agents are therefore handicapped when compared to
continuous agents.

This conversion layer makes the environment compatible
both with agents using discrete action spaces (such as DDQN
[9] for example) or continuous control schemes (such as Soft
Actor Critic [10] for example).

C. Baseline

We define a baseline agent encapsulating the MILP solvers
described in section Linear Programming Solutions. An
optimization is run every hour using one-week horizon
forecasts observed from the environment. Storage levels at
the end of the horizon are constrained to be strictly above that
tank’s average level at that time of the week in historical plant
data. This baseline agent serves as a reference for what can be
achieved with MILP solvers. The agent is implemented in
Python, using the OR-Tools library.

It can be noted that the baseline is placed in an
advantageous position. Indeed, MILP problems are seldom
solved every hour, they would typically be solved every 2-3
days at a 2 week horizon. Moreover we recall that this MILP
problem’s variables are continuous whereas RL agents are

International Journal of Machine Learning, Vol. 14, No. 1, 2024

20

limited to discrete actions.

III. LEARNING ENVIRONMENT

A. Historical Data

Four years of hourly historical data for electricity prices
and customer consumption were obtained, as well as 18
months of historical electricity price forecasts: 500 different
forecasts made daily, at the hourly time scale, over a 2 weeks
horizon.

Electricity prices were retrieved from the website of
ENTSO-E, the European Network of Transmission System
Operators. The customer consumption database was
extracted internally. Price forecasts were obtained from a
commercial vendor.

Based on this historical data, we generate synthetic
scenarios which will be implemented and played out within
our Gym environment [11].

B. Synthetic Scenario Generation

Fig. 2. Examples of 2-week extracts of historical data (a) and synthetic
scenario (b) for the time-series electricity price, LIN demand, LOX demand

and GAN demand.

We implemented a custom bootstrap resampling algorithm
to generate synthetic time series from historical data. This
algorithm splits historical data into 24-hour windows,
shuffles and then groups the windows to create a synthetic
new series. The shuffle and group procedure is constrained
to:
1) preserve daily and weekly seasonalities from historical

data (prices are low during nights and week-ends)
2) ensure smooth junction between two consecutive

sampled windows (prices do not jump suddenly at
midnight)

3) preserve the underlying structure of historical data by
prohibiting transitions between two windows unlikely
to follow each other (prices rarely go from very high to
very low within a day)

In using this method, we make several assumptions:
1) Yearly seasonalities have limited impact on the optimal

policy. We expect this to be true as the typical storage
time frame on an ASU is measured in weeks.

2) The time series representing electricity price and
customer demand are not conditionally dependent on
each other.

3) The times series used as historical data are stationary, or
can be transformed to be stationary

This algorithm allows us to generate an infinite number of
scenarios representative of historical data, without the risk
that a reinforcement learning agent overfits on repeated
observations from the environment.

We show in Fig. 2 an example of historical and synthetic
time series. These figures illustrate that we were able to
capture the historical series’ behavior and reproduce it in the
synthetic scenarios.

C. Imperfect Forecasts

The environment is partially observable as agents are only
allowed to plan production based on imperfect forecasts.
For customer gas consumption, the forecast is based on the
average consumption over the past three days.

For customer liquid consumption, this imperfection is
modeled as a random multiplicative error sampled weekly
from a Gaussian distribution centered on 1 with 0.15 standard
deviation. This model is consistent with Air Liquide logistics
experience.

For electricity prices, this imperfection is modeled as an
additive forecast error. Let us denote 𝛿ሺ𝑒௜, 𝑓௝ሻ the forecast
error made by the forecast emitted at time 𝑒௜ for time 𝑓௝ .
Analysis of historical data shows that a correlation exists
between 𝛿ሺ𝑒௜, 𝑓௝ሻ and 𝛿ሺ𝑒௜, 𝑓௝ା௞ሻ with a Pearson coefficient
above 50% for 𝑘 up to approximately 5 hours. Strong
correlation also exists between between 𝛿ሺ𝑒௜, 𝑓௝ሻ and
𝛿ሺ𝑒௜ା௞, 𝑓௝ሻ with a Pearson coefficient above 50% for 𝑘 up to
14 days.

We implemented a custom algorithm to generate synthetic
forecasts errors replicating the characteristics observed in
historical data.

IV. RESULTS

We define three environments (𝐸଴ , 𝐸ଵ and 𝐸ଷ) with
varying levels of stochasticity. Stochasticity is minimal if
agents observe future electricity prices and consumptions
without any forecast error. Stochasticity levels can be
controlled with a multiplicative coefficient applied to

synthetic forecast errors. Environments 𝐸଴ , 𝐸ଵ and 𝐸ଷ
respectively have forecast errors with 0 , 1 or 3 times the
amplitude of real-life errors.

We implement two agents 𝐴଴and 𝐴ଵ in Python using the
Jax, Haiku, and Coax libraries. These agents are trained in the
corresponding 𝐸଴ and 𝐸ଵ environments using the DDQN
algorithm with Prioritized Experience Replay and N-Step
transitions. Training runs required 18 million interaction
steps with the environment over the course of 48 hours to
converge, representing approximately 2000 years of
simulated operation.

The agents (Baseline, 𝐴଴ and 𝐴ଵ) are tested in all
environments with fixed seeds such that all agents are placed

International Journal of Machine Learning, Vol. 14, No. 1, 2024

21

in comparable scenarios. The agents’ performance is
measured by their total undiscounted reward over a hundred
thousand timesteps (approximately twelve years of simulated
operation). Recall that the reward represents the cost of
production and must therefore be minimized. Test scores are
homogeneous to M€ spent for production and summarized in
Table 2.

Table 2. Agents test scores within each environment

Environment Baseline Agent 𝐴଴ Agent 𝐴ଵ

𝐸଴ 105 102 110

𝐸ଵ 106 106 111

𝐸ଷ 131 162 116

The overall best performance is achieved by a
reinforcement learning agent. We hypothesize that the
Baseline MILP agent can be hindered by minor uncertainties
remaining in customer delivery profiles and suboptimal
constraints that are placed on storage levels at the end of the
forecast horizon Reinforcement learning agents can learn
policies that are not limited to the observable horizon of the
environment.

Within the highly stochastic 𝐸ଷ environment, agent 𝐴ଵ has
learned the most effective risk-averse strategy. This is
expected as 𝐴ଵ is the only agent to have encountered forecast
errors during training. In fact, the stability of that agent’s
score across all environments suggests that it has learned a
policy not reliant on the quality of forecasts received as
observations.

It is highly surprising that agent 𝐴ଵ is the worst performer
in environment 𝐸ଵ where it has been trained. We are still
investigating this observation.

Table 3. Agent behavior in environment E1

Criteria Baseline Agent 𝐴଴ Agent 𝐴ଵ
% of reward due to
insufficient storage

22% 6% 1%

%likely suboptimal
action

0% 7% -

In Table 3, we analyze the agents’ behavior in environment
𝐸ଵ according to the criteria below.

Remembering that the reward is designed to carry two
signals (minimize the cost of production, discourage
insufficient storage), we measure the proportion of both
signals within the total reward received by each agent. The
baseline agent is significantly more penalized for insufficient
production (22%) than reinforcement learning agents (6%).
This is likely due to the ability of MILP solvers to target very
precisely zero storage level, combined with the randomness
of customer consumption.

Some actions were marked as likely suboptimal based on
expert rules such as: “If a tank is already full, it is
unnecessary to produce more liquid as it cannot be stored”.
While the baseline agent makes no such mistakes, agent A0
has a very high proportion (7%) of likely suboptimal actions.
Such information may be used in future training to
heuristically guide trained agents towards better policies.

We also tested the agents within other environments where
forecast errors were only applied to electricity prices or
customer consumption, but not both. The agents’ test scores

were minimally impacted by electricity price forecast errors
whereas they were strongly influenced by customer
consumption forecast errors.

V. DISCUSSION

We note that any difference between real-world scenarios
and our synthetic scenarios would be detrimental to the
performance of RL agents while the baseline agent would be
unaffected. Therefore, the performance shown in this article
should be considered as an upper bound of what could be
observed in the real world. While more effort can be made to
improve the quality of synthetic scenarios (e.g. handle yearly
seasonalities or consider the impact of electricity price on
customer demand). In the future, we will prioritize
developments in the agents instead of more sophisticated
scenario generation.

Indeed, the agents trained in this article use a relatively
basic flavor of the deep Q-Learning algorithm, without recent
extensions such as Distributional Reinforcement
Learning. Given the stochastic nature of our environment,
we expect a distributional approach would have been
beneficial for the agents’ performance.

We observe that the parameterization of insufficient
production penalization has a strong effect on optimal
policies: further work is required to ensure fair balance
between storage level optimization and risk of insufficient
production.

In this article, we used a simplified representation of an
ASU’s dynamic behavior. Future work will incorporate a
more representative ASU model within the same training
framework.

VI. CONCLUSION

Our work lays the foundation for future research in
applying reinforcement learning for ASU production
planning by establishing representative environment
dynamics, realistic scenarios and a strong baseline against
which RL agents may be compared.

We applied a deep Q-learning approach to plan industrial
air gasses production in stochastic conditions. The RL trained
agents show ability to minimize the energy costs while
ensuring sufficient levels of production. Their performance
remains stable despite varying degrees of data uncertainty:
matching the MILP baseline in low-uncertainty scenarios and
outperforming it in realistic and high-uncertainty cases. The
developed agents are resilient to customers’ consumption
forecast errors.

VII. ACCEPTABILITY

An important step to bring RL agents in operational use for
ASU production planning is to assert their reliability on the
field. This entails pilot phases during which operational
teams can gauge the trust they place in trained deep
reinforcement learning agents, ensuring actions taken are
both explainable and safe to guide industrial operations.

APPENDIX

A. Electricity Price Forecast Error

We plot in Fig. 3 (a) the correlation between forecast errors

International Journal of Machine Learning, Vol. 14, No. 1, 2024

22

𝛿ሺ𝑒௜, 𝑓௝ሻ and 𝛿ሺ𝑒௜, 𝑓௞ሻ within historical forecasts emitted. 𝑒௜
represents the time at which the forecast was made. 𝑓௜ and 𝑓௝
represent two different timesteps at which this forecast made
a prediction. With this plot we try to answer the question: If
Monday's forecast overestimates the electricity price for
Wednesday at 1PM, is that same forecast also likely to
overestimate the price for Wednesday at 2PM? Light colored
values indicate strong correlations. Patterns emerge where
forecast errors are strongly correlated when up to 5 hours
apart or 24 hours apart.

We also plot in Fig. 3 (b) the same correlation for the
synthetic forecast errors that were generated. As the figures
are similar, we are satisfied that we were able to capture the
historical forecast errors’ behavior and reproduce it in our
synthetic scenarios.

(a)

(b)

Fig. 3. Forecast error correlation within forecasts, compared between
historical data (a) and synthetic scenarios (b).

Historical and synthetic scenarios were also compared on a
variety of different metrics not detailed in this article, we
were satisfied that the learning environment is sufficiently
representative of real-world dynamics for agents to learn
meaningful policies.

B. Training Procedure

Agent 𝐴଴ was trained from scratch in environment 𝐸଴.
Agent 𝐴ଵ was trained in environment 𝐸ଵ starting from the

weights learned by 𝐴଴ in 𝐸଴. We summarize in Table IV the
hyper parameters used during the final training of agents 𝐴଴
and 𝐴ଵ.

Table 4. Training hyper parameters

Learning rate 10ି଺
Batch size 256

Optimizer Adam

N-steps 3

Replay buffer size 300000

Epsilon
(exploration)

Starts at 0.99, linearly decreases
towards 0.1 over 1M iterations, then

0.05 after 500k more iterations

PER 𝛼 0.6

PER 𝛽
Starts at 0.4 and linearly increases to

reach 1 after 1M iterations
Neural network

architecture
1 hidden layer with 100 neurons,

Leaky ReLU activation

CONFLICT OF INTEREST

The authors are employed by Air Liquide, an industrial gas
company that operates air separation units.

AUTHOR CONTRIBUTIONS

Paul Berhaut and Axelle Albot conceived the analysis and
collected the data; Ikhlass Yaya-Oyé, Paul Berhaut and
Axelle Albot contributed analysis tools; Ikhlass Yaya-Oyé
performed the analysis; Paul Berhaut, Axelle Albot and
Ikhlass Yaya-Oyé wrote the paper.

REFERENCES
[1] Air Liquide, 2022 Universal Registration Document, p. 34, 2022.
[2] R. Adamson, M. Hobbs, A. Silcock, and M. J. Willis, “Steady-state

optimisation of a multiple cryogenic air separation unit and compressor
plant,” Applied Energy, vol. 189, pp. 221-232, Mar. 2017.

[3] M. T. Kelley, R. C. Pattison, R. Baldick, and M. Baldea, “An MILP
framework for optimizing demand response operation of air separation
units,” Applied Energy, vol. 222, pp. 951-966, Jul. 2018.

[4] N. V. Sahinidis, “Optimization under uncertainty: State-of-the-art and
opportunities,” Computers & Chemical Engineering, vol. 28, no. 6-7,
pp. 971-983, Jun. 2004.

[5] J.-H. Lee and J. W. Labadie, “Stochastic optimization of multireservoir
systems via reinforcement learning,” Water Resources Research, vol.
43, no. 11. American Geophysical Union (AGU), Nov. 2007. doi:
10.1029/2006wr005627.

[6] J. Shin, T. A. Badgwell, K.-H. Liu, and J. H. Lee, “Reinforcement
learning – overview of recent progress and implications for process
control,” Computers & Chemical Engineering, vol. 127, pp. 282-294,
Aug. 2019. doi: 10.1016/j.compchemeng.2019.05.029.

[7] N. Blum, V. Krespach, G. Zapp, C. Oehse, S. Rehfeldt, and H. Klein,

“Investigation of a model‐based deep reinforcement learning controller
applied to an air separation unit in a production environment,” Chemie
Ingenieur Technik, vol. 93, no. 12. Wiley, pp. 1937-1948, Nov. 04,
2021. doi: 10.1002/cite.202100094.

[8] R. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, 1998.

[9] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” arXiv, 2015. doi:
10.48550/ARXIV.1509.06461.

[10] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” arXiv, 2018. doi: 10.48550/ARXIV.1801.01290.

[11] G. Brockman et al., “OpenAI Gym,” arXiv, 2016. doi:
10.48550/ARXIV.1606.01540.

Copyright © 2024 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

International Journal of Machine Learning, Vol. 14, No. 1, 2024

23

	IJML-V14N1-1152-WS4005

