
  

LSTM Rollout Curriculum Using Double Pendulum 

 
Abstract—In this work, we model a double pendulum system 

with deep neural networks based on a data set generated from 
video recordings. For comparison, a similar model is made by 
describing the system with differential equations. Actually 
compared are the capabilities of both models in predicting the 
next 2s of double pendulum motion using information about 
the previous second. In addition, both models are compared by 
their ability to make predictions in specific error margins. 
Results show that deep learning-based approaches give much 
better predictions, where the best deep learning-based model 
could predict the next 1.5s in a specified error margin, while 
the best differential equation-based one only 0.12s, all other 
metrics agree with this result as well. 
 
Keywords—curriculum learning, deep learning, differential 

equations, double pendulum, LSTM, teacher forcing 

I. INTRODUCTION 

Differential equation modelling of mechanical systems is 
a typical way to approach problems in mechanical 
engineering. But modern engineering solutions allow one to 
create and manipulate large amounts of data because of the 
fact that data-driven methods, including neural networks, 
can be a valuable alternative to classical approaches. It is 
backed by statistics, which shows that in the last five years, 
the popularity of both deep neural networks altogether as 
well as specifically in the field of engineering has risen 
significantly. It also provides a way to switch the analysis 
domain in the system - while differential equation-based 
solutions generally use the physical parameters of the 
system, such as weight and material properties, as well as 
geometrical parameters, data-driven methods introduce 
more flexibility in this matter, such as using only visual 
information.  

For the actual analysis and comparisons in this work, we 
use a well-known mechanical system, the double pendulum, 
because its states in time are simple to describe, but it has a 
well-known chaotic behaviour [1]. Our goal is to study the 
double pendulum system with experimental data and to 
make comparisons between various data-driven methods, 
more specifically deep learning, and methods based on 
differential equations and how well they can predict the 
pendulum motion.  

For the deep learning part, we apply long- and short-term 
memory (LSTM) models, together with an implementation 
of Curriculum Learning [2] to modify how they are trained 
to achieve better long-term predictions. On the other hand, 
we describe the system with differential equations with 
various degrees of complexity, starting with a simple 
mathematical model and continuing with a physical one. To 
counteract the problem of lack of knowledge of the physical 
parameters of the pendulum, we use parameter grid search. 

The comparison aims to find the longest time a model can 
predict the motion of pendulum blobs within a specific error 
margin, measured with various metrics 

II. RELATED WORK 

Previously, work has been done to find uses for deep 
learning considering problems in mechanics. A method to 
use deep neural networks has been proposed to solve 
ordinary and partial differential equations [3], providing an 
alternative to classical numerical methods. Raissia et al. 
have proposed incorporating both experimental data and 
knowledge about the systems that govern the equations into 
the deep learning method, known as PINNs (physics 
informed neural networks) [4]. Research has also been done 
considering uses for recurrent neural networks in the 
modelling of mechanical systems, by considering their data 
as a time series problem. An often used system is the double 
pendulum, because its states in time are simple to describe, 
yet it has a well-known chaotic behaviour [1]. Klinkachorn 
et al. have compared different machine learning methods to 
model a double pendulum system [5], and have found the 
solution involving recurrent neural networks to give the best 
predictions. A similar study has been done by D. Gannon 
and also found that an LSTM based architecture could 
successfully model the differential equations governing the 
double pendulum system [6]. Both aforementioned works 
look at differential equations that describe the system and 
compare how well they can be modelled, but an important 
aspect to consider is not only how well neural networks can 
learn the differential equation, but also how accurate the 
differential equation itself is in representing the real-life 
system as a mathematical model. This problem was 
identified, and a dataset was created by Asseman et al. [7], 
which contains information about a real-life double 
pendulum system, on which the further work here has been 
built. This dataset also provides a challenge considering the 
information about its physical properties - while the dataset 
contains information about the kinematics of the pendulum’s 
motion, the only available physical properties are of the 
geometry, but not the masses of the system’s parts, materials, 
weight distribution etc. But such a situation is possible 
where an already made system would need to be analyzed, 
for example, for diagnostical purposes, without 
access/ability to measure all physical properties necessary 
for mathematical modelling.  

Another approach is model-free estimation of Lyapunov 
exponents of chaotic systems using reservoir computing, 
which utilizes high-dimensional dynamical systems to learn 
output weights from a limited time series, allowing the 
approximation of the ergodic properties of the original 
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system, as demonstrated through successful application to 
the Lorenz system and the Kuramoto-Sivashinsky equation 
[8]. In related work, researchers have proposed the use of 
recurrent neural networks to generate particle trajectories in 
classical molecular dynamics simulations, achieving energy-
conserving dynamics with significantly longer time steps 
compared to traditional numerical integrators such as Verlet 
[9]. Methods have even been extended to work that explores 
the development of a neural network architecture inspired 
by human physical reasoning, enabling machine-assisted 
scientific discovery by leveraging representation learning 
and making predictions based on relevant parameters and 
conservation laws [10]. Not all research uses RNN or LSTM, 
and some also propose the use of a Convolutional Neural 
Network as a surrogate model to approximate the steady-
state diffusion equation, offering significant computational 
speed-ups for simulations involving fast-diffusing chemical 
species, such as oxygen gradients in the retina, and discuss 
various loss functions and accuracy estimators for selecting 
the most suitable network for different applications [11]. 
Practical applications in related research have been studied 
for the logistics of ships [12] and router networking 
stabilization [13]. 

III. METHODOLOGY

A. Dataset

In 2019 a work was published in which IBM researchers
released a dataset containing data on the kinematics of a 
double pendulum system, whose geometry is shown in Fig. 
1 [7]. Their premise was that for a reliable test for various 
prediction methods considering chaotic systems a real-life 
benchmark was needed, but most works were using data 
from simulated origin, for example extracted from 
differential equations. The dataset contains 21 videos with 
oscillations of the double pendulum, each of which is about 
40s long and contains around 17 500 frames. Each of the 
frames is processed with OpenCV and the coordinates of 
each of the pendulum blobs 𝑥ଵ, 𝑦ଵ, 𝑥ଶ, 𝑦ଶ as also shown in 
Fig. 2, are extracted. 

Fig. 1. The pendulum used for the experiment and its geometric parameters 
[7]. 

The parameters on the right-hand side in Fig. 1, 
describing the geometry of the system, are the only available 
ones, thus the rest of them, such as mass and moments of 
inertia, had to be approximated, which would provide a 
problem in any method based on these parameters. The 
coordinates of the pendulum bobs were converted into 
angles between its arms and the vertical axis, as shown in 

Fig. 2. A benefit of that is the possibility to use the gradients 
in further research involving the system’s governing 
differential equations in the learning process as well, 
previously mentioned as physics-informed neural networks 
[4]. 

Fig. 2. Schematics describing the double pendulum system for creating the 
differential equations. 

B. Limitations

To smooth out the noise, a Savitzky-Golay digital filter
was used [14]. Then the dataset was split into train and test 
parts, corresponding to a ratio of 80:20 accordingly, from 
which the time series with a length of 400 steps were further 
extracted. 

C. Metrics

Various metrics were implemented to objectively evaluate
the results. The first is the mean absolute error, which is 
calculated for each time step of every sequence between the 
prediction and the ground truth.  

𝑀𝐴𝐸 ൌ ෍ |𝑦௜ െ 𝑦ො௜|
௧ୀଶ௦

௜ୀଵ

 (1) 

But in case of a bad prediction, the mean absolute error 
may be misleading due to a large accumulation of errors 
over each time step, because of that two additional metrics 
were used - the mean step count (MSC) and mean step sum 
(MSS). 

𝑀𝑆𝐶 ൌ 𝑖,   𝑤ℎ𝑒𝑛  |𝑦௜ െ 𝑦ො௜| ൐ 𝛿 (2) 

The mean step count MSC measures the number of time 
steps it takes for the difference between the prediction and 
ground truth to reach a certain threshold δ. This metric helps 
to determine how close the prediction is to the initial period 
and whether it predicts the right direction and acceleration 
of the oscillations.  

𝑀𝑆𝑆 ൌ 𝑖, 𝑤ℎ𝑒𝑛 ෍|𝑦௜ െ 𝑦ො௜| ൐ 𝛾 (3) 

The sum of the mean steps MSS works similarly to the 
sum of the mean steps, the difference being that it measures 
the discrepancy in each time step and sums it up, measuring 
the time steps until a threshold is reached for the sum γ. It 
helps to distinguish how the accumulation of errors impacts 
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the predictions. For the evaluation in the experiments 
described further, the exact 𝛿  and 𝛾  values are 20 𝑟𝑎𝑑/𝑠 
and 8 𝑟𝑎𝑑/𝑠 accordingly. 

D. ODE Method 

To model the system with differential equations an 
important feature of the dataset needs to be considered - the 
information about its dimensions and properties is scarce. 
Thus, many of the properties used in differential equations 
need to be approximated, potentially reducing the accuracy 
of their solutions. We model the system in two ways, the 
simplest one considers the system as a mathematical 
pendulum with point masses and no moments of inertia, air 
resistance, or other real-life factors. The other, the physical 
model, takes these factors into consideration, as far as 
possible with the limited knowledge about their properties. 
 

The differential equations are written using Lagrange’s 
equations for a system with 𝑖 ൌ 1, 2, … , 𝑁  degrees of 
freedom. 

 
𝑑
𝑑𝑡

൬
𝜕𝐾
𝜕𝑞ሶ௜

൰ െ 
𝜕𝐾
𝜕𝑞௜

൅
𝜕𝑃
𝜕𝑞௜

ൌ 0 (4) 

  
where: K – kinetic energy, P – potential energy, q – 
generalized coordinate. 

Coordinates for the upper pendulum’s part: 
 

𝑥ଵ ൌ 𝑙ଵ𝑠𝑖𝑛𝜃ଵ           𝑦ଵ ൌ  െ𝑙ଵ𝑐𝑜𝑠𝜃ଵ (5) 
   

Coordinates for the lower pendulum’s part: 
 

     𝑥ଶ ൌ 𝑙ଵ𝑠𝑖𝑛𝜃ଵ ൅ 𝑙ଶ𝑠𝑖𝑛𝜃ଶ          
𝑦ଶ ൌ െ𝑙ଵ𝑐𝑜𝑠𝜃ଵ െ 𝑙ଶ𝑐𝑜𝑠𝜃ଶ 

(6) 

 
Velocities can be attained by taking the derivatives of the 

coordinates with respect to time: 

 

𝑥ሶଵ ൌ 𝑙ଵ𝜃ሶଵ𝑐𝑜𝑠𝜃ଵ 
𝑦ሶଵ ൌ 𝑙ଵ𝜃ሶଵ𝑠𝑖𝑛𝜃ଵ 

𝑥ሶଶ ൌ 𝑙ଵ𝜃ሶଵ𝑐𝑜𝑠𝜃ଵ ൅ 𝑙ଶ𝜃ሶଶ𝑐𝑜𝑠𝜃ଶ 
𝑦ሶଶ ൌ 𝑙ଵ𝜃ሶଵ𝑠𝑖𝑛𝜃ଵ ൅ 𝑙ଶ𝜃ሶଶ𝑠𝑖𝑛𝜃ଶ 

(7) 

  
Potential energy: 

 
𝑃 ൌ 𝑚ଵ𝑔𝑦ଵ ൅ 𝑚ଶ𝑔𝑦ଶ 

ൌ െሺ𝑚ଵ ൅ 𝑚ଶሻ𝑙ଵ𝑔 𝑐𝑜𝑠𝜃ଵ െ 𝑚ଶ𝑙ଶ𝑔 𝑐𝑜𝑠𝜃ଶ 
(8) 

 
Kinetic energy: 

 

𝐾 ൌ
𝑚ଵ𝑣ଵ

ଶ

2
൅

𝑚ଶ𝑣ଶ
ଶ

2
 

ൌ  
𝑚ଵሺ𝑥ሶଵଶ ൅ 𝑦ሶଵଶሻ

2
൅ 

𝑚ଶሺ𝑥ሶଶ
ଶ ൅ 𝑦ሶଶ

ଶሻ

2
 

(9) 

  
Then plugging both equations and their respective 

derivatives in the Lagrange’s equation results in two 
differential equations describing the angle between the 
vertical axis for each of the pendulum’s parts 𝜃ଵ and 𝜃ଶ. The 
second differential equation based method takes into 

consideration the moments of inertia and air resistance of 
the pendulum. To accommodate air resistance, the 
Lagrange’s equations can be supplemented with a 
dissipative term 𝐷 in the form: 

 
𝑑
𝑑𝑡

൬
𝜕𝐾
𝜕𝑞ሶ௜

൰ െ 
𝜕𝐾
𝜕𝑞௜

൅
𝜕𝐷
𝜕𝑞ሶ௜

൅
𝜕𝑃
𝜕𝑞௜

ൌ 0 (10) 

 
Often the dissipative term 𝐷  is modelled with the 

Rayleigh’s dissipation function, but that assumes a linear, 
velocity dependant friction. By calculating the average 
speed of the pendulum blobs and the respective Reynold’s 
numbers in those speeds, it was concluded that air resistance 
in the observable velocity ranges in the experiment is not 
completely linear. Thus a more suitable option is the 
generalized dissipation function, which can model non-
linear dissipation processes. 
 

𝐷 ൌ
1

𝑛 ൅ 1
 ෍ 𝑐௜𝑣௜

௡ାଵ

 

௜

 (11) 

  
where 𝑛 depicts the order of the velocity dependence of the 
air resistance, 𝑐  is the coefficient of friction, and 𝑣  is the 
velocity. As was indicated by the calculated Reynolds 
numbers, we used a linearly dependent function for the first 
blob and a quadratic one for the second, giving the final 
form of the dissipation function: 
 

𝐷 ൌ
𝑐ଵ𝑣ଵ

ଶ

2
൅

𝑐ଶ𝑣ଶ
ଶ

3
 (12) 

 
The coefficients of friction 𝑐 for both blobs were found 

with the Stoke’s and drag equation accordingly. 

E. LSTM Method 

 
Fig. 3. A schematics describing the structure of the deep learning based 

model. 

 
The other approach for the prediction of the pendulum’s 

movement is based on deep learning methods. The models 
consist of stacked LSTM cells, whose outputs are put 
through linear layers. Research also shows that the data 
should be preprocessed with feed-forward layers before the 
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LSTM cells to simplify the temporal dynamics [15]. To 
reduce the loss at the initial time step learnable initial and 
hidden states 𝑐଴  and ℎ଴  for the LSTM cells are used. 
LayerNorm is used after each feed-forward layer together 
with the Mish activation function [16, 17]. The structure of 
this model is illustrated in Fig. 3. 

F. Training Methods 

A typical training method for recurrent neural networks is 
teacher forcing, where the ground truth values are fed as 
model inputs in each time step [18]. But this method has 
problems, because in a real-life scenario the ground truth 
values are not available and the model has to work in a 
recurrent regime - only receiving the first step as input from 
the dataset and further using its own prediction from the 
previous step, which obviously differs from the training 
process if pure teacher forcing is used, resulting in 
accumulating errors.  

So a potential workaround is training the model while 
incorporating its own previous predictions as inputs. To 
avoid large loss accumulation and thus unstable learning, a 
method called Curriculum Learning can be used, where, 
rather than starting with just the model’s previous 
predictions, the input is gradually changed from ground 
truth to previously predicted values [2]. For the actual 
training, we combine both methods for some amount of time 
steps, which itself is a hyperparameter, as shown below in 
Fig. 4. So the training is started in teacher forcing mode and 
then switches to the recurrent mode with Curriculum 
Learning. 

 

 
Fig. 4. A step scheme showing the transfer from teacher forcing initially to 

a generative part using the previous predictions as inputs. 
 

G. Loss Function 

The total loss function ℒ used is the mean absolute error 
MAE, which then combines losses from both previously 
mentioned parts. 

 

ℒ ൌ
1

𝑛ሺ𝑡ଵሻ
෍ |𝑦௜ െ 𝑦ො௜|

௧భୀሺଶିఈሻ௦

௜ୀଵ

൅
1

𝑛ሺ𝑡ଶሻ
෍ ห𝑦௝ െ 𝑦ො௝ห

௧మୀఈ ௦

௝ୀଵ

 

(13) 

 
where 𝛼  is the length of the recurrent learning part and 
then 2 െ 𝛼  is the length of the part for teacher forcing, 
considering that the total prediction length is a step count 
corresponding to 2𝑠 of pendulum’s motion. 

IV. RESULTS 

Table I contains the best results from each type of model. 
The LSTM based models are grouped by the usage of the 
recurrent part, its length and whether the curriculum 
learning was applied to the recurrent part. The ODE models 
shown are the simplified mathematical model and the more 
complex physical model. Results from the LSTM based 
models were obtained with hyper-parameter grid-search, 
while a similar strategy was used to determine the best 
results from the differential equation-based models, with the 
difference being that ODE grid-searched parameters were 
the physical attributes 𝑚ଵ and 𝑚ଶ. 

 
Table 1. Comparison of ODE methods and LSTM methods 

Method Recurrent 
part 

Length 
of rec. 
Part 

Curriculum MSC, 
steps 

MSS, 
steps 

MAE, 
rad/s 

LSTM + 50 + 600 79 0.0126 
LSTM + 50 - 444 56 0.0147 
LSTM  -  190 41 0.0262 
ODE 
physical 

 -  46.69 11.77 0.0341 

ODE 
mathema- 
tical 

 -  47.63 11.73 0.0385 

 
Fig. 5. illustrates the total loss in each epoch, where a 

clear convergence of both the test and train loss values can 
be observed with no noticeable overfitting. 

 

 
Fig. 5. Loss value for train and test set. 

 

In the images below a comparison is illustrated for the 
prediction abilities of the best ODE model in Fig. 6 and the 
best deep neural network model in Fig. 7. Both predictions 
have used the same 1s long input sequence and predicted the 
next 2s or 800 steps. The upper and lower graphs in both 
images correspond to the first and second blob accordingly. 

It can be visually seen that the predictions based on the 
LSTM model, shown in Fig. 7, are closer to the ground truth 
values and close to them throughout the 2𝑠 prediction period, 
whereas the ODE-based model, whose predictions are 
illustrated in Fig. 6, is capable of predicting the real values 
only in the early steps, while later diverging from the ground 
truth values. Data in the results Table 1 show the same 
conclusion. The best LSTM based model could predict 600 
steps or 1.5𝑠  in the specified error margin 𝛿 ൌ 20 𝑟𝑎𝑑/𝑠 , 
while the best ODE based model only 48 steps or 0.12𝑠 . 
The MSS and MAE values also show a similar superiority 
of the LSTM based model, with the MSS values being 
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79.00 and 11.77 steps on average accordingly and the MAE 
being 0.0126 𝑟𝑎𝑑/𝑠  and 0.0341 𝑟𝑎𝑑/𝑠  accordingly. This 
means that LSTM based model’s predictions could stay 
closer to the ground truth values for more steps and provide 
a lower average error overall.  

Another comparison can be made between the prediction 
capabilities between the same types of models. Major 
improvements in the LSTM model predictions can be gained 
by adding the recurrent learning part with a curriculum-
based approach, indicated by all metrics.  

Downsampling of the signal provided worse results in all 
test cases, but could be considered if a solution with more 
limited computational resources would be of interest. 

Fig. 6. Comparison between the ODE predictions and the ground truth 
values for the angular velocities 𝜔ଵ and 𝜔ଶ in a prediction span of 2𝑠. 

Fig. 7. Comparison between the LSTM predictions and the ground truth 
values for the angular velocities 𝜔ଵ and 𝜔ଶ in a prediction span of 2𝑠. 

V. FURTHER RESEARCH

In our work only experimental data was used for the 
training of the deep learning-based model, but, as outlined 

previously, a secondary part could be provided by using the 
differential equations themselves, similarly as in physics-
informed neural networks [3]. In that case, more physical 
meaning of the system could be learned by the model, 
potentially improving long-term prediction abilities. As the 
deep learning based model showed good prediction 
capabilities, it could be adapted for some systems for 
diagnostic purposes, as the loss values could be used for 
determining a change in the system. That would also involve 
creating a procedure for data gathering. Additionally, further 
research could be done considering alternatives to the 
LSTM cell with the goal of improving the long-term 
prediction abilities. Some of these alternatives could include 
transformer-based architectures [19] or Phased-LSTM [20]. 

VI. CONCLUSION

In this study, we rigorously compare the prediction 
performance of LSTM and ODE-based models, with a 
specific focus on an experimentally extracted data set from a 
double pendulum system. Our research reveals that despite 
the scarce description of the system’s physical parameters, a 
deep learning-based approach with LSTM consistently 
produces predictions closer to the ground-truth values 
throughout a 2 second prediction period. On the contrary, 
the ODE-based model tends to diverge from these ground 
truth values. This emphasis on the LSTM model’s capacity 
to maintain closer proximity to the ground truth values over 
an extended duration translates to lower overall average 
errors compared to its ODE counterpart. Further 
comparative analysis among the deep learning models 
unveils a significant boost in prediction ability across all 
evaluated metrics when curriculum learning is incorporated 
into the model’s training. This improvement is markedly 
apparent in contrast to other modes such as autoregression 
mode or a combination of auto-regression mode with a 
recurrent part without curriculum learning, underscoring the 
advantages of incorporating such a learning strategy in our 
model’s training 
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