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Abstract—A smart city should ideally be environmentally 

friendly and sustainable, and energy management is one 

technique to monitor sustainable use. Similarly, this notion 

might be applied in an urban form, such as the sort of city in 

which a university would be located. This research analyzes the 

possibility for a university to enhance energy management by 

permitting the adoption of a variety of intelligent technologies 

that increase the energy sustainability of a city's infrastructure 

and the effectiveness of its operations. In the first module of the 

proposed system, we place significant emphasis on the data 

capabilities necessary to create energy statistics for each of its 

various buildings. In the second phase of the technique, we 

employ the collected data to conduct a data analysis of the 

energy behavior inside micro-cities, from which we derive 

characteristics. In the third module, we develop baseline 

regressors to assess the varying degrees of efficacy of the 

proposed model. Last, we describe a way for developing an 

energy prediction model using a deep learning regression model 

to solve the problem of short-term energy consumption 

forecasting. The performance metric results show that the 

suggested deep learning model increases performance prediction 

compared to other traditional regression techniques. The 

proposed model has superior RMSE, MAE and R squared 

results compared to alternative regression models. 

 
Index Terms—Deep learning, energy consumption, 

sustainable urban energy, sustainable smart campus 

 

I. INTRODUCTION 

Data on energy management is gathered by smart buildings 

from a large sensor network. These sensors can predict energy 

use, alter thermostat settings, and improve the building's 

safety and resiliency. Controlling and evaluating energy 

consumption in multiple buildings may be difficult, 

particularly if power demand is irregular. Only buildings 

where people live, and work use as much energy. According 

to projections from the U.S. Department of Energy, by 2020, 

Americans will use over 20 million megawatt hours (MWh) 

for residential purposes and over 16 million for commercial 

purposes, totaling over 29% of all energy consumed [1]. A 

total of 60% of the energy used in homes is utilized for space 

cooling, space heating, and electrical equipment [2]. 

Therefore, forecasting energy usage is a component of 

building energy management. The projection of energy 

demand affects both energy-efficient building technology and 

building operation and maintenance. Building owners can 

make operational and maintenance decisions based on an 

estimated energy use. To make financially sound judgments 
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concerning refurbishment and remodeling, such as replacing 

large building components like hot water, air conditioning 

(HVAC), power generation, lighting, and refrigeration 

systems, building owners require reliable energy demand 

estimations. Building owners benefit from accurate energy 

demand prediction for energy forecasting, demand reduction, 

energy audits, efficiency enhancement, and demand response. 

Precise energy demand estimation is also used in energy 

policy and planning, building certification, testing, and 

inspection, and building lifecycle cost management. 

According to the Energy Consumption Statistics published 

in 2020 by the Korea Energy Management Corporation and 

Korea Energy Agency, academic institutions are using more 

energy as technology advances. Technology is expected to 

increase this ratio, which in 2020 accounted for 10.2% of all 

energy use in educational buildings in Korea. Energy 

consumption in educational buildings has increased by 16.3% 

since 2000 [3]. The demand for power in academic 

laboratories is predicted to increase. Energy use varies 

depending on the research activity, experiment type, and 

research facility, although laboratory activity accounts for 

most of these situations. 

Universities and research institutions must manage and 

analyze energy consumption, decrease energy waste, and 

optimize energy used to evaluate energy-saving initiatives. 

An energy prediction framework for smart universities is 

suggested in this study. Campus data from several 

components and buildings is combined and brought together 

on a cloud platform for storage, processing, and 

communication. The platform also monitors, regulates, and 

assesses energy usage. Beyond academic study, we consider 

temporal and environmental elements like temperature and 

humidity. Many studies have been conducted pertaining to the 

application of machine learning and deep learning across 

diverse domains [4–10]. Deep learning may transform 

unstructured data in a smart campus into information that 

helps decision-makers in university towns be more 

energy-conscious. The university city in this research 

comprises student housing, laboratories, gyms, cafeterias, 

student offices, and workplaces. 

Power grid operators and energy firms may have greater 

opportunities to improve their energy systems because of 

smart universities as a small scale for a city's potential to 

generate information and massive amounts of data using 

embedded and Internet of Things technology [11]. 

Additionally, we want to help decision-makers enhance the 

academic, operational, and commercial performance of 

university buildings by offering an effective energy 

management tool.  

In this study, we demonstrate how energy data may be used 

campus-wide for smart energy management in a university 
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using deep learning for energy use and prediction. 

Additionally, we want to show how energy data can help with 

energy management using the energy management system 

data from 2019 to 2021, building energy consumption, and 

meteorological data.  

Although some research [12–14] looks at the relationship 

between energy consumption and climate change, regression 

models with a few parameters are used in most studies [15–17] 

that forecast energy. Analysis of historical data is essential 

since energy consumption trends differ. Variables include the 

weather, the seasons, and the work hours of city residents. 

Even if dynamic patterns are difficult to predict, better 

municipal energy management and public policy can still be 

achieved. 

Furthermore, by analyzing energy consumption from 

previous energy studies, residential and non-residential 

buildings can be further classified. Some studies are covered 

in residential buildings [18–20]. In the case of Korean 

building, energy utilization is examined in another research 

[21–23]. Thus, studies of the non-residential buildings 

frequently focus on offices, hospitals, and universities 

[24–27]. This study was influenced by both residential and 

non-residential building categories. The future of energy 

consumption must also be determined via analysis. To 

integrate and compare data, we assess several methods and 

create a deep learning architecture. Therefore, correct energy 

delivery is made possible by electrical suppliers and the 

government by forecasting energy, taking external variables 

into account, and selecting important variables like specific 

building consumption. Efficient energy management is of 

paramount importance for the sustainability and 

cost-effectiveness of university campuses. In this study, we 

propose a deep learning architecture that leverages multiple 

neural networks to forecast energy consumption accurately 

over a 48-hour period. By utilizing historical energy 

consumption data from individual buildings, we establish a 

comprehensive understanding of the university's overall 

energy usage patterns. External variables, including weather 

observations, are integrated into the deep learning network to 

enhance the precision of our energy consumption model. 

This research presents a deep learning architecture with 

several neural networks for 48-hour energy prediction. The 

foundation is energy consumption. The university's overall 

energy usage is obtained by identifying the patterns of each 

building, creating a data structure, and merging those 

structures. Estimating a university‟s energy use might lead to 

better energy regulations and less waste. A deep learning 

network used in this study applies to the energy consumption 

model, which also considers external variables, such as 

weather observations. From the perspective of the smart 

university, this research aims to comprehend the dynamics of 

each building to make energy consumption sustainable for the 

entire city. By examining the energy usage and causes of each 

structure, we can develop university wide energy-saving 

strategies. To test our model, we realize the experiments over 

the campus data, this comparison identifies the accuracy and 

potential areas for development of our model. We put our 

model through statistical testing to make sure it meets the 

requirements for energy consumption forecasting. 

After this introductory section, the remainder of this paper 

is structured as follows: Section II introduces our 

methodology. Section III explains how to gather, prepare, and 

analyze data; Section IV contrasts our suggested model with 

competing regression models; and Section V sums up our 

conclusions and suggests further research. 

 

II. METHODOLOGY 

The framework for predicting university energy 

consumption is described in this section. The three key 

elements of the framework for forecast energy consumption 

are shown in Fig. 1: data collection, preprocessing, and the 

proposed model recurrent biLSTM. Our proposed deep 

learning architecture comprises multiple interconnected 

neural networks. Each network focuses on specific aspects of 

energy consumption patterns, such as temporal dependencies, 

weather conditions, and building-specific characteristics. 

These networks are trained using historical energy 

consumption data to learn the underlying relationships and 

capture complex dynamics. 

The first two datasets are from South Korea's national 

university, Incheon National University (INU). In our 

research, we concentrated on the Global Campus launched in 

2009, located in the city of Songdo in Incheon, South Korea. 

Therefore, we collected detailed energy consumption data 

from various buildings across the university campus. These 

data were processed and structured to form a unified dataset, 

allowing us to capture the diverse energy consumption 

patterns within the university. Since INU is a young university, 

much of the equipment in its buildings is also new. INU 

started gathering information from energy consumption in 

November 2019. INU Songdo Campus comprises 456,806 

m2 of plottage, 216,732 m2 of major buildings, and 35,801 

m2 of underground parking. It is at 37.3751° N and 

126.6328° E. Most buildings track their energy usage hourly. 

The “International Exchange Center”, “College of Urban 

Science”, “College of Business/School of Northeast Asian 

Studies”, and “College of Social Science/College of Global 

Law, Politics, and Economics” do not track energy 

consumption, so this study does not include data from these 

buildings. 
  

 
Fig. 1. Energy regression framework for smart universities. 

  

The Korea Meteorological Administration (KMA) 

reported climate variables related to the city of Songdo, such 

as air pressure, temperature, dew point, precipitation, wind 

speed, and sky conditions. By acquiring temporal data from 

the point at which it was captured, the time series of the model 

International Journal of Machine Learning, Vol. 13, No. 4, October 2023

147



  

was kept up to date. 

The data sources combined contains one dependent 

variable: total energy consumption, the following 

independent variables: nine meteorological elements, four 

temporal variables, and the energy consumption of 17 

academic buildings, including two dormitories, one sport 

center, and one gymnasium, for the time between November 

30, 2019, and January 19, 2021. 9976 records in 32 columns 

were gathered over the course of 14 months. 

To enhance algorithm performance, Section III outlines 

data preparation, an exploratory study, data modification, and 

data transformation. In order to evaluate model performance 

and hyperparameter tuning, the input data is divided into three 

sets: a training set with 60% of the total data, a validation set 

with 20%, and a test set with 20%. To use deep neural 

networks, the data preparation module must first offer 

numerical values within a specific range [28]. In contrast to 

ordinal categorical variables, which are represented 

numerically, nominal categorical variables are converted into 

several binary variables.  

About the proposed recurrent biLSTM network, the model 

comprises 2 bidirectional LSTM, or biLSTM. The biLSTM is 

made up of two LSTMs. One of the LSTMs processes the 

input in a forward manner, while the other processes it in a 

backwards way [28, 29]. BiLSTMs are an excellent way to 

expand the quantity of information that is available to the 

network, which improves the context that is available to the 

algorithm (for example, being aware of the energy that will be 

consumed immediately and the energy that has been 

consumed, all seen as a time series).  

In the third module, the ideal hyperparameters for the 

suggested network are selected. First, a grid search strategy is 

used in both the training and validation modules. The 

proposed deep learning model is proven by comparisons with 

other regression models. In this study, 6 algorithms were used, 

which are divided into 4 categories. The single regression 

methods investigated in this work are linear regression and 

k-nearest neighbors regressor (k-NN). CatBoost was selected 

as the ensemble regression method, Gaussian Process as 

Bayesian method approach. Finally, artificial neural networks 

(NN) and our proposed biLSTM are the algorithms used as 

part of the deep learning category. 

Selected models are thoroughly examined at the end using 

and unseeing data. By estimating energy use 48 hours in 

advance, the recommended biLSTM regression model 

performed best on different metrics over the test set. 

 

III. DATA ANALYSIS 

This section preprocesses and analyzes the energy dataset 

from INU. The dataset starts recording data from 10:00 a.m. 

on November 30th, 2019, to January 17th, 2021, making a 

total of 9975 records. All variables use data with an hourly 

input. Energy consumption and time-dependent aspects are 

discussed in subsection A. Independent factors, variable 

energy usage in buildings, and meteorological information are 

covered in the following B and C subsections. 

A. Energy Consumption 

Energy meters on INU campus keep track of usage hourly. 

Fig. 2 shows the time series of energy consumption in INU, 

which in turn is divided into the three datasets (training, 

validation, and test) which will be discussed more in detail in 

the results section. The trend component enhances the 

monitoring of energy consumption by displaying 

low-frequency variations. From Fig. 2 can be observed that 

from December 2019 indicates an increase in energy use. The 

trend component for December 2019 indicates a decrease in 

energy use until the beginning of June 2020. This was due to 

the outbreak of COVID-19, which began in the year 2020 and, 

since then, the use of energy has been decreasing. In addition, 

due to this situation, many undergraduate students stopped 

going to the University, starting to take classes online. 

Moreover, it was not the case for the professors, 

administrative area and students of masters and doctorates. 
 

 
Fig. 2. Energy consumption of INU from November 2019 to February 2021. 

 

 
Fig. 3. Energy consumption distribution of INU per hour by day. 

 

 
Fig. 4. Mean of the energy consumption distribution of INU per weekday. 

 

 
Fig. 5. Energy consumption distributions of INU per month. 

  

Fig. 3 presents the energy consumption distribution each 24 

hours per day. In addition, the behavior pattern of 

administrative staff, students and teachers can be observed. 

Therefore, working hours need additional energy, as expected. 

Energy consumption increases from 8 am and begins its 
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decrease between 10 and 11 pm. Additionally, an outlier 

performed at 24 hours can be observed, which could be due to 

some experiment that consumed a high amount of energy. 

That was presumably an experiment at Building 4 in the 

department of computers and information. Fig. 4 shows the 

distribution of the average by day of the week. As expected, 

we see a normal work schedule from Monday to Friday with a 

minimum of energy consumption on the weekend. Fig. 5 

presents a boxplot of the monthly energy consumption. 

Because in South Korea the weather seasons are very clear, 

this is also observed in using energy consumed at the 

University. When heating is used, energy use in 2020 

increases from the end of January to beginning of March and 

decreases from March to May. Air conditioning contributes to 

a slight rise in summer between June to September of energy 

usage and a decrease in fall season. Winter energy demand 

has increased because of heating. 

B. Energy in Building Structures 

Energy metering sensors in certain buildings track energy 

consumption hourly. They are examined in this section. 

Seventeen buildings were analyzed, getting the individual 

energy consumption shown in Table I. Within our analysis we 

could observe variable 04.Information_Computing is the 

outlier from Fig. 3 and 5. The variables 

07.Information_Technology, 08.College_Engineering, and 

10.GuestHouse show several outliers between September and 

December 2020. The 06.Library building, which was closed 

for COVID-19 prevention from mid-February to mid- 

February June 2020, used less energy. The university offices, 

faculty offices, the central laboratory department, the arts and 

physical education department, and the student center use 

power continuously. The department of natural sciences and 

student residences used less energy because of more online 

courses. 
 

TABLE I: BUILDINGS ANALYZED FROM INU 

Variable name 

01.University_Headquarters 

02.Faculty_Hall 

04.Information_Computing 

05.Natural_Science 

06.Library 

07.Information_Technology 

08.College_Engineering 

09.Joint_Experiment 

10.GuestHouse 

11.Welfare_Hall 

12.Convention 

15.College_Humanities 

16.Art_Sports 

17.Student_Hall 

18-1.Dormitory 

20.Sport_Center 

21.Gym 

 

C. Weather Variables 

To capture important weather data that weather forecasting 

might lack, this study uses weather observation data for 

energy consumption prediction. The choice of weather 

observation and forecast is dependent on how they differ. 

Weather observations are reported by KMA every hour, while 

predictions are reported every three hours. The eight 

measured climatic variables obtained from the city of Songdo 

are shown in Table II.  Additionally, we transform the 

variable Wind_Speed and Wind_Direction into their 

respective cosine and sine forms as shown in equations (1) 

and (2). 

 

𝑊𝑥 =  𝑊𝑖𝑛𝑑_𝑆𝑝𝑒𝑒𝑑 ∗  

  cos (𝑊𝑖𝑛𝑑_𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑔 ∗ 𝜋)/180 .   

(1) 

𝑊𝑦 =  𝑊𝑖𝑛𝑑_𝑆𝑝𝑒𝑒𝑑 ∗  

 sin (𝑊𝑖𝑛𝑑_𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑔 ∗ 𝜋)/ 180 .   (2) 

TABLE II: WEATHER VARIABLES FROM SONGDO, YEONSU-GU, INCHEON, 

SOUTH KOREA 

Variable name 

Dew_Point 

Humidity 

Precipitation 

Pressure 

Sky Condition 

Temperature 

Wind_Speed 

Wind_Direction(deg) 

Wx 

Wy 

 

IV. RESULTS 

We begin with an explanation of how the experiments are 

conducted, followed by a discussion of the dataset and the 

dates that correspond to each partition. Second, we present 

performance metrics used to evaluate the models. Third, we 

present the hyper-parameters with which each approach 

performs best. Each model was then put to the test. Finally, we 

compare our forecasting model to those of our competitors.  

To evaluate the performance of our model, we conducted 

extensive testing and analysis on the university campus 

dataset. The results showed that our deep learning 

architecture achieved a high level of accuracy in predicting 

energy consumption over a 48-hour horizon. By examining 

the discrepancies between predicted and actual energy 

consumption, we identified potential areas for model 

refinement and further improvement. As stated previously, 

data collection covers fourteen months, from November 30th, 

2019, to January 17th, 2021. Each algorithm was optimized 

using the training and validation sets. The training set will 

operate between November 30th, 2019, at 10:00 and 

September 14th, 2020, at 21:00. The validation set changes 

hyperparameters using data between September 14th, 2020, 

21:00 and November 15th, 2020, 23:00. Fig. 2 depicts the test 

set, which compares and evaluates model performance from 

November 15th, 2020, 23:00 to January 17th, 2021, 00:00. 

The resulting models were evaluated using the performance 

metrics of Root Mean Squared Error (RMSE) shown in (3), 
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mean absolute error (MAE) demonstrated in (4), and R 

squared (R
2
) described in (5) to determine the experiment 

effectiveness. The RMSE assesses the deviation between the 

predicted and actual energy consumption and penalizes 

significant errors accordingly. MAE measures the absolute 

average difference between expected and actual energy 

consumption. R squared measures the correlation with energy 

consumption and prediction.   

RMSE =    𝑦𝑖 − ŷ𝑖 
2𝑁

𝑖=1 /𝑁.   (3) 

MAE =   𝑦𝑖 − ŷ𝑖 
𝑁
𝑖=1 /𝑁.   (4) 

 R
2 =   ŷ𝑖 − 𝑦  2𝑁

𝑖=1 /   𝑦𝑖 − 𝑦  2𝑁
𝑖=1 .   (5) 

where yi is the measured energy, ŷi is the predicted energy, ȳ is 

the mean measured energy consumed in INU, and N is the 

total number of observations. 

 The optimal hyperparameters for each model were 

determined using a grid search. The proposed biLSTM model 

was evaluated in multiple experiments. Scikit-learn and 

TensorFlow 2.6 with Python 3.8 were used for all experiments 

with an Intel Core i9-9900KF CPU and 16 GB of DDR4 

RAM, and the hyper-parameter optimization procedure was 

configured to be identical for all data inputs. 

The hyperparameter candidates in this research are listed 

and the range of values evaluated for each algorithm's 

hyperparameters is shown in Table III. Examined were two 

single regressions, one boosting ensemble, one Bayesian 

regression, and two deep learning algorithms. Linear 

Regression, k-NN, CatBoost, Neural Network, Gaussian 

Process, and biLSTM are among the algorithms considered. 

The optimal number of neighbors for k-NN is twenty. The 

optimal hyperparameters for CatBoost include a depth of 3, 

50 iterations, and a learning rate of 0.01. The optimal number 

of layers for a Neural Network is one, the optimal number of 

neurons is 200, and the optimal learning rate is 0.01. The 

optimal kernel for the Gaussian Process is Matern. The 

optimal number of layers for biLSTM is 3, the optimal 

number of neurons is 96, the optimal number of LSTM 

neurons is 512, the optimal dropout rate is 0.2, and RMSprop 

is the optimal optimizer. These findings suggest that the 

selection of hyperparameters can have a substantial effect on 

the efficacy of regression models, and that modifying the 

hyperparameters can lead to improved results. 
 

TABLE III: HYPERPARAMETER EVALUATION RESULTS FOR REGRESSION 

MODELS 

Algorithm Hyperparameter 

Linear Regression - 

k-NN n_neighbors = {2, 3, 4, 5, 10, 20, 40, 80} 

CatBoost 
depth = {3, 6, 8, 10}, iterations = {30, 50, 100}, 

learning_rate = {0.0001, 0.001, 0.01, 0.1} 

Neural Network 

num_layers = {1, 2, 5, 7, 9}, num_neurons = {5, 

10, 15, 20, 40, 80, 100, 200}, learning_rate = 

{0.0001, 0.001, 0.01, 0.1} 

Gaussian Process 
kernel = {„RationalQuadratic‟, ‘Matern’, „RBF‟, 

„DotProduct‟} 

BiLSTM 

num_layers = {2, 3, 5, 7, 9}, num_neurons = {96, 

256, 512}, lstm_num_neurons = {256, 512, 1024}, 

dropout_rate = {0.2, 0.3}, optimizer 

={‘RMSprop’} 

* The optimal outcomes are emphasized using underlining and bold 

formatting. 

 
Fig. 6. Comparing predicted and observed energy consumption performance 

on test dataset using RMSE performance metric. 

 

Fig. 6 shows the RMSE values of the evaluated algorithms 

utilized for the prediction of energy consumption 48 

hours-ahead. Based on the data presented in Fig. 6, it can be 

inferred that the biLSTM model exhibits the highest level of 

performance, as evidenced by its RMSE value of 99.39. This 

suggests that the biLSTM algorithm is the most precise 

method for forecasting energy usage up to 48 hours in 

advance. The CatBoost algorithm has demonstrated the 

second highest level of performance, achieving an RMSE 

value of 107.47. The k-NN algorithm exhibits a favorable 

performance, as evidenced by its RMSE value of 126.16. On 

the contrary, it can be observed that the Linear Regression 

model, Neural Network, and Gaussian Process models exhibit 

elevated RMSE values in comparison to the remaining 

algorithms. This suggests that their predictive capabilities are 

comparatively inferior in forecasting energy consumption 48 

hours in advance. 
 

Fig. 7. Comparing predicted and observed energy consumption performance 

on test dataset using MAE performance metric. 

 

Based on the findings presented in Fig. 7, it is evident that 

the biLSTM model exhibits superior performance in 

predicting energy consumption 48 hours-ahead, as evidenced 

by its minimal MAE of 71.419. This suggests that the 

biLSTM model is the most precise algorithm for this dataset. 

This discovery corroborates the values obtained Fig. 6, 

wherein the biLSTM architecture is likewise recognized as 

the top performer, as determined by RMSE metrics. The 

CatBoost algorithm demonstrated the second highest level of 

performance, exhibiting an MAE of 86.153. Subsequently, 

the k-NN algorithm followed with an MAE of 92.126. On the 

other hand, it is possible to note that the Linear Regression 

model, Neural Network, and Gaussian Process models 

demonstrate higher MAE values, indicating a greater degree 

of error in comparison to the remaining algorithms. 

The analysis of R squared values shown in Fig. 8 shows that 

the biLSTM algorithm exhibits superior performance, as 

evidenced by its R squared value of 0.695. This finding 
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corroborates the values of RMSE and MAE, in which the 

biLSTM architecture was determined to be the optimal 

performer. According to the results, the CatBoost algorithm 

showed the second highest level of performance, exhibiting 

an R squared value of 0.620. Subsequently, the k-NN 

algorithm displayed an R squared value of 0.476. 
 

 
Fig. 8. Comparing predicted and observed energy consumption performance 

on test dataset using R squared performance metric. 

 

To summarize, the outcomes delineated in Fig. 8 are 

consistent with the preceding two performance metrics, which 

ascertained biLSTM and CatBoost as the top performers 

based on the RMSE and MAE metrics. The findings 

presented in Fig. 8 validate that biLSTM is the most effective 

algorithm for the energy consumption prediction of INU in 

forecasting energy usage 48 hours in advance, with CatBoost 

and k-NN following in second and third place, respectively. 

 

V. CONCLUSIONS 

Integrating artificial intelligence in the prediction of energy 

consumption has the potential to augment energy efficiency in 

smart universities. This is a critical element in the attainment 

of a sustainable urban environment. Through precise energy 

consumption forecasting, colleges and universities can make 

necessary adjustments to their energy usage, mitigating 

consumption and minimizing their ecological impact. The 

deep learning framework proposed in this study for short-term 

energy consumption forecasting can be considered as an 

important resource towards attaining a sustainable urban 

environment within the boundaries of smart universities. 

Through integrating this framework with initiatives aimed at 

improving energy efficiency, reducing waste generation, and 

advocating for environmentally conscious transportation, 

academic institutions can make substantial strides in fostering 

a more sustainable future for their respective communities. 

The concept of energy efficiency pertains to the optimal 

utilization of energy in various urban infrastructures, 

including buildings and transportation systems.  

Our research presents a sophisticated deep learning 

architecture for accurate 48-hour energy prediction in smart 

university campuses. By analyzing the energy consumption 

patterns of individual buildings and incorporating external 

variables, we contribute to enhancing energy efficiency and 

sustainability. The statistical testing conducted on our model 

confirms its suitability for energy consumption forecasting, 

providing valuable insights for energy management 

decision-making in smart universities and beyond. 

The results show that the proposed biLSTM algorithm 

shows exceptional efficacy in predicting energy consumption 

within a lead time of 48 hours. It can be inferred that the 

biLSTM algorithm outperforms other methods. The biLSTM 

algorithm can be considered as the most suitable for this task 

getting the performance metrics of RMSE = 99.39, MAE = 

71.42 and R squared of 70%. Hence, understanding the 

energy consumption dynamics of each building within a smart 

university environment enables the development of effective 

energy-saving strategies at the campus level. Our research 

contributes to this goal by providing accurate energy 

consumption forecasts and insights into the underlying causes 

of energy usage patterns. 

 Therefore, there are several limitations in our study, such 

as the analysis of regressions using time series algorithms, 

analysis of data from other universities, data of other years 

where COVID-19 did not exist. It is necessary to do more 

experiments and test other types of deep learning structures 

like transformers or seq2seq, so we would like to do more 

studies in the future. Also, future work should focus on 

incorporating real-time data streams, refining the model's 

architecture, and expanding the research to other smart city 

contexts. 
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