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Abstract—Energy is essential to facilitate the social and 
economic growth of a society. But this energy generation using 
fossil fuels results in a tremendous amount of greenhouse gas 
emissions. As a renewable alternative, the increased 
competitiveness of solar PV panels has increased the number of 
solar energy generation stations in recent years. Since solar 
power generation is highly intermittent and dependent on local 
weather characteristics, AI can be implemented to predict solar 
energy output from a solar power plant. As the need to predict 
solar photovoltaic (PV) energy output is essential for many 
actors in the energy industry, Statistical Data Analysis and 
Machine Learning (ML) can be employed towards this end. In 
this study, comparative analysis of different machine learning 
models is performed to estimate power-plant solar energy 
generation from historical meteorological data. A variety of 
supervised machine learning techniques are implemented to 
predict and forecast solar energy. The implemented models 
include Weighted Linear Regression (WLR) with and without 
dimensionality reduction, Gradient Boosting Model (GBM), and 
Artificial Neural Networks (ANN). Findings indicate that, both 
the ANN and GBM models performed significantly well in 
short-term prediction, whereas Long-Short Term Memory 
(LSTM) Recurrent Neural Network (RNN) achieved reliable 
performance in forecasting. The trained models, therefore, may 
provide a way for grid-operators to Predict and balance energy 
generation and consumption.  

Index Terms—Machine learning, solar energy, prediction, 
forecasting 

I. INTRODUCTION

The historical accumulation of Green House Gas (GHG) in 
the atmosphere has resulted in concerning changes in climate 
such as, rising sea levels, warming oceans, rising global 
temperature, frequent natural calamities, and many others. 
These concerning changes, along with ever-growing energy 
demand, is gradually pushing humanity towards renewable 
alternatives. Solar energy prediction and forecasting can 
provide a way for grid-operators to predict and balance 
energy generation and consumption. Therefore, one of the 
key benefits of solar energy forecasting is to increase the 
efficiency of electric grid management. This is a need with 
significant importance, as solar energy usage continues to 
expand.  

Utilization of Artificial Intelligence (AI), such as ML 
algorithms, has already been proven to be an efficient way of 
creating data-driven models for prediction and forecasting. 
Although ML techniques are nothing new, the higher 

availability of quality data and the improved computational 
capacity of modern computers have made these techniques 
useful for predictive analysis.  

In this study, three established prediction models have been 
compared, and one forecasting model has been analyzed. The 
ML models for prediction are – Locally Weighted Linear 
Regression (LOWESS) as WLR model, Gradient Boosting 
Model (GBM), and Multilayer Perceptron (MLP) as an ANN 
model. LSTM-RNN has been used as the forecasting model. 
Each of these prediction models are unique in terms of their 
method of operation. WLR is regression-based method, 
whereas GBM uses decision-tree approach. On the other hand, 
ANN is a network of connected neurons where each neuron 
performs regression operation. Additionally, correlation-test 
and Principal Component Analysis (PCA) have been used to 
figure out the most influential meteorological parameters for 
predicting solar PV energy output. 
Several Approaches have already been investigated for solar 
PV energy output prediction and forecasting.  Mashud and 
Irena et al. [1] used weather-data clustering and ensemble of 
multiple ANN models for Solar Power forecasting. Then 
akuzmiakova and Colas et al. [2] showed the efficiency of 
LSTM in short-term solar energy forecasting based on 
weather-data. Chuluunsaikhan and Nasridinov et al. [3] 
compared ML models for predicting Power Output of Solar 
Panels based on Weather and Air Pollution Features. Zhang 
and Zou [4] utilized K-means algorithm for weather-data 
clustering, and the applied Support Vector Machine (SVM) 
for photovoltaic output prediction. Then Javier and Pastoriza

 

et al. [5] showed the efficiency of ANN model in photovoltaic 
power prediction using numerical weather data.  

In this study, the characteristics of weather-parameters will 
be investigated and compared with respect to solar PV output 
characteristics. Thus, the most influential parameters will be 
figured out. The potential of the four unique ML models will 
also be explored from different perspectives. Finally, the 
findings  will be represented as a comparative analysis. 

II. DATA COLLECTION AND PROCESSING

Operation at this section consists of two sequential steps: 
collection, and pre-processing 

A. Data Collection Process

The solar energy generation plant, selected for this analysis,
is situated at the University of Illinois campus. The historical 
power generation data for this plant is publicly available [6]. 
To obtain a reliable estimation of the weather conditions 
around the solar power-plant, data were collected from three 
weather stations, closest to the plant [2], as shown in Table I. 
Historical weather data for these stations are publicly 
available at the website of National Center for Environmental 
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Information [7]. Nearly two years (2016 and 2017) of 
historical time-series data were collected for the weather-
parameters, listed in Table II. Analyzed PV output data were 
also for the same period. 

TABLE I.  WEATHER STATION DETAILS 

Weather station 
Name 

Distance from 
power plant (km) 

City, State 
code 

Country 

Airport of Santa 
Clara County 

5.8 Palo Alto, 
CA 

United 
States 

Moffett Federal 
Field Airport 

10.4 Mountain 
View, CA 

United 
States 

San Carlos Airport 12 San Carlos, 
CA 

United 
States 

TABLE II.  WEATHER PARAMETER DETAILS 

Weather feature Data Type Unit 

Sky condition Categorical(ordinal) - 

Visibility Continuous Miles 

Temperature Continuous C 

Dew point Continuous C 

Relative humidity Continuous % 

Wind speed Continuous Mph 

Station pressure Continuous Inch-Hg 

Altitude(Altimeter) Continuous Inch-Hg 

 

B. Data Pre-processing 

The data pre-processing and wrangling approaches plays a 
major role in this study. These approaches are listed below: 
 
  Feature-engineering starts the processing operation. The 

objective here is to transform the ordinal categorial 
parameters, such as sky-condition into ratio, so that it can 
be quantified.  

  Missing time-stamps in the series are filled-up with the 
average of four nearest time-stamps, taken equally from 
both preceding and leading ones. 

  Aggregation of weather parameter values from three 
different stations is conducted by taking their weighted 
average using barycenter formula, as shown in Eq. (1).  

𝑥 , , ,                            (1) 

Here dA is the distance from weather station, A to power-
plant. xj, A is the value of feature xj measured by weather-
station A. With this formula, the closest a weather station is, 
the more weight it has.
  Resampling both weather data and PV output time-series 

to one hour granularity, so that these two series can be 
merged together using time as the common primary-key. 
The hourly resolution of the data ranges in between 6AM 
and 5PM, since solar energy is not produced at night, and 
therefore, night hours have been avoided. 

  Feature scaling with min-max Normalization of all 
weather features and the PV output. If we consider the 
feature 𝑋  with 𝑛  observations, then normalization 
formula for each 𝑋 , 𝑖 ∈ N  is shown in Eq. (2). This 
approach transforms all values into the range of 0 𝑎𝑛𝑑 1 , 
and assures that all parameters have the same scale. 

𝑋                                       (2) 

 Finally, creating a duplicate copy of the dataset and 
randomizing the time-stamps for the prediction models. 
The sequential data will be used for the forecasting model 
only.  

 

 
Fig. 1. Feature trend visualization. 

 

Statistical-analysis on Meteorological feature is crucial to 
understand their characteristics, and their influence on Solar 
PV output. Feature trend analysis was the first statistical 
approach in this regard. Visualization of underlying trends 
provided significant insight into trend-similarities among the 
features. Exponentially Weighted Moving Average (EWM) 
approach was considered for feature-trend visualization. 
Daily average raw values for all features for 600 consecutive 
days were considered for this assessment. As shown in Fig. 1, 
trend visualization shows periodic characteristics. The 
sinusoidal seasonality is significantly noticeable among the 
features. Therefore, there must be significant correlation 
among them. Especially, Temperature, visibility, and Due-
point trends looks significantly similar to PV output. On the 
other hand, the trend of cloud coverage and wind-speed looks 
almost the opposite. Now, due to this similarity in seasonal 
characteristics, ML models can also be trained efficiently to 
learn from data seasonality patterns, and provide predictive 
solutions based on that. Then, Pearson-method based monthly 
correlation of weather parameters with respect to solar PV 
output is observed, as shown in Fig. 2. It clearly distinguishes 
the features that are highly correlated with solar PV output. 
Mathematical representation of Pearson correlation is shown 
in Eq. (3). 

𝜌
 
                                           (3) 
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Here (σXY) is the covariance between variable X and Y, 
whereas (σX), and (σY) are the standard deviation of  X, and 
Y respectively. In Fig. 2, The red bars denote values where 
the absolute correlation is greater than 0.3, which corresponds 
to significant correlation.  

 

 
Fig. 2. Monthly correlation of weather parameters with PV output. 

 
It also shows that the parameters such as Cloud-coverage, 

Visibility, Relative Humidity, Altitude(Altimeter), and Dew 
point have quite strong correlation with PV energy generation. 
Therefore, these features can be considered the most 
influential. Internal correlation among all features is 
visualized in Fig. 3. 

 

 
Fig. 3. Correlation among the weather features in hourly time-series. 

 
Fig. 3 shows that, some features are highly correlated to 

each other, such as Temperature and Due point. Also cloud-
coverage and relative-humidity are correlated significantly. 
That is why PCA is applied to the features to reduce 
dimensionality and eliminate internal correlation among 

features. Commutative explained variance of PCs is 
visualized in Fig. 4. There it is observed that, the first six (6) 
PCs can combinedly explain more than 90% of the overall 
variance. Now, training an ML model with all PCs may have 
the tendency to overfit to some extent, as the test-data may 
not always be 100% correlated with train-data. Therefore, by 
using 6 PCs, we can introduce a small amount of uncertainty 
to the model, so that it can better adapt the diversities in test 
data. The relative influence of weather features on the most 
influential PC is visualized in Fig. 5. It is observed that, two 
features such as, Temperature and Wind-speed, have been 
downgraded the most. The remaining six features have 
significant influence on the PC. 

 

 
Fig. 4. PCA Cumulative explained variance. 

 

 
Fig. 5. PCA based feature importance. 

 

In this section, ML models for PV output predicting and 
forecasting are demonstrated along with their 
hyperparameters. 

A. Splitting Train and Test Data 

About 90% if the processed data was used for training ML 
models, which is equivalent of around twenty months. The 
remaining 10% data was used for testing models. Both train 
and test data were randomly sequenced for prediction models. 

B. Hyperparameter Optimization 

Grid-search algorithm was used for optimizing 
hyperparameters. The hyperparameter ranges for LOWESS, 
GBM and MLP are shown in Table III, IV, and V respectively. 
Here, LOWESS is a regression method, where the data is split 
into small partitions, so that each partition fits to a liner line. 

The key parameter to tune LOWESS model, is Sigma and 
span. Sigma indicates how widely the data will be 
smoothened. And the span indicates what percentage of the 
data is to be used. 
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TABLE III.  LOWESS HYPERPARAMETERS  

Hyperparameter Search grid range Optimal 

Sigma 0.01 to 0.2 0.1 

Span 0.1 to 0.9 0.8 

 
On the other hand, GBM is a Decision-tree based model, 

where the number of estimators controls the amount of total 
sequential trees, and maximum depth ensures the number of 
branches each tree may have. Minimum sample split controls 
how many data is needed as minimum to split it into two 
branches. Smaller learning rate ensures smooth training 
performances but longer computation time. 

TABLE IV.   GBM HYPERPARAMETERS  

Hyperparameter Search grid range Optimal Value 

Number of estimators 100 to 1000 750 

Maximum Depth 3 to 12 9 

Minimum sample split 3 to 12 9 

Learning rate 0.005 to 0.05 0.01 

 
The ANN model is having three hidden layers. Number of 

Nodes per layer changed in between 25 to 105 with a regular 
interval of 20. The input layer of the network is having 8 
neurons, for 8 meteorological inputs. For forecasting 
operation, a standard vanilla LSTM model [8] was trained 
with 50 training epochs and batch-size of 26. Only these two 
parameters were optimized with grid-search algorithm. 

TABLE V.  ANN HYPERPARAMETERS  

Hyperparameter Search grid range Optimized value 

Nodes per layer 25 to 105 100 

Weight decay 0.01 to 1 0.1 
Weight Initializer  Xavier-He 

Hidden layers 1 to 3 3 

Data batch-size 5-25 16 
Number of epochs 50 - 130 100 

optimizer  Adam 
 

In this section, the predictive and forecasting performances 
of machine learning models have been compared in terms of 
Root Mean Squared Error (RMSE) and R-squared (R2) score 
parameter. The RMSE equation is given by: 

RMSE
∑    ˆ

                                 (4) 

TABLE VI.  PERFORMANCE COMPARISON OF ML MODELS 

ML Model Name Number of 
PC used  

Explained 
Variance (%) 

RMS 
Error 

R2 
score 

WLR 7 100 956.9 0.6 
WLR 6 95 954.74 0.6 
WLR 5 85 976.12 0.6 
WLR Non-PCA  955.52 0.6 
ANN Non-PCA  944.49 0.6 
GBM Non-PCA  940.74 0.6 

LSTM (with non-
Temporal Data) 

Non-PCA  1048.38 0.5 

LSTM (with 
Temporal Data) 

Non-PCA  1005.6 0.5 

LSTM (with 
Sequential Data) 

Non-PCA  868.48 0.7 

 

Here 𝑌  corresponds to the true value and �̂�  is the forecast. 
On the other hand, R2 score is the proportion of variance (%) 
in the dependent variable that can be explained by the 
independent variable. Table VI shows that, using six PCs has 
reduced RMSE error the most among the WLR models, 
trained with PCs. 

PC based WLR model also performed better than the non-
PC WLR model. Therefore, it is proven, that PCA can 
improve the ML model efficiency as well. The overall 
performance of GBM and ANN were the best among all 
prediction models.  The performance of LSTM on sequential 
data is significantly better, suggesting that, the LSTM based 
forecasting produces better results than the prediction models.   

Finally, R2 scores for all prediction models are almost 
similar (0.6), representing moderately well fit to test data. 
One superior characteristic of ANN model can be explored 
from Table VII. It shows that, the ANN has predicted the 
highest number of samples in low error range (within 1000 
kw). So, ANN predicted the highest number of samples more 
accurately. 

TABLE VII.  NUMBER OF SAMPLES PER PREDICTION ERROR RANGE 

 Number of samples per Prediction Error Range 
Model 
Name 

Within 500 kw Within 1000 kw  Within 1500kw 

WLR 320 (44.08%) 514 (70.8%) 640 (88.15%) 
GBM 311 (42.7%) 509 (70.1%) 648 (89.3%) 
ANN 348 (48%) 532 (73.3%) 639 (88.2%) 

 
Fig. 6 shows the residual plot for ANN, where it is 

observed that, majority of the predicted samples are almost 
uniformly scattered within 1000kw range from the ground 
truth. Only a handful of outliers have gone far beyond this 
range. Fig. 7 shows that, the predicted PV output closely 
matches to the actual values, for majority of the randomized 
test samples. 
 

 
Fig. 6. Residual plot for ANN model. 

 

 
Fig. 7. Predicted and actual solar PV output comparison for ANN. 
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Fig. 8. Predicted and actual solar PV output comparison for LSTM. 
 

For LSTM, Fig. 8 shows that the forecasted PV output 
time-series closely matches with the actual values. Although 
there is slight difference in amplitude occasionally, but the 
trend is followed quite accurately. Fig. 9 confirms that, 
showing the quantity of outliers, that is significantly low 
(around 8%). 

 

 
Fig. 9. Forecast error histogram for LSTM. 

 

The study showed, that it is possible to predict or forecast 
Solar PV output from weather data efficiently, using ML 
models. If the models are trained properly with decent 
amount of historical data, reliable performance can be 
expected. Among the selected weather parameters, Cloud 
Coverage, Relative Humidity, Visibility, Dew point, and 
Altitude are found to be the most influential for solar energy 
prediction. PCA has been proven as an essential tool for 
dimensionality reduction of the weather features, and thus, 
improving the predictive efficiency of the WLR model. ANN 
model performance is found to be the most reliable within 
1000kw error range, and therefore, it can be the bast choice 
for scenarios where data samples for all seasonality are 
adequately available. Otherwise, GBM could be one of the 
best alternatives to consider, due to its superior adaptability 
to generalize the unusual data samples. Therefore, an 

ensemble of different ML models could be evaluated as a 
continuation of this research. Also, alongside the tabular-
formatted weather data points, the satellite imagery can be 
incorporated as features, to further increase the knowledge 
base of the ML models, and thus improving the prediction and 
forecasting efficiency. 
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