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Abstract—This paper presents an embedded deep neural 

network model to predict the driver rank and the optimum 
pitstop strategy. In formula one racing, the race strategy is 
critical to determine optimal pitstops and finish the race in the 
best possible position. Considering a system with only one racing 
car, the pitstop can be decided just by looking at the degradation 
of the tires. But in reality, the formula one environment is more 
complex, and multiple probabilistic factors (like safety car 
phases, opponent strategy, and overtaking) influence the pitstop 
decision. Deep-Racing is a prediction and decision algorithm for 
formula one racing cars that uses neural networks with 
embedding layers. The algorithm is developed after carefully 
reviewing formula one racing and appropriate statistical 
modeling techniques, which can be trained for pre-race and 
real-time predictions during the race using the data from 
previous laps. Deep-Racing has the potential to help team 
principals and race engineers to decide the optimized strategy 
for making pitstops. It is trained on the data from seasons 2015-
2022. This project is the first to utilize an embedded layer in 
motorsport racing predictions, and the results show an 
improvement in predictive accuracy compared with the 
previously available literature. This paper significantly expands 
the previous research in this field and proposes trends in the 
data available from the latest seasons. 
 

Index Terms—Neural networks applications, formula one 
racing, embedded deep neural networks, predictive analysis 
 

I. INTRODUCTION 

Formula one racing has the world's most extensive viewing 
of all the circuit motorsport, with a combined viewership of 
445 million in 2021 [1, 2]. Formula one cars are a marvel of 
engineering and have been considered among the fastest-
designed vehicles. Formula one, or simply F1, is sanctioned 
by Fédération Internationale de l'Automobile (FIA), which 
sets the rules and regulations for the races, including the car 
design, frequency of pitstops, and choice of tires. Multiple 
teams, including Ferrari, Mercedes, and McLaren, have 
participated in the world championship every year since its 
inaugural season in 1950, involving a series of Grand Prix [3]. 
Grand Prix is a race performed on closed road circuits of 
varying lengths and complexities across various parts of the 
world, including Monaco, Abu Dhabi, Singapore, Monza, 
and Silverstone. F1 racing dominates the betting sites where 
sportsbooks and fans are interested to know the prediction of 
the winner before the race day. The goal of a team in F1 
racing is simple – be the first one to cross the chequered flag. 
The race result depends not only on the driver or the car’s 

pace but also, on multiple real-time stochastic elements such 
as the timing and duration of pitstops, tire degradation, and 
weather conditions. Although the driver's skills and the car’s 

 
Manuscript received November 2, 2022; revised November 24, 2022; 

accepted February 20, 2023. 

speed are the major factors impacting the race results, these 
two points are highly subjective. The other critical aspect of 
F1 racing is the pitstop strategy which is positively correlated 
with the race results [4]. In F1 racing, the drivers make 
pitstops during the race for multiple reasons, including tire 
replacement, refueling, or repairing broken parts, if possible. 
After the 2009 season, car refueling was skipped due to safety 
concerns, and now pitstops have become a synonym for tire 
strategy. 

This paper presents a data-driven Embedded Deep Neural 
Network (EDNN) design to predict the race results in the 
form of driver rank and optimal pitstop strategy in real-time, 
which can be helpful for team principals and engineers to 
make critical pitstop decisions for winning. The pitstop 
strategy includes deciding when and how many pitstops 
should be made in the given racing conditions by predicting 
the driver’s racing position in every lap. 

 

II. BACKGROUND 

Formula one car are one of the fastest racing cars 
approaching the speed of 300km/h [5]. However, for entering 
and remaining in the pitlane, the car’s speed is limited to 
60km/h [6]. Also, the race car remains stationary during the 
pitstop, which adds to the total time to complete the race. 
Hence, every team must optimize the pitstops as much as 
possible. Formula one car are one of the fastest racing cars 
approaching the speed of 300km/h [5]. However, for entering 
and remaining in the pitlane, the car’s speed is limited to 
60km/h [6]. Also, the vehicle remains stationary during the 
pitstop, which adds to the total time to complete the race. 
Hence, every team must optimize the pitstops as much as 
possible. 

The teams want to make a pitstop to make up for tire 
degradation during the race and have more speed. The fresh 
tires give the car more speed resulting in more effortless 
overtaking maneuvers, especially when the rival is racing on 
an older set of tires—this sudden pace increases and balances 
the time lost in making a pitstop. Naturally, every team wants 
to make the pitstop at the right time, and balancing the pitstop 
timing, frequency, and duration becomes the central tenant of 
the winning race strategy. Typically, there are three 
categories of compound tires used in F1 racing Hard, Medium, 
and Soft. The lap time of the car changes with the change in 
the type of tire used. Fig. 1 shows the graph for lap time and 
the lap number for these three types of tires.  

In modern-day F1 racing, where the race positions are 
changed with the 10th or even 100th of a second, the teams 
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try to save every millisecond spent in the pitlane, trying not 
to lose the advantage over other players. A recent example of 
the importance of pitstop strategy is evident from Lando 
Norris winning third place in a McLaren at the 2022 Italian 
Grand Prix. While having only the seventh fastest lap time, 
the right pitstop strategy made him compete with strong 
teams like Ferrari and Mercedes, securing more wins 
throughout the season. Fig. 2 shows the impact of the pitstop 
strategy, including the lap to perform the pitstop and the type 
of tire transition. For example, it can be inferred that 
switching to hard tires after the first pitstop results in shorter 
lap time. 

 

 
Fig. 1. Lap time for hard, medium, and soft compound tires for different lap 

times for f1 racing seasons 2015-2022. The data is taken from the source 
cited in section III-A. 

 

 
Fig. 2. The race duration as a function of pitstop lap for two types of tire 

strategies [4]. 
 

A. Formula One Racing Terminologies and Rules 

It is a frequent scenario in the F1 world to witness a car 
hitting the barriers because of multiple factors such as under-
steering, over-steering, or lock-up. So, when there is any 
accident on a track, a full course yellow (FCY) phase is 
deployed where a physical or a virtual safety car is deployed, 
and the drivers must follow specific rules. During the virtual 
safety car (VSC) phases, drivers must reduce their speed, 
lengthening the lap time by 140% [4]. In the safety car (SC) 
phase, a real car drives ahead of all the cars on the track, 
increasing the lap time by 160%, as the drivers are not 
allowed to overtake this car [4]. This FCY scenario makes an 
ideal point in the race to make a pitstop, as the time taken to 
enter and exit the pitlane is the same as passing the track 
under a safety car. Therefore, the choice of pitstops changes 

dramatically under an FCY phase and impacts the race results 
in the most. The reason for stating the safety car procedure 
here is to use the FCY phase to decide the optimum lap for a 
pitstop. The importance of the FCY phase on race results is 
evident from the championship-deciding race 2021 Abu 
Dhabi Grand Prix, where the choice of pitstop before and 
during safety car changed the race results. This FCY phase is 
discussed in detail by Heilmeier and Thomaser et al. [7]. 

B. Related Work 

Little literature is available on the predictive analytics of 
motor racing. A few publications are available, taking 
National Association for Stock Car Auto Racing (NASCAR) 
as a case study, and even though it is different from F1 racing, 
the algorithm efficiency can be estimated for F1 racing. 
Various publications use other target metrics and models. 
Delen and Cogdell et al. propose that the classification 
models work better in predicting the winners than the 
regression-based models using the NCAA football data [8]. 
Tulabandhula and Rudin [9] propose multiple machine 
learning algorithms, including Support Vector Regression 
and Least Absolute Shrinkage and Selection Operator 
(LASSO), to predict the tire changing time in NASCAR 
considering the real-time data. They have described the 
complexities of race data pre-processing in motorsport 
prediction, which can also be applied to formula one racing 
[9].  Graves and Reese et al.  [10] propose a stochastic model 
for results forecasting in NASCAR racing. Pfitzner, Barry, 
and Tracy D. Rishel [11] and Allender [12] propose the 
impact of multiple features on the race outcome and propose 
solutions to identify essential features like the pace of the car, 
the speed of the car in the qualifying session, and starting 
position. A few papers consider the data only specific to 
formula one racing. Stoppels [13] suggests a race prediction 
algorithm using historical data, and Stergiousdis [14] uses 
famous Machine Learning algorithms to predict the result 
position of a driver in F1 racing. Aversa and Cabantous et al. 
analyze the cause of Ferrari's failed race strategy using a 
decision support system for the 2010 season [15]. Another 
notable work in this domain is by Liu and Fotouhi, where they 
use a hybrid model with neural networks and a Monte Carlo 
algorithm to predict the car’s performance under a particular 
energy management technique [16].  

This project aims to use real-time data to choose a pitstop 
strategy that will result in the highest scores earned and to 
independently predict the ranks of every driver. In this 
context, the work of Heilmeier and Thomaser et al. [7] and T. 
Tulabandhula and C. Rudin [9] comes closer. The inspiration 
for pitstop strategy design has been taken from Heilmeier and 
Thomaser et al. [7], and the data pre-processing and feature 
selection criteria are inspired by the works of Tulabandhula 
and Rudin [9]. However, none utilize an embedded deep-
learning algorithm to evaluate model performance. Certain 
publications prove the improved accuracy of predictive 
models using the embedded layers using real-time data 
[1719]. 

C. Embeddings in Neural Networks 

The use of embeddings in neural networks is getting 
famous due to their applications in dimensionality reduction 
[20]. The embedding maps the higher dimensional feature set 
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into a lower dimensional vector space. Using an embedded 
layer within the neural network captures the semantics of the 
input feature set and provides a transformed space as an 
output where the semantically similar features are placed 
together [21]. Embeddings are learned as a part of the neural 
network, which is very helpful, especially when the training 
dataset is sparse. This embedded layer can be considered a 
hidden layer that can be combined with any other direct 
features or more hidden layers, and the last layer of the DNN 
will be the loss function. 

 

III. METHODOLOGY 

The main idea behind the winning strategy prediction is the 
high correlation between the finishing position and the pitstop 
strategy. The model utilizes two neural networks with 
embeddings, thus called Embedded Deep Neural Network 
(EDNN). Both EDNNs use two different target metrics.  
1) The rank position of the driver  
2) The optimum lap to make a pitstop to finish the race on 

top ranks 
The designed system uses two EDNNs, one for each target 

metric, and the final output is shown as a combination of both 
predictive metrics to propose the winning strategy for the race. 
The first EDNN uses the data for all the drivers across all laps 
to predict the driver’s rank, and the second EDNN uses the 
per-lap data of the race to predict the optimum lap for the 
pitstop.  

The first EDNN considers the racer’s recent history, which 
includes the number of races won, the maximum speed 
achieved by the driver on that track, and the car's speed. For 
the second target metric, the impact of the tire change on the 
rank needs to be evaluated to decide the optimum pitstop lap. 
This second problem is more complex as the choice of tires 
varies dramatically with the track conditions, weather, type 
of tires used in the race start, and what kind of tires had the 
fastest lap in the qualifying round.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The schematic overview of proposed EDNN model. 
 

The teams can make one, two, three, or more pitstops 
depending on the racing conditions. More than three pitstops 
usually occur in the rain, where the teams switch between wet, 
intermediate, and hard tires depending on the weather 
conditions and the race opponent's strategy. This algorithm 
considers only one, two, and three pitstop strategies, so the 
model does not learn the behavior of wet weather races. 

Prediction of lap changes depending upon which pitstop 
strategy the team is following. If the team chooses one pitstop 
strategy, the output neuron will only perform one prediction. 
Hence, the pitstop strategy is added as an input feature to the 
model, where another feature evaluates the number of 
pitstops remaining. The total number of pitstops remaining 
and the race progress significantly impact the predicted lap 
for a pitstop. 

As summarized in Section II, published papers use 
Machine Learning algorithms and Artificial Neural Networks 
to predict multiple metrics related to motorsport racing, like 
pitstop duration. The published literature also suggests that 
Neural Networks have better performance in terms of 
accuracy and robustness when compared with other 
supervised algorithms [11]. Hence, this project utilizes Deep 
Neural Networks to achieve a better predictive design.  

The winning strategy is evaluated in three stages. 
1) Predict the rank of the driver in a race using the historical 

data of that driver and the other participating drivers. 
2) The pitstops prediction, i.e., in which lap the pitstop 

should be made for the winning strategy—the pitstop 
prediction changes with the number of desired pitstops 
and the race progress.  

3) Combine the predicted rank and pitstop lap to evaluate 
the winning strategy.  

One neural network predicts the rank of the racer using 
historical data, and the second neural network determines if 
the pitstop is required. Here, the decision to make a pitstop or 
not and the choice of the compound tire are treated as 
independent variables. The choice of two different networks 
is made because of the different feature sets for both metrics. 
It also provides the flexibility to tune hyperparameters 
specific to each target metric. Fig. 3 shows the conceptual 
diagram of the designed neural network. The amount of data 
available to every F1 team comes from multiple sensors in 
their racing car. Most teams use this data and the Monte Carlo 
algorithm to decide the real-time strategy. However, since 
this kind of data is not publicly available, it can impact the 
model’s predictive accuracy. The following sections explore 
the applications of embedded deep neural networks in a 
predictive framework for accuracy improvement. In this 
project, the data pre-processing requires detailed domain 
knowledge; otherwise, the input feature set can be impacted 
by Simpson’s paradox and make an important feature appear 
less critical [11]. 

The designed algorithm can be utilized in two ways. Firstly, 
to perform the predictions before the race, using historical 
data. These predictions can be made to assess the racing 
conditions and engage the fans for a better racing experience. 
Secondly, this model can also be trained for real-time 
predictions.  

A. Training Dataset 

The data has been taken from 2015 to 2022, combined from 
multiple resources. The data for races, including race lap 
times, qualifying lap times, starting positions, pole positions, 
and pitstop duration, has been obtained from Ergast API [22]. 
Except for the tire choice, the complete database is available 
on GitHub with an open-source license 
(https://github.com/TUMFTM/f1-timing-database). The 
dataset has the data for 258 races with a total of 169525 laps. 

Driver’s 
predicted 
rank 

Predicted 
lap for 
pitstop 

Winning 
strategy 

Input 
feature
s
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The number of accidents and failures per driver and season is 
taken from an online motorsport statistics site [23].  

Out of all the data points, in 5213 laps, the driver enters the 
pitlane, i.e., 3.07% of all the laps. It suggests a data imbalance 
for both classes, i.e., pitstop or no pitstop. Similarly, tires 
were changed in only 4855 laps, making it 2.9% of the total 
laps used in training. It has been taken into consideration 
while performing the model training and validations. 

B. Data Filtering  

The raw data contains the data for all the drivers 
throughout the races. Since F1 racing is a dynamic sport and 
many events such as rain or crashes happen, which can be 
treated as outliers and eliminated from the raw data. This 
training data for this model uses the following filters:  
1) The pitstop strategy changes if it rains before or during 

the race. Not only do more than three pitstops happen, 
but also, in such a situation, winning the race mainly 
depends on the driver and their sheer luck. Therefore, the 
data for wet season races have been excluded as the 
model should not learn from such unusual cases.  

2) According to FIA regulations, race points are only 
awarded to the top ten positions. So, the data for the top 
ten drivers possess a winning strategy, and since the 
drivers below rank ten are not awarded any points, their 
data has been eliminated in training.    

3) Those cases are eliminated where a driver cannot qualify 
or finish the race due to damage or malfunctioning in the 
racing car.  

4) If any driver breaches the rules set by FIA, he is assigned 
a penalty to wait for some time at the pitstop. Such cases 
are also filtered from the raw data, which prevents the 
model from learning from the longer pitstops.  

C. Feature Engineering 

The input feature set is passed through data imputations to 
avoid any problem related to algorithm behavior. The mean 
values replace the missing values of the numerical features. 
Also, the data for the starting two laps of the races have been 
eliminated to avoid edge cases. 

A description for the input feature set is provided in a 
public repository (https://github.com/SitaraWishal/An-
Embedded-Deep-Neural-Network-EDNN-Model-to-Predict-
the-Winning-Strategy-in-Formula-One-Racing). There are 
total 36 input features used as raw data. Table I shows the 
average normalized life of compound tires used in this project 
as an input feature.  

 
Categorical features are one-hot encoded and split into 

training, validation, and test sets. Ten folds cross-validation 
has been applied to avoid overfitting or skewing in the 
training data. The importance of each feature against both 
target metrics has been evaluated using Random Forest 

Regressor. The top 80% of features have been kept for each 
neural network training using their importance scores. Using 
the pair-wise correlation of the input features, in the feature 
pairs for which the correlation is greater than 85%, only one 
feature from the pair is kept, depending on its importance 
score. It prevents the EDNN from learning any bias of 
information in the data. 

D. Stint Lengths 

The time taken to complete each race is a sum of multiple 
time factors. Considering the total race time equation given 
by A. Heilmeier, A. Thomaser, M. Graf, and J. Betz [7]: 

 
𝑡௟௔௣ሺ𝑙ሻ ൌ 𝑡௕௔௦௘ ൅ 𝑡௧௜௥௘ ൅ 𝑡௙௨௘௟ ൅ 𝑡௖௔௥ ൅ 𝑡ௗ௥௜௩௘௥ ൅ 𝑡௚௥௜ௗ ൅ 𝑡௣௜௧ (1) 

Where tlap is the time taken to complete one lap, l, tbase is 
the minimum time to complete one lap on a track under ideal 
circumstances, ttire is the time added as a delay due to tire 
degradation, tfuel is due to stalling caused by the mass of the 
fuel, and as the race progresses, more fuel is burned out, and 
tfuel becomes lower. tcar and tdriver are subject to driver skills 
and car’s ability. tgrid is the time lost due to not being in a pole 
position, i.e. for a driver starting the race at a pole position, 
the tgrid would be zero. Lastly, by tpit are the times lost in the 
pit lane. 

Optimum stint lengths are taken as the lap conditions 
where the lap time is minimum for a one-driver-race pair. If 
we consider (1), all the other time delays remain the same for 
a particular condition, and the only variable is time delay due 
to tire degradation. Heilmeier and Thomaser et al. [7] 
suggests that if we consider a linear tire degradation model, 
then the minimum duration for the driver’s stint lengths can 
be taken as a mixed-integer quadratic optimization problem 
(MIQP). So, the minimum race time can be calculated as a 
function of the total number of laps ltot as: 

𝑚𝑖𝑛 𝑡௥௔௖௘ሺ𝑙௧௢௧ሻ  ≙ 𝑚𝑖𝑛 ∑ 𝑡௧௜௥௘ሺ𝑙ሻ௟೟೚೟
௟ୀଵ                         (2) 

E. Deep-Racing Embedded Deep Neural Network 
Architecture 

A deep learning-based algorithm has been designed to 
predict the ranks of the drivers and the optimum pitstop lap 
for any race. The input feature set has the data for all the laps 
for every participating driver per race. The data per lap is 
necessary to understand the dynamics of pitstop decisions, 
but it makes the input feature set sparser. In this environment, 
a typical neural network does not perform well [24]. However, 
the literature review does suggest improved predictive 
accuracy using embeddings in the neural network [1719]. 
The feature set is divided into a 90-10 split, where the top 7 
features are fed directly into the neural network, whereas the 
other 20 features are fed to an embedding layer first. Fig. 4. 
shows the structure of one of the two neural networks. The 
embedding layer is just another layer of size d, combined with 
other hidden layers and features. The dropout layer is used to 
turn off on maximum feature limit. The final output layer is 
the binary cross-entropy loss, which must be minimized. The 
output of each embedding layer provides a lower dimensional 
vector space. The rank prediction is a regression problem, and 
the pitstop decision is a multi-class classification prediction 
problem predicting the lap number with maximum 
probability and using the race progress and the number of 
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TABLE I: COMPARISON OF AVERAGE TIRE AGE BY SEASONS [4]

Season

Average age 

of hard 

compound

Average age of 

medium 

compound

Average age of 

soft compound

<2019

>=2019

-

38.80%

33.01%

34.90%

31.60%

32.00%

Overall 38.80% 34.10% 31.80%



  

remaining pitstops as the leading indicators. Table II shows 
the hyperparameters for each EDNN. 

 

 
Fig. 4. A conceptual diagram of EDNN model. 

F. Model Training 

The model is trained using python 3.6 using the Keras and 
TensorFlow frameworks, and it is tested on Amazon Web 
Services (AWS) SageMaker with the Linux operating system 
[25]. The designed model is trained on historical data 
available. The winning strategy is shown by integrating the 
output of both neural networks and feeding it to a simple 
optimization problem. The model shows the predictions of 
the driver’s rank for upcoming laps, using the previous lap’s 
data simultaneously with the pitstop prediction. 
 

IV. RESULTS AND DISCUSSIONS 

A. Performance Parameters 

In this paper, the performance of the designed model is 
evaluated using root mean square error (RMSE) and R-
squared (R2) error for the driver ranking prediction. As the 
pitstop predictions have a bias for both cases (pitstop vs. non-
pitstop), precision (p) and recall (r) are better indicators of the 
predictive quality.  

A confusion matrix has been shown, and the performance 
has been evaluated using a harmonic mean of precision (p) 
and recall (r) have been used, shown as the F1 score in (3).  

 
𝐹1 𝑠𝑐𝑜𝑟𝑒 ൌ 2.

௣.௥

௣ା௥
                                      (3) 

B. Choice of Hyperparameters for Deep Learning 
Network 

Table II shows the hyperparameters for the rank and pitstop 
predictions EDNNs. The choice of activation functions has 
been made using the available literature. The rest of the 
parameters have been selected as the best case from the hit-
and-trial method. 

C. Results Analysis 

For the first EDNN model, the model's performance has 
been evaluated against RMSE and R2 scores. The model 
shows an RMSE of 2.51 on the training dataset and 2.05 on 
the test data set. R2 score is 0.42 for the training dataset and 

0.39 for the test dataset.  
 

TABLE II: CHOICE OF HYPERPARAMETERS FOR EDNN 

Hyperparameters for driver’s rank prediction 
Hyperparameter Value 
Number of hidden layers 
Number of neurons per layer 
Activation function for hidden 
layers 
Activation function for output layer 
L2 regularization  
Optimizer 
Loss function  
Training batch size  
Learning rate  
Epochs 

15 
150 
ReLU  
Sigmoid 
0.005 
Root mean squared propagation  
Binary cross entropy  
2048 
0.001 
150  

Hyperparameters for pitstop prediction 

Hyperparameter Value  

Number of hidden layers 
Number of neurons per layer 
Activation function for hidden 
layers 
Activation function for output layer 
L2 regularization  
Optimizer 
Loss function  
Training batch size  
Learning rate  
Epochs 

10 
120 
ReLU 
Sigmoid 
0.0005 
Nadam 
Binary cross entropy 
2048 
0.001 
150 

 

The predicted score is 93% correlated with the actual rank 
of the drivers. Fig. 5 shows a scatter plot for actual and 
predicted driver ranks.  

 

 
Fig. 5. A scatter plot for actual vs predicted driver rank for 2020 season of 

formula one racing. Driver abbreviations: LEW—Lewis Hamilton, MAX— 
Max Verstappen, VET— Sebastian Vettel. 

The confusion matrix in Table III summarizes the results 
for the pitstop prediction metric. There were 1986 false 
positives, which is lesser than with the hybrid model 
suggested by Heilmeier and Thomaser et al. [7], and 544 
pitstops happened without the algorithm detecting them. It 
can be caused by multiple factors, including car retirement or 
when the team principals experiment with different strategies 
on their two available cars. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ 𝑝 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
ൌ

2588
2588 ൅ 1986

ൌ 0.56 

 

𝑟𝑒𝑐𝑎𝑙𝑙 ൌ 𝑟 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
ൌ

2588
2588 ൅ 544

ൌ 0.83 
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𝐹1 𝑠𝑐𝑜𝑟𝑒 ൌ 2.
𝑝. 𝑟

𝑝 ൅ 𝑟
ൌ 2.

0.56 ∗ 0.83
0.56 ൅ 0.83

ൌ 0.67 

 
Overall, the precision of the Deep-Racing algorithm is 0.56 

and the F1 score is 0.67.  
 

TABLE III: CONFUSION MATRIX FOR PITSTOP PREDICTIONS 

 Predictions 

True value 
 

 

No pitstop 

No pitstop 

69765 

Pitstop 

1986 

Pitstop 544 2588 

 

V. FURTHER RESEARCH  

The focus of this paper has been to use Embeddings with 
Deep Neural Networks for formula one race predictions. The 
racing cars, drivers, and race regulations vary from season to 
season, so the deep-racing algorithm cannot provide a perfect 
response to specific situations, for example, racing under a 
safety car phase. The predictive accuracy in such conditions 
can be increased by considering a more exhaustive feature set. 
For instance, every formula one team has an enormous 
amount of data coming directly from the sensors deployed on 
the racing car, which can be very helpful in designing a better 
tire degradation model. Also, in real-world applications, the 
racing strategy changes dramatically concerning the nearest 
opponents of the driver. In such cases, a feature like sector 
times can be helpful to increase the predictive accuracy of 
pitstops. Merging the two outputs from the EDNN into a 
single network can improve the prediction quality as well as 
the computational efficiency of the deep-racing algorithm.  

The designed system can be used to predict the results of 
the first race of the new season using only the previous 
season's data for better fan engagement. The racing car's 
performance can also be improved by retraining the deep-
racing model with the data from the racing car sensors and 
predicting the car's performance parameters like drag force. 
This framework of predictions can be used to predict the race 
results in other motorsports like NASCAR and Formula E. 

 

VI. CONCLUSION 

In this paper, deep neural network embeddings for formula 
one racing predictions have been investigated. Overall, the 
embeddings show improved performance on regression and 
classification problems compared to the previously published 
algorithm designs. The model's predictive accuracy is 
improved by using a subset of features through embeddings 
and with other features for deep neural network training. For 
the classification model, 1986 false positives and a total of 
544 false negatives happened. The error scores for the 
regression problem also show significant improvement for 
the current dataset. The results can be improved by more 
extensive hyperparameter tuning for the deep neural network 
and testing different embeddings. 
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