
  

 

Abstract—Most of the models of soft robotic gloves can do 

flexion and extension. However, there are other hand 

rehabilitation exercises such as tendon glide which requires 

variations of finger pose. It cannot be done with just a single 

motion of flexion or extension. Individual joint control is needed 

in order to achieve the normal-to-maximum range of motion 

when doing the hand exercises. In this paper, a design of a 

segmented soft pneumatic bending actuator (sPBA) with 

individual joint control using PID with Artificial Neural 

Network (ANN) for parameter prediction is presented. Each 

joint has its individual inlets and has pneumatic chambers that 

bends when supplied with air. A pneumatic control setup is 

developed to control the three finger joints; the 

Metacarpophalangeal (MCP), Proximal Interphalangeal (PIP), 

and the Distal Interphalangeal (DIP). Varying the air pressure 

supplied to the joints achieves different bending positions of the 

finger. An experimental setup was developed in order to 

characterize and gather data that is used to develop ANN for 

predicting the bending angle-to-pressure parameter. A total of 

2197 images are captured from the different combinations of 

pressure which are equivalent to different bending angles. A 

simple PID control was used to achieve the desired bending. The 

setup has a mean-square-error (MSE) of 1.85007 at validation 

with overall R of 0.9994 and a maximum error of 5.4 kPa 

pressure in joint 1 at low pressure. This setup will be useful to 

develop a soft robotic rehabilitation glove. 

 
Index Terms—Artificial neural network, soft pneumatic 

bending actuator, hand rehabilitation, hyper redundant 

actuator, soft robotic glove. 

 

I. INTRODUCTION 

The vast development of soft robotic structures and 

systems contributes to innovations for biomedical 

applications. The growing demand of physical and 

occupational therapists gives the scientists and engineers the 

ideas of developing soft robotics for hand rehabilitation. 

Rehabilitation is trying the least invasive option that has 

shown to be just as effective for their condition [1].  However, 

most rehabilitative hand exercises, such as tendon gliding and 

nerve flossing, require different positions of the fingers.  

In order to achieve such positions, individual control and 

segmentation for each joint is required [2]–[6]. Rehabilitation 

gloves are significant in both cases of active and passive hand 
exercises [7]. Several soft pneumatic actuators exist in 

different designs and structures[8]-[10]. Most of these models 

primarily perform flexion and extension from a single source 

of pneumatic pressure for a single actuator network design 

resulting in limited finger exercises. 
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It is difficult to model soft actuators mathematically 

because of its high nonlinear characteristics. This enables the 

application of ANN for predicting parameters of the 

sPBA[11], [12]. In this paper, a segmented sPBA is 

developed which is able to perform different finger 

rehabilitation exercises. Varying the combinations of air 

supply pressure to each of the actuator joints enables it to 

perform different finger flexion and extension exercises. An 

ANN is set up in order to translate the bending angle-to-

pressure parameters for the sPBA to achieve its desired planar 

pose.    

The succeeding sections discuss the following: Section II 

discusses the design of segmented actuators with separate 

inlets for each joint, the experimental setup, the process of 

extracting coordinates

 

and bending angle of each of

 

the joints 

of the actuator, and the ANN setup for estimating pressure for 

the desired actuator positions, and Section III discusses the 

experimental results and the performance of the ANN setup.

 

 

II.

 

METHODOLOGY

 

A.

 

sPBA Design and Finite Element Method (FEM) 

Simulation 

It is necessary to do simulation to achieve the best actuator 

response in designing sPBA. A FEM software is used to 

simulate the response of the actuator in ideal parameters. The 

following parameters are used based on characteristics of the 

silicone Elastosil M4601: the density of 1130 kg/m2, the 

Yeoh coefficient of C10=0.11 and C20=0.02, and a gravity of 

9.81 m/s2. Each joint is composed of 3 pneumatic networks 

which will bend when inflated with compressed air. The 

symmetric structure is designed to ideally avoid elongation 

and twisting of the actuator as in [4]. The inflated chambers 

allow the side walls of the sPBA to create a bending 

mechanism. See Figure 1 for the FEM model of the actuator. 

The links in between the MCP, PIP, and DIP joints are 

segmented so that it may resemble the human finger. This is 

beneficial in coupling

 

the sPBA to the fingers of the user. The 

link lengths and the node

 

assignments are based on the 

geometric mesh developed upon simulation. There are 6 

working nodes and

 

links in the designed sPBA.

 

There are three air inlets that run in the base of the sPBA 

for the air distribution across the joints. A combination of 

different air pressure supplies is applied in each joint in step 

increments of 10 kPa. A kinematic equation will be used to 

compute the bending angle using the node coordinates.  
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Fig. 1. Segmented sPBA mesh with assigned nodes and links for the MCP, 

PIP, and DIP joints. 

 

 
Fig. 2. Control board. 

 

 
Fig. 3. Control system diagram. 

 

B. Experimental Setup 

Fig. 2 shows the control system which is composed of a 

control board and the evaluation platform. The control board 

is made up of the following: 1) solenoid valves, 2) pneumatic 

sensor module, 3) air pump and air regulator, 4) MOSFET 

module, 5) signal filter module, 6) microcontrollers, and 7) 

power supply modules. The solenoid valves are controlled 

through pulse width modulation (PWM) to regulate the 

pressure. A simple proportional, integral, and derivative (PID) 

control setup was established to control pressure. See Figure 

3 for the control system diagram. 

Two microcontrollers were used; Arduino ATMEGA 2560 

for pressure control, and Raspberry Pi 3 for capturing and 

processing of images. A high definition camera is used to 

capture the image programmed in OpenCV. This camera is 

calibrated before it is used in the setup in order to eliminate 

distortion. When the pressure combination is achieved, a 

photo will be captured and stored in a folder. These images 

will be processed for the extraction of the coordinates and for 

the computation of the bending angle using the kinematic 

equation. 

C. Kinematics of Hyper Redundant Structure 

The kinematic equation for the actuator is derived using the 

assumption of a hyper redundant structure. This can simply 

be understood by creating small rigid and straight structures 

out of a curvature. The more nodes that are assigned, the more 

accurate the measurement. Applying this to a nonlinear 

structure sPBA, the estimation of the bending angle is 

possible. Table I presents the parameters needed for 

developing the kinematic equation. The link lengths are 

assumed to be ideally unchanging, where there is no 

extension or compression.  

 
TABLE I: STRUCTURAL KINEMATICS AND MASS PARAMETERS 

i ai (mm)a mi (gm) di (mm) αi (deg) ϴi (deg) 

1 a1 3.5 0 0 ϴ1 

2 a2 21.1 0 0 ϴ2 

3 a3 3.5 0 0 ϴ3 

4 a4 10.2 0 0 ϴ4 

5 a5 3.5 0 0 ϴ5 

6 a6 10.5 0 0 ϴ6 
a Assumed unchanging: a = [10.8, 49.2, 10.8, 25.2, 10.8, 24.6] 

 

Equation (1) is the transformation matrix for a revolute 

joint. This is used to derive the kinematic equation (2). The 

actuator has a 2D planar movement where the z-coordinate 

component is ideally zero. Equation (3) is used to estimate 

the coordinates of the assigned nodes, noting that 𝑖 =

1,2,3, … ,  𝑛 − 1 and considering the origin is at (0,0) as node 

1. To determine the coordinates of the tip of the actuator, 

𝑝𝑋 , 𝑝𝑌, 𝑝𝑍, (4) is used.  
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D. ANN Setup 

 


Fig. 4. Artificial neural network setup. 

 

An ANN is set up to act as the inverse kinematic solution 

to bending angle-to-pressure prediction of the sPBA behavior. 

The combination of the three bending angles desired for each 

joint are the inputs, and its equivalent pressures are the 

outputs. A hidden layer with 10 neurons and a hyperbolic 

tangent sigmoid symmetric transfer function (5) was set up in 

𝑃 = 𝐴0
1𝐴1

2 ⋯𝐴𝑛−1
𝑛 [

0
0
0
1

] 
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]
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a feedforward back propagation network type. See Fig. 4 for 

the ANN setup. 

 

 

 (5) 
 

III. RESULTS AND DISCUSSION 

A. FEM Simulation 

There were six links assigned in the designed sPBA. The 

nodes are assigned based on the mesh generated in the FEM 

simulation. A pressure approximately 170 kPa is able to 

achieve nearly 90o bending. The bending structure is 

illustrated in Fig. 5. The MCP, PIP, and DIP joints are labeled 

as J1, J2, and J3 respectively. The results show the achieved 

bending for a full fist tendon glide exercise. The equivalent 

bending angle for each joint is the combination of ϴ1 and ϴ2, 

ϴ3 and ϴ4, ϴ5 and ϴ6, for J1, J2, and J3 respectively. See Fig. 

5b for the joint configuration. 

 
Fig. 5. (a) FEM simulation with pressure of 170 kPa for each joint, (b) joint 

bending angle configuration. 

 

B. Experimental Results 

A total of 2197 images were extracted in unique 

combinations of pressure supplied in each joint in a 10 kPa 

increment. Markers were installed in the sPBA to locate the 

nodes assigned for each joint similar to the nodes assigned in 

the FEM setup. Compared to the FEM simulation, the sPBA 

approximately achieves a bending angle of 90o at 120 kPa. 

Fig. 6 shows the captured images supplying each joint with 

uniform pressures to all the joints: 20, 40, 60, 80, 100, 120 

kPa. 

The developed actuator is embedded in a neoprene glove. 

This is done by putting Velcro fastening tape along the link 

attachments. See Fig. 7 for the sPBA attachment to the glove. 

In this experiment, two sPBA actuators are installed in the 

index finger and middle finger. 

C. ANN Training and Validation 

An error of 5.4 kPa in joint 1 is the maximum error attained 

in the ANN setup. The data set distribution is 60%, 20%, 20%, 

for training, validation, and test set respectively, which are 

based on the cross validation partition with Levenberg 

Marquardt training algorithm. Fig. 8 shows the error 

histogram with the distribution of instances of the partitioned 

data set for training, validation, and test data. The higher 

deviation positive and negative values exist in the low 

pressure combinations. These are the pressure supplies from 

20 kPa and below. This phenomenon is due to the pre-

bending of the actuator due to the influence of gravity. Six 

validation checks were incurred upon training of the ANN as 

illustrated in Fig. 9. 

 

 
Fig. 6. Actuator bending in different air pressures [20:40:60: 80:100:120]. 

 

 
Fig. 7. sPBA attachment to the glove. (a) Velcro fastening tape by Polar Bear, 

(b) Velcro attachment to the sPBA, (c) Velcro attachment to the glove, (d) 

adjoining the sPBA and the glove, (e-f) sPBA for index and middle finger.  

 

 
Fig. 8. Error histogram. 

 
Fig. 9. ANN training. 

𝑎 =
2

(1 + 𝑒−2𝑛)
− 1 
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The three pressure parameters for each joint attained the 

best validation performance of MSE at 1.8506 which shows 

that the model complexity runs well as shown in Fig. 10. Both 

the training and validation errors rest low to keep good 

prediction performance. The ANN setup has low variance and 

low bias which makes it a good model.  
 

 
Fig. 10. ANN performance. 

 
Fig. 11. Regression plot. 

 
TABLE II: ANN TRAINING RESULTS 

Set Samples MSE R 

Training 1319 1.51397e0 0.999443 

Validation 439 1.85062e0 0.999378 

Testing 439 1.80119e0 0.999370 

 

The regression plot shown in Fig. 11 shows that there are 

no outliers, rather the error is small enough and acceptable 

that the ANN is able to generalize. The ANN training result 

can be summarized by the MSE and regression R values in 

Table II. Several trials have been conducted to cross validate 

the ANN. With 2197 samples, the MSE is at 1.85 for the 

validation set. An MSE below 2 is of good performance. 

The maximum pressure errors in the positive and negative 

regions are 5.3447 kPa in joint 1 and -5.402 kPa in joint 3 

respectively. Fig. 12 presents the error plot of the three joints. 

The maximum percent error is at joint 1 at 53.47%. See Fig. 

13 for the percent error plot. This spike in error is due to the 

pre-bending of the sPBA at low air pressure supply due to the 

gravity. This error is negligible when the application is for 

higher pressure operations of bending the sPBA.  

 
Fig. 12. Error plot for the three joints. 

 
Fig. 13. Percent error plot for the three joints. 

 

IV. CONCLUSION AND FUTURE WORK 

Different finger exercises can now be achieved through the 

developed segmented sPBA by varying the individual 

pressure supply in each of the joints. The ANN setup used in 

this study was able to predict the equivalent air pressure of 

the desired actuator bending angle pose. The 2197 samples 

collected are enough to train the ANN. It has an acceptable 

maximum error of 5.4 kPa at joint 1 with an overall 

R=0.99944. At low pressure, the maximum percent error is 

53% which is caused by the pre-bending of the actuator due 

to gravity. This setup can be useful for the development of a 

soft robotic glove for rehabilitation that is able to perform 

different finger and hand exercises.  

In the future, the sPBA design and setup will be used to 

develop a soft robotic glove that can be used for hand 

rehabilitation, able to do different functional exercises for the 

ADL. The gripping force will be analyzed to study the effect 

on the patient’s development based on different hand motor 

assessment scales.  
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