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Abstract—Convolutional neural networks (CNNs) are widely

used in modern Artificial Intelligence (AI) systems. Compared
with other classical methods, CNNs have superior performance
in image classification, speech recognition and object detection.
However the computational load of CNNs is very heavy and a
large amount of data movement are expected. An efficient way
of data movement is critical for both performance and power
efficiency for an accelerator design. In this paper we propose a
novel CNN accelerator architecture with unique parallel
loading scheme and smart memory addressing solution. Our
solution is 30% faster than others on Alexnet. Our proposal can
achieve high efficiency for FC layer without using image
batching. This will make our solution very suitable for edge
applications.

Index Terms—Convolutional neural networks (CNNs), deep
learning, energy-efficient accelerators.

I. INTRODUCTION
Convolutional neural networks (CNNs) [1], also known as

deep learning [2] are widely used in modern Artificial
Intelligence (AI) systems. Before the appearance of CNNs,
most of the pattern recognition algorithms are composed of a
hand-crafted feature extraction module followed by a
classifier. However, there are some draw backs in this kind of
hand-crafted feature extraction algorithms. First, the
performance of the algorithm highly depends on the
hand-crafted feature. The performance of the algorithm can
be very poor if a wrong feature is chosen. And, for many
tasks, people don’t even know how to select those features.
Second, the features we selected for on task can’t be applied
in another task. And this will limit the application of the
algorithm. To solve the above mentioned problem, CNNs [1]
are proposed.
In CNNs, all the features are automatic learned from the

raw data by many convolution layers. There are no human
interaction in between the raw data and the final outputs.
CNNs have a much deeper architectures and thus it has much
more capacity to learn very complexity features than before.
Thus, CNNs have the superior performance in image
recognition [3]-[6], speech recognition [7], [8] and computer
vision [9]-[12].
However, state-of-the-art CNNs normally have hundreds
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of megabytes of weights and it requires billions of operations
in an inference. The data movement in an inference can be
very huge. In order to process CNNs in real-time, both high
parallelism in computing and high efficient data movement
are required.
In this paper, we propose a novel CNN accelerator

structure. It can support parallel data loading and thus can
minimize the IO time. The proposed structure can fully
support full connection layer efficiently. A smart addressed
memory access method is also proposed. The proposed
structure can support different CNN networks by
re-configure the network. In this paper we use Alexnet [3] to
benchmark the performance of the proposed architecture.

II. BACKGROUND
CNNs can achieve state-of-the-art performance in image

classification, speech recognition and object detection [13]. It
is constructed by stacking multiple convolutional layers
(CONV) for feature extraction and full connection (FC)
layers for classification.
For a CNN, convolution layers read the feature maps

generated by previous layers and output new feature maps for
next layer. Pooling layer is inserted between some
convolution layers to reduce the size of feature map as well as
the computational load of the following layers. Pooling layer
can work against overfitting [14] and it can also provide a
form of translation invariance [15], [16]. FC layers are used
to do classification. The last FC layer outputs the probability
of each category that the input image might belongs to.
For convolution layer, the primary computation is the high

dimensional convolutions. Assume ��
�t stands for j-th input

feature map, ��
�th stands for i-th output feature map. ��t�

stands for the convolution kernel corresponding to the j-th
input channel and i-th output channel. The convolution layer
can be expressed as [15]

��
�th � ��h

t�t ��
�th� ���t� � �� t �h � � � t�th� (1)

where t�t and t�th are the length of input channel and output
channel, respectively. � is a matrix convolution operation.
After the convolution, activation functions such as rectified
linear unit (ReLU) [17] are applied to introduce nonlinearity.
For full connection layer, assume the input signal ��t is a

t�t � h vector the output signal ��th is a t�th � h vector. t�t
and t�th are the length of the input and output feature vector,
respectively. Full connection layer can be expressed as [15]

��th � ���t � � (2)

where� is a t�th � t�t weight matrix, � is a t�th � h vector
which stands for the bias.
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III. SYSTEM ARCHITECTURE

A. Overview

Fig. 1. Structure of the Processing Engine (PE).

Fig. 1 shows the structure of our process engine (PE). It
contains one 8 bit multiplier, one adder, 256-byte image
buffer, 16 byte kernel buffer and 256-byte partial sum buffer.
The convolution operation can be divided into 3 different

stages. The first stage is the data loading stage. In this stage,
image data and weight data are loaded into image buffer and
filter buffer, respectively. Note that, in order to reduce the
total loading time, loading of image data and filter weights
can be carried out at the same time. The second stage is the
convolution stage. In this stage, data from image buffer and
data from filter buffer are multiplied and are accumulated, the
results are stored in partial sum buffer. The last stage is the
partial-sum accumulation stage. In this stage, partial sum at
the same PE column will be accumulated accordingly from
the bottom PE to the top PE module. And the results are
stored in the partial sum buffer at the top PE module.
For example, suppose we want to do a 5×5 convolution, we

need to use 5 PE modules and these 5 modules are stacked in
column direction to form a 5×1 PE column. Each PE will be
used to do the convolution of one image row with one of the
5×5 filter row. And the partial sums are accumulated
accordingly to get the final results. Thus, we need to arrange
the 5 PEs in column direction and the final results are
accumulated and stored in the top PE. Note that, the partial
sum accumulation stage and the next data loading stage can
be carried out at the same time to increase the throughput of
the system.

Fig. 2. Structure of the PE array.

The architecture of the PE array is shown in Fig. 2. Our PE

array has 16 PE rows and 12 PE columns. Totally, there are
192 PEs in the array.
At the partial sum accumulation stage, partial sum from the

bottom row of the PE array will be send out and accumulate
with the partial sum from the second bottom PE row. This
process will repeat till all the partial sums are accumulated at
the top most PE row. The output partial sum from the top
most PE row is sent to “sum row and activate block”. The
function of this block is to divide the 12 partial sums into 4
groups (3 in each group) and sum together. Activation
functions such as rectified linear unit (ReLU) [17] are applied
in this module to introduce nonlinearity. Output of the sum
row and activate block is sent to max-pooling module or a
data buffer for next round processing.
In our architecture, each PE row share one image data bus

and one filter weight bus. Totally, there are 16 parallel image
data buses and 16 filter weight buses. Independent image and
filter weight bus allow us to load them simultaneously. Note
that, there are 12 independent PE column enable signal.
Image data/filter weight can be loaded in parallel to one (only
one PE column is enabled) or to multiple PE columns
(multiple PE columns are enabled) at the same time. By using
this parallel loading feature, the data loading time can be
greatly reduced.

Fig. 3. Structure of the memory block.

To support this parallel loading feature, the data buffer
sub-block is designed to be 16×8b width and 2K depth with
byte-write support. Byte-write is the key points of our smart
memory access solution. The maximum number of output
channels is 4 in our design. It can process 4 output kernels at
the same time. Fig.3 shows the memory structure. We
partition the memory into 3×4 sub-blocks, 4 blocks in a group.
We also propose a unique way of memory access control to
support parallel loading and writing patterns required. The
design overhead is negligible compared with normal memory
access method. This will be discussed in detail later.

B. Data Operation
2D Kernel are convoluted with 2D input feature map to

form partial-sum, then partial-sums from different input
feature maps are summed together to get the final output
feature map.
In our design, all the multiplications are calculated within

PE, while the accumulations are divided into three stages. In
the first stage, one row of kernel are convoluted with one row
(or multiple rows) of input image. In the second stage,
partial-sums from the same PE column are accumulated
accordingly from the bottom PE row to the top PE row and
the final partial sums are stored in the top PE row. In the third
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stage, dedicated adder is used to accumulate the partial-sum
from different PE columns. In our design, every 3 PE
columns are summed together and thus we can get the final
output of 4 different output channels.
By using this architecture, we can maximize the reuse of

the image and kernel data with minimum hardware resource.
A dedicated max-pooling block is also designed to support
different requirements of different algorithms. 2D
max-pooling operation is divided into 2 one-dimension
max-pooling operation. By doing so, the hardware design
cost of the max-pooling can be greatly reduced and the data
can flow smoothly without additional control. This will
reduce the complexity of memory access, and we can remove
the input/output buffer which is required by other solution for
data reformatting [18], [15].

C. Convolution Layer Implementation

1) 11×11 convolution

Table I shows the shape parameter of Alexnet [3]. Here, H
is the size of input feature map, R is the size of kernel, E is the
size of output feature map. C is the number of input feature
maps. F is the number of output feature maps. G is the
number of image groups.

TABLE I: ALEXNET SHAPE PARAMETERS

Fig. 4. Data mapping for 11×11 convolution.

Fig. 4 shows the data mapping of CONV1 using our PE
array. There are 3 input channels in CONV1 (C1, C2 and C3,
as shown in the figure), and the kernel size is 11×11. One PE
is used to calculate the convolution of one image row and one
kernel row. Thus, 11 PEs in one PE column can be used to
complete the 11×11 convolution.
Three PE columns are used to handle 3 input channels

accordingly (C1, C2 and C3, respectively). The same input
data will be duplicated 3 times to fully use 12 column of PE
array as shown in Fig. 4. Totally, we can process 4 output
kernels (K1, K2, K3 and K4 as shown in Fig. 4) at the same
time. The adder within the “sum row and activate block” is
configured to sum 3 columns into one output to get the final

results. The output data is shifted out sequentially, and
row-based max-pooling can be executed directly.
Data sharing at this layer can be described as follows: first,

enable PE column 1, 4, 7, 9 at the same time; second, load the
same image data to these 4 PE columns at the same time
(since these 4 columns share the same data). The image data
from channel C2 and C3 can be loaded in the same way. The
total data loading time can be greatly reduced by using the
proposed data sharing method.
2) 5×5 convolution
There are 48 input channels in CONV2 and the kernel size

is 5×5. The data mapping for CONV2 is shown in Fig. 5.
Each PE column can process 16 input channels (c1-c16, as
shown in Fig. 5). We need 3 PE columns to process 48 input
channels (c1-c48). Note that, at each round we can process
only one row (totally, there are 5 rows to be processed) of 48
input channels from 4 different output kernels (K1, K2, K3
and K4 as shown in the figure). So we need another 4 rounds
to complete the full convolution for 4 different output
channels.

Fig. 5. Data mapping for 5×5 convolution.

Our PE is designed to support the convolution of multiple
image rows with the same kernel weight. For the case of
CONV2, we can load 8 rows of input feature map into image
buffer at the first round (since the length of the feature is only
27 in CONV2). 8 rows of partial-sum will be calculated and
stored in the partial-sum buffer. At the second round, feature
map data from row 1 will be replaced by data from row 9
(because row 2 – row 9 will be used for the second round
convolution), filter weights from the second filter row will
also be loaded. And the corresponding partial-sum will be
accumulated accordingly. Noted that in this round, the
feature map loading time is only one row (that is, load row 9
to replace row 1), feature map data of row2-row8 are reused
and we don’t need to load them at this round. In the third
round, row 3 will be replaced by row 10. In the fourth round,
row 4 will be replaced by row 11 and in the fifth round, row 5
will be replace by row 12. Thus, the total loading time for the
first 5 round is only 12 image rows. By using this method, we
can reduce data loading time to 1/8, compared to tradition
method. Note that data in the same color (column 1, 4, 7 and
10, etc…) can be shared and they can be loaded at the same
time as we proposed for CONV1.
3) 3×3 convolution
In CONV3-5, kernel size is 3×3. We use 3 PE columns to

complete the 3×3 convolution for one input feature map.
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Thus, 16×3 PE array can process 16 input channels (c1-c16,
as shown in Fig. 6). The whole 16×12 PE array can process
64 input feature maps at one round.

Fig. 6. Mapping of 3×3 convolution.

The data mapping is shown in Fig. 6. We can load the
whole feature map into one PE (since the feature map size is
only 13×13, which can be placed in the image buffer
directly).
Note that feature map row1-row13, row2-row14 and

row3-row15 are required by PE column 1, 2 and 3
respectively (as shown in Fig. 6), which corresponding to
filter row 1, filter row 2 and filter row 3, respectively. It can
be observed that, data from row3-row13 can be shared
between these 3 PE columns.
The data sharing process can be described as follows: first,

enable PE column 1 and load data row 1 to PE column1;
second, enable PE column 1 and PE column 2, load data row2
to PE column 1 and 2; third, enable PE column 1, 2 and 3,
load data row3-row 13 to PE column 1, 2 and 3; fourth,
enable PE column 2 and 3, load data row 14 to PE column 2
and 3; fifth, enable PE column 3, load data row 15 to PE
column 3. The data loading time can be greatly reduced by
using this data sharing method.

D. Full Connection Layers Implementation
For FC layer, the kernel size and feature map size are the

same. But number of kernel is huge and there is no kernel
reuse. Most neural-network accelerator architectures [18]
[15] are designed for kernel reuse and have to use image
batching method to improve the efficiency of their design.
We find that if we swap the feature map data and kernel data,
feature map data can be reused for FC layer, we can still
achieve high-efficiency for FC layer without using image
batching. We add a MUX in the image bus and kernel bus. It
will allow us to control which data is loaded into image
buffer and kernel buffer accordingly. By doing this, we can
easily reduce the number of data loading to 1/16 in FC layers.
The operation of the FC1 can be described as follows: for

each PE, we load 16 feature map data into kernel buffer, load
16 set of kernel coefficients into image buffer. Each set
contains the corresponding filter weights for that 16 feature
map. We can process 16×12×16 (because we have 12
columns) out of 6×6×256 feature maps in one round. Thus,
after 3 rounds of convolution, we can get the results of 16
output channels. Totally we need 4096/16×3=768 rounds to

finish FC1. Note that, the PE utilization is 100% in FC1 and
over 99% for other FC layers as shown in Table II.

E. Smart Addressed Memory Access Method
In order to support parallel loading, the results of 16 output

channels must be stored in one memory sub-block so that
they can be read out in parallel. Thus, the memory sub-block
is designed to be 16×8b width and 2K depth with byte-write
support. The data writing process with and without
max-pooling are different. We will describe this process in
detail in this section.

Fig. 7. Data arrangement for normal write.

Assume there is no max-pooling, at each round of
convolution we can get the results of 4 output channels. The
data of these 4 channels are written in parallel to the left most
4 columns in one memory sub-block (as shown in Fig. 7).
Thus, after 4 rounds, we can have all 16 output channels in
the memory sub-block and all the data are arranged in the
suitable format for parallel loading.

However, for the case of max-pooling, the writing
operation is different. In our design, max-pooling is divided
in two stages. The first stage is to do max-pooling in row
direction. Here we use CONV1 as an example. At the first
round, input image size is 11×227, this image will be loaded
into image buffer and convolute with an 11×11 filter. The
output feature size is a 1×55 vector. This data is fed into
max-pooling block directly and the output is a 1×27 vector. It
is written in byte format (from left to right in row direction) to
the memory sub-block (as shown in Fig. 8(b)). Note that, this
is the output of one row of the feature map. At each round, we
can process 4 output channels. These 4 output channels will
be written to 4 different sub-blocks simultaneously. After
first stage max-pooling, the feature map size changed from
55×55 to 55×27. Fig. 8(c) shows the data storage format after
the first stage max-pooling.
The second stage is to do max-pooling in column direction,

feature map size changed from 55×27 to 27×27. Note that, in
order to load data in parallel at CONV2, the first row of
channel 1- 16 needs to be stored in parallel in one memory
sub-block (for example, data from channel 1 stored at column
1, data from channel 2 stored at column 2, etc… ). The
process of the second stage max-pooling can be described as
follows: read 4 columns of the 55×16 feature map data from
the memory sub-block (the actual data size been read is 55×4,
only 4 columns are read. Because the max-pooling block can
only support 4 inputs at a time). After the second stage max
pooling, the data size changed to 27×4, which corresponding
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to 4 rows of an output channel. These data are written back to
4 different memory sub-block simultaneously, as shown in
Fig. 8(d). Note that these are the first 4 rows of channel one.
Data from channel 2-16 can be written in the same way. By
using this memory access method, the output data can be
written in the format required by parallel loading. No further
data transformation is required.

Fig. 8. Data arrangement for max-pooling.

The above write operation can be easily met by swapping
the sequence of write-address. For example, we can shift 4
LSB of write address to the left, so these 4 bits can be used to
control the byte-write, it allow us to write data horizontally as
shown in Fig. 8(c). By using this method, the read/write
address generation can be simplified to a +1 operation and a
bit-swapping control of the write address.

F. Performance Estimation
Performance of the proposed accelerator (benchmarked to

Alexnet) can be found in Table II. Here we assume the
system clock is 200Mhz. Data loading time, kernel loading
time and calculation time is estimated per rounded based.

TABLE II: PERFORMANCE ESTIMATION

In CONV1, image data is reused. And we will load all the
96 different kernels first to process the same input image data.
The detailed data processing can be described as follows: first,
load 1 image row to image buffer. Note that there are 3
different input channels, so the total image loading time is
3×224=672; second, load filter weights to filter buffer. The
total filter loading time is 11×12=132 (because we need to

load filter weights to12 PE columns). The convolution time is
11×55=605. Note that at each round, we can only process 4
output kernels. And we will process 96 output kernels first for
the same image. Thus, the total time to get one row of the
final results of 96 kernels is 672+(132+605)×96/4. And we
need to process 55 rows. Thus, the total clock cycle for
CONV1 can be calculated as 55×(672+(132+605)×96/4).
In CONV2, we use the data sharing method mentioned in

section C to reduce the data loading time. The detailed
operation can be described as follows: In round 1, we load 8
feature map rows and the total cycle is 31×8×3=744.
However in next round, we only need to load row 9 (to
replace row 2) and the data loading time is just 31×3=93
cycles). Compare with [18], our CONV2 takes only 7.05 ms
(70% of [18]). The reason is that our PE array is fully used in
CONV2 and the data loading time is minimized by using
parallel loading.
In CONV3-CONV5, we reuse the input feature map as

proposed in section C. The cost is an extra partial sum
loading (13×13=169 clock cycles per round). Note that our
PE array is also fully used in CONV2-CONV5 and FC1, that
is the reason why it has a better performance compare with
other method [18].

TABLE III: PERFORMANCE COMPARISON

IV. CONCLUSION
In this paper we propose a novel CNN accelerator structure.

Compared with other methods, the proposed structure has the
following advantages: 1, data is load into PE in parallel; 2,
the proposed structure can fully support FC layer efficiently;
Other methods [18] [15] use image batching to improve the
efficiency of FC layer which can cause large latency and is
not suitable for EDGE application. 3, we propose a smart
memory access solution. It enables us to reformat the data
sequence directly. And we don’t need input/output data
buffer, which are required by other proposals. 4, the proposed
method can outperform [18], and the hardware resource
requirement is minimized.
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