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Abstract—Semantic segmentation is an important task in the 

visual system of self-driving cars. The semantic segmentation 

models based on the CNN (Convolutional Neural Network) 

trained with the large numbers of annotated labels may not 

work well at the environments different from the training sets 

due to the domain gap between the train and test domains.  Just 

for the reduction of the distance between the source and target 

domains, domain adaptation methods are proposed for the 

unsupervised training with the unlabeled target domain. Not 

only the reduction of the domain-shift, but we also propose the 

self-learning method to enhance the predicted probabilities of 

the target domain. To gain more accurate probability maps of 

the target domain generated from the segmentation model 

which is trained by the source domain, we propose the 

adversarial self-learning method which is consists of the 

domain adaptation part and self-learning part. The adversarial 

self-learning method can maximize the predicted probabilities 

for the probability maps of the target domain gained from the 

segmentation model which is adapted with the domain 

adaptation method before the self-learning. With the 

Cityscapes to NTHU cross-city adaptation experiments, we can 

see that the adversarial self-learning method can achieve state-

of-the-art results compared with the domain adaptation 

methods proposed in the recent researches.  

 
Index Terms—Semantic segmentation, domain adaptation, 

adversarial self-learning, cross-city adaptation. 

 

I. INTRODUCTION 

With the visual system for self-driving cars, we can 

realize the line and road detection [1], traffic sign 

recognition [2], depth estimation [3], objection detection [4] 

and semantic segmentation [5] based on the image 

processing techniques. Just for the understanding of the 

urban scenes, semantic segmentation plays a significant role 

in the visual system. Different from the image recognition 

which is an image-wise classification problem, semantic 

segmentation is a pixel-wise classification task which gives 

each pixel of the image a label. With the improvement of the 

CNN architectures, the performance of the semantic 

segmentation system [6]-[15] was significantly increased in 

a few years. For the supervised leaning for the semantic 

segmentation system based on the CNN architectures, a 

large number of high quality annotated images [16] are 

needed. For the training of the semantic segmentation 

system used for the urban scene understanding, Cityscapes 

[16] datasets and Mapillary Vistas [17] datasets contained 

thousands of high-annotated images from multi-cities from 
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the real world are provided. As the high cost for the 

annotation of the pixel-level labels, the synthetic datasets 

[18], [19] which use the labels rapidly generated from the 

computer games for the semantic segmentation models 

training are provided. When we use the semantic 

segmentation model pre-trained with the real-world datasets 

or synthetic datasets to predict the images from the scenes 

which are not in the training datasets, the semantic 

segmentation models may not give good performance due to 

the domain shift [20]-[23] between the training datasets and 

the testing datasets. Retraining the models with the testing 

datasets is impossible with the not enough annotated labels. 

To deal with the domain shift problems for the semantic 

segmentation system, domain adaptation methods [24]-[29] 

based on the GANs [30], [31] (Generative Adversarial 

Networks) which are used to reduce the divergence between 

the two domains (training datasets and testing datasets) are 

proposed. As a proposed method, we choose the probability 

enhancement for the object prediction results which are the 

outputs gained from the semantic segmentation system 

(probability maps) of the target domain (testing dataset) to 

adapt the segmentation models trained with the source 

domain (training datasets). Our contributions in this paper 

can be introduced as follows: 

As a self-learning method, we calculate the cross-entropy 

loss with the pseudo labels gained from the probability maps 

of the target domain to enhance the object prediction 

probabilities. 

To gain accurate pseudo labels for the self-learning, we 

use the outputs space domain adaptation method used the 

GANs to reduce the domain gap for the probability maps of 

the target domain. 

We propose an adversarial self-learning method which is 

a combination of the domain adaptation method and the self-

leaning method. We implement the proposed method for the 

real world cross-city adaptation. The experiments show that 

the proposed method can achieve state-of-the-art results. 

 

II. RELATED WORKS 

In this section, we introduce some semantic segmentation 

systems based on CNN models and some domain adaptation 

methods based on the GANs in recent researches. 

Semantic Segmentation. The semantic segmentation 

systems achieve rapid development with the CNN models in 

recent years. Like the architecture of the FCN [6] (fully 

convolutional network), the segmentation system contains 

two parts, the feature extractor, and the classifier module. 

The feature extractors use the image recognition models like 

the AlexNet [32], VGGNet [33], GoogleNet [34], and 

ResNet [35], etc. pre-trained with the ImageNet [36] and 
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Microsoft COCO [37] datasets to extract the feature maps 

for the images from the segmentation datasets. The classifier 

modules use the deconvolution layers for the pixel-wise 

classification with the consistency of the channels and sizes 

of the probability maps based on the extracted feature maps. 

Unlike the FCN [6] model, the U-Net [38], SegNet [15] 

models proposed the architecture consist of the encoder and 

decoder modules for the segmentation system. Instead of the 

pre-trained feature extractors, the encoder-decoder models 

which are used to generate probability maps from the input 

images directly are trained with the semantic segmentation 

datasets like end-to-end systems. Just like the architecture of 

FCN, the DeeplabV2 [7] uses the pre-trained ResNet101 [35] 

as the backbone for the feature extraction. Instead of the 

deconvolution layers, DeeplabV2 use the ASPP [7] (Atrous 

Spatial Pyramid Pooling) as the classifier module which 

uses the dilated convolution and the multi-filters with 

different rates to gain image spatial context with multi-

scales. 

Domain Adaptation. The domain adaptation methods 

based on GANs [30] used for the semantic segmentation 

systems in recent researches can be divided into three 

classes: the feature adaptation, the outputs adaptation, and 

the image adaptation. The feature adaptation methods [27], 

[28] use the discriminator to calculate the distance of the 

distributions of the feature maps which are extracted from 

the images of source and target domains with the pre-trained 

backbones as VGG16 [33], ResNet101 [35]. With the 

reduction of the distance of the feature maps of the source 

and target domains, the classification results of the target 

domain based on the feature maps can be similar to the 

source domain. As systematic outputs can be generated with 

the semantic segmentation system, the outputs adaptation 

methods [24], [29] directly use the discriminator to calculate 

the divergence of the probability maps which are the 

segmentation system outputs. With the adversarial training 

for the segmentation networks, the distributions of the 

probability maps from the target and source domains can be 

as close as possible. As the difference of image styles is the 

reason for the domain shift of the semantic segmentation 

system, the image adaptation methods [25], [26] use the 

GANs for image-to-image translation. As the images 

generated from the target domain images based on the style 

transfers which use the GANs can gain similar styles with 

the source target images, the domain gap for the 

segmentation system can be reduced. 

 

III. PROPOSED METHOD 

In this paper, we proposed a new algorithm consists of 

adversarial learning and self-learning methods for the output 

space gained from the segmentation network to deal with the 

domain shift problem between the source domain and target 

domain for the semantic segmentation system. In this 

section, we explain the algorithm flow for the proposed 

method and the loss function for the system optimization in 

details. 

A.  Architecture Overview 

As shown in Fig. 1, the proposed method can be divided 

into two parts: the segmentation network G and the 

discriminator module D. Just for a semantic segmentation 

system, input images and annotated labels as the ground 

truth from source domain are used to calculate the cross-

entropy loss to train the weights of the segmentation 

network G as a supervised learning. For the domain 

adaptation part which is used to reduce the domain-shift 

between source and target domains, the adversarial losses 

for target domain images as the JS (Jensen–Shannon) 

divergence calculated by the discriminator module proposed 

by Ian Goodfellow [30] can be used to fine-turn the trained 

weights of the segmentation network. As the divergence 

between the outputs space of the source and target domains 

been reduced by the adversarial loss, the probability maps of 

the target domain as the outputs of the segmentation 

network can be used for a self-learning process. To enhance 

the confidence of the objects probabilities from the 

probability maps of the target domain, the cross-entropy loss 

between the probability maps and the pseudo labels gained 

from the probability maps can be calculated for the self-

learning method used to adapt the weights of the 

segmentation network. As the generative adversarial 

learning, the adversarial loss from the discriminator D can 

be used to adapt the segmentation network G, the weights of 

the discriminator D should be trained with the probability 

maps of the source and target domains to distinguish the 

domains of the outputs space generated from the 

segmentation network G. 

 
Fig. 1. Overview of the proposed algorithm. The proposed method can be composed of segmentation network and the discriminator module. We use the 

given images and annotated labels from the source domain as a supervised training for the segmentation network. To reduce the domain-shift between the 

source and target domains, images from the target domain can be used to adapt the segmentation network as an unsupervised tra ining. We use the 

probability maps of source and target domains gained from the segmentation network to train the discriminator module. 
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B.  Loss Function 

Segmentation Network Training. As introduced in 

section A, we use the images 𝐼𝑠 and the annotation labels 𝑌𝑠 

from the source domain to train the segmentation network G 

as a supervised learning. We use the images 𝐼𝑡  from the 

target domain to adapt the segmentation network G to 

reduce the domain-shift between the source and target 

domains. As 𝐼𝑠 , 𝐼𝑡 ∈ 𝑅𝐻×𝑊×3
 (H and W are the height and 

width of the images), the overview loss function can be 

expressed as: 

L(𝐼𝑠, 𝐼𝑡) = 𝐿𝑐𝑒(𝐼𝑠) + 𝜆𝑎𝑑𝑣𝐿𝑎𝑑𝑣(𝐼𝑡) + 𝜆𝑠𝑙𝐿𝑠𝑙(𝐼𝑡) (1) 

where 𝐿𝑐𝑒(𝐼𝑠) is the cross-entropy loss between the source 

domain images 𝐼𝑠 and the annotated labels 𝑌𝑠, 𝐿𝑎𝑑𝑣(𝐼𝑡) is the 

adversarial loss for the probability maps of the target 

domain images 𝐼𝑡  calculated by the discriminator D, and 

𝐿𝑠𝑙(𝐼𝑡) is the self-learning loss which is the cross-entropy 

loss calculated between the probability maps gained from 

target domain images 𝐼𝑡 and the pseudo labels. The 𝜆𝑎𝑑𝑣 and 

𝜆𝑠𝑙 are the weights for the adversarial loss 𝐿𝑎𝑑𝑣(𝐼𝑡) and the 

self-learning loss 𝐿𝑠𝑙(𝐼𝑡). 

Cross-entropy loss for a supervised learning. We use the 

images 𝐼𝑠 and annotated labels 𝑌𝑠 to train the weights of the 

segmentation network G. As C is the number of categories, 

G(𝐼𝑠) ∈ 𝑅𝐻×𝑊×𝐶  is the outputs of the segmentation network 

as probability maps. Before the calculation of the loss 

function, the probability maps G(𝐼𝑠) should be normalized 

with a softmax layer. With the definition of the 

normalization probability maps Ĝ(𝐼𝑠)  as Ĝ(𝐼𝑠) =
Softmax( G(𝐼𝑠) ) , we can define the cross-entropy loss 

𝐿𝑐𝑒(𝐼𝑠) which is based on the source domain   as: 

𝐿𝑐𝑒(𝐼𝑠) = − ∑ ∑ 𝑌𝑠
(ℎ,𝑤,𝑐)

log (𝐺(𝐼𝑠)(ℎ,𝑤,𝑐))𝑐∈𝐶ℎ,𝑤          (2) 

where the 𝑌𝑠
(ℎ,𝑤,𝑐)

 is the one-hot encoder for the annotated 

labels 𝑌𝑠 . 
The adversarial loss for the unsupervised learning. We 

use the Discriminator D which can distinguish the domains 

of the probability maps which are the outputs of the 

segmentation network G to calculate the adversarial loss 

𝐿𝑎𝑑𝑣. As the inputs for the discriminator D, we should use 

the normalization probability maps Ĝ(𝐼𝑡)  instead of the 

probability maps G(𝐼𝑡)  generated from the target domain 

images 𝐼𝑡 . As the discriminator D is a classifier to 

distinguish the probability maps domains, we label the 

probability maps of the source domain with 1, the 

adversarial losses for 𝐼𝑡 can be defined as: 

𝐿𝑎𝑑𝑣(𝐼𝑡) = − ∑ log (𝐷(𝐺(𝐼𝑡))(ℎ,𝑤))ℎ,𝑤                   (3) 

As we minimize the adversarial loss 𝐿𝑎𝑑𝑣  to adapt the 

segmentation network G, the distribution of the target 

domain probability maps can be close to the source domain. 

Self-learning loss for an unsupervised learning. As a self-

learning method, we use the cross-entropy loss between the 

probability maps G(𝐼𝑡)  gained from the target domain 

images 𝐼𝑡  and the pseudo labels �̂�𝑡  gained from the 

probability maps  G(𝐼𝑡)  to maximize the probabilities of 

objects (road, sidewalk, tree, etc.) of the target domain 

images pixels. Dealing with the consistency of the 

adversarial loss, we use the normalization probability maps 

Ĝ(𝐼𝑡)  instead of the probability maps G(𝐼𝑡)  for the 

calculation of the self-learning loss. The pseudo labels of 

target domain �̂�𝑡  can be gained from the normalization 

probability maps Ĝ(𝐼𝑡) with an argmax function, which can 

be defined as �̂�𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥(Ĝ(𝐼𝑡) ). The self-leaning loss 

calculated with  the cross-entropy loss between Ĝ(𝐼𝑡) and �̂�𝑡  

can be defined as: 

𝐿𝑠𝑙(𝐼𝑡) = − ∑ ∑ �̂�𝑡
(ℎ,𝑤,𝑐)

log (𝐺(𝐼𝑡)(ℎ,𝑤,𝑐))𝑐∈𝐶ℎ,𝑤  (4) 

Discriminator Network Training. The discriminator D 

is a two-class classifier to distinguish the domains of the 

normalization probability maps Ĝ(𝐼𝑠)  and Ĝ(𝐼𝑡) . The 

overview loss used to train the weights of discriminator D 

with Ĝ(𝐼𝑠) and Ĝ(𝐼𝑡) can be expressed as: 

𝐿𝐷(𝐼𝑠, 𝐼𝑡) = − ∑ log (𝐷 (𝐺(𝐼𝑠))
(ℎ,𝑤)

) +ℎ,𝑤 log (1 − 𝐷 (𝐺(𝐼𝑡))
(ℎ,𝑤)

) (5) 

As the generative adversarial learning, the minimization 

of the discriminator loss 𝐿𝐷(𝐼𝑠 , 𝐼𝑡) can gain a JS divergence 

[30] between the distributions of the probability maps from 

source and target domains.  

 

IV. EXPERIMENTS AND RESULTS 

In this section, we use the results of the experiments to 

validate the effectiveness of domain adaptation method for 

the semantic segmentation system proposed in this paper. 

For the real world cross-city adaptation experiments, we 

introduce the system network architecture (segmentation 

network G and discriminator D), the setting of the 

parameters and optimizer functions for the domain 

adaptation system, environments and datasets of the 

experiments, discussion on the results in details. 

A. Network Architecture 

Segmentation Network G. We use the Deeplabv2 [7] as 

the base architecture for the segmentation network G in the 

experiments. For the Deeplabv2 model, we adopt the 

Resnet101 [35] network which has been pre-trained with the 

ImageNet dataset as the backbone of segmentation network 

G for the feature extraction. We use the ASPP module as the 

decoder for G to gain the probability maps from the input 

feature maps. As of last, for the consistency of the input size, 

we use an up-sampling layer to resize the probability maps 

from the ASPP [7] module.   

Discriminator D. To pay attention to the local patches 

from the input probability maps, we use the PatchGAN [39] 

as the base architecture for the discriminator D. The 

discriminator D is composed of 5 convolution blocks with 

the output channels as {64,128,256,512,1}. Each block used 

in PatchGAN consists of a convolution layer with the kernel 

size set to 4, stride size set to 2, padding set to 1, and a 

LeakyReLU [40] layer used as the activation layer with the 

negative slope set to 0.2. 

B. Parameters and Optimizers 

For the weight of the adversarial loss 𝜆𝑎𝑑𝑣 , as indicated 

in the AdaptSegNet [24], we adopt 0.001 to gain a sensitive 

effect for the adaptation. We also choose 0.001 for the 

weight 𝜆𝑠𝑙 of the self-learning part to keep the consistency 

of adversarial learning. We choose the SGD [41] (Stochastic 
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Gradient Descent) optimizer for the segmentation network G 

with the parameters’ initial learning rate set to 2.5×10-4, 

momentum set to 0.9, and weight decay set to 10-4. For the 

discriminator D, we use Adam optimizer [41] with the initial 

learning rate set to 10-4. Just for training, the learning rates 

of the optimizers used for the G and D are decreased with 

the polynomial decay as the power set to 0.9. 

C. Datasets and Environments 

Datasets. In the experiments, we use the cityscapes [16] 

dataset as the source domain and cross-city dataset [28] as 

the target domain to implement domain adaptation for the 

semantic segmentation system. The cityscapes [16] dataset 

contains 5000 high quality pixel-wise annotated images 

from 50 cities around Europe. The dataset is focused on the 

urban street scenes and labeled with 30 classes. We only use 

the training set contained 2975 images from the cityscapes 

dataset consists of training, testing and validation parts for 

the segmentation network training. The cross-city NTHU 

[28] dataset is used to show the different appearance from 

the cityscapes dataset collected from four cities Rome, Rio, 

Tokyo, and Taipei. For each city, 3200 unannotated images 

are used to adapt the domain shift and 100 annotated images 

used to validate the adaptation effect of the system. In this 

paper, to prevent the domain adaptation system from the 

over-fitting problems, we choose the cities Rio, Tokyo, and 

Taipei which are not the European cities for the adaptation 

experiments. As the image size for the experiments, the 

height is set to 256, the width is set to 512. 

Experiments environment. Our proposed adversarial 

self-learning method is implemented with the Pytorch 

framework. We train the segmentation network G and 

discriminator D with NVIDIA GTX 1080ti GPU for 100000 

iterations took about 12 hours. We use the testing set from 

the cross-city dataset to validate the system and save the 

weights every 3000 iterations. 

D. Overview Results 

In this paper, as the cross-city dataset is labeled with 13 

classes, we calculate the mIoU [42] (Mean Intersection over 

Union) which is the mean IoU of the 13 classes as the metric 

for the semantic segmentation system. Table I presents the 

results for the three cities’ (Rio, Tokyo, and Taipei) 

segmentation performance transferred from the cityscapes 

dataset. In Table I, the SW, BLDG, TL, TS, VEG, Motor. 

are used to stand for Sidewalk, Building, Traffic Light, 

Traffic Sign, Vegetation, and Motorbike; the AL and SL are 

used to stand for the adaptation learning and self-learning. 

With the results of the experimentations, our proposed 

adversarial self-learning method (AL+SL) in this paper can 

be compared with the feature adaptation method 

(AL(Feature)) mentioned in the [28] and the output space 

adaptation method (AL(Outputs)) proposed by [24] to show 

the advantages when dealing with the domain shift problems 

for the segmentation system. As mentioned in the previous 

researches, the deep network can achieve better feature 

representation and segmentation results, we used the 

ResNet101 as the backbone for all the experiments. With 

Table I, we can see that both the adaptation of the feature 

map and the output space can gain effective performance. 

With no adaptation operation, the domain adaptation can 

reduce the domain shift in the segmentation system. To 

compare with the feature adaptation method to reduce the 

divergence between the feature maps of the source and 

target domains, directly reducing the divergence of the 

pixel-wise classification results used the outputs space 

adaptation method achieves the better mIoU results. The 

proposed self-learning method (SL) which is used the cross-

entropy loss with the pseudo labels can reduce the domain 

shift for the segmentation system based on the results of the 

experiments. For real-world cross-city adaptation, we can 

see that the self-learning method gains better performance 

compared with the domain adaptation methods from tabel1. 

As the pseudo labels used in the self-learning method are 

gained from the output probability maps, we proposed the 

adversarial self-learning method which uses the outputs 

space adaptation to reduce the divergence between the 

probability maps of the source and target domains before the 

self-learning for the target outputs. From tabel1, we can see 

that the adversarial self-leaning method proposed in this 

paper achieves state-of-the-art results compared with the 

baseline (with no adaptation) and the domain adaptation 

methods proposed in recent years. 

 

TABLE I: THE RESULTS OF THE CITYSCAPES TO CROSS-CITY ADAPTATION FOR SEMANTIC SEGMENTATION SYSTEM 

Cityscapes - Cross-City 

City Method Road SW BLDG TL TS VEG Sky Person Rider Car Bus Motor. Bicycle MIoU 

 

 

Tokyo 

Baseline  67.79 18.35 56.80 1.12 4.20 68.20 39.43 11.22 2.95 56.04 0.33 1.72 26.55 27.28 

AL(Feature)[28] 73.12 22.90 61.80 0.37 1.75 66.76 60.05 11.93 0.57 56.45 0.00 0.34 19.58 28.84 

AL(Outputs)[24] 68.53 16.04 64.84 0.58 4.47 69.05 64.80 16.56 0.64 53.74 3.61 4.46 20.90 29.86 

SL 71.34 20.11 62.39 0.97 4.72 68.65 65.21 15.21 0.26 58.63 0.28 3.91 22.95 30.36 

AL+SL 69.69 17.97 66.73 0.85 4.72 68.97 71.51 20.44 0.99 55.65 3.69 3.71 29.97 31.91 

 

 

Taipei 

Baseline 49.03 14.35 63.26 1.93 2.86 58.15 58.57 5.81 0.66 34.10 3.94 14.06 2.52 23.79 

AL(Feature)[28] 44.83 12.52 66.81 1.71 2.87 58.06 52.65 6.64 0.40 36.13 1.99 13.21 4.50 23.26 

AL(Outputs)[24] 52.16 15.96 70.36 1.40 3.36 61.24 69.09 5.44 1.59 30.78 14.70 1.56 2.12 25.37 

SL 46.97 15.66 67.22 1.80 2.83 61.62 67.25 6.62 3.35 39.91 6.18 9.19 6.30 25.76 

AL+SL 56.01 15.69 70.98 1.64 2.89 59.24 71.13 6.55 1.47 33.74 12.98 9.83 1.82 26.46 

 

 

Rio 

Baseline 38.29 16.76 58.63 0.53 2.05 67.83 53.58 15.46 1.62 44.36 6.26 7.63 7.30 24.64 

AL(Feature)[28] 37.08 19.12 59.15 0.64 2.00 68.51 51.16 16.23 3.81 42.47 4.96 5.34 7.32 24.45 

AL(Outputs)[24] 56.34 18.36 61.31 0.31 2.39 66.83 52.88 18.31 0.75 42.26 8.68 1.28 8.08 25.98 

SL 48.92 19.18 61.68 0.48 2.18 69.58 59.84 19.40 1.12 46.45 7.01 3.31 10.57 26.90 

AL+SL 50.31 17.78 66.62 0.36 1.85 67.65 64.56 19.09 0.57 43.90 8.25 11.19 11.04 27.93 

 

In Fig. 2, we select some semantic segmentation outputs from the three cities in the experiments to show the effective 
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performances of the adversarial self-learning method 

proposed in this paper. In Fig. 2, the GT is used to strand for 

the ground truth (the human-annotated data), the results of 

our proposed method are compared with the results from the 

baseline and the outputs space adaptation methods. To show 

the effectiveness of the adversarial self-learning method, we 

pay attention to the regions with red bounding boxes. From

the results of Tokyo, we can see that the region of the sky 

can’t be well classified only with the baseline, and the 

domain adaptation methods for the segmentation system can 

resolve the domain shift problems. With the results of Taipei, 

from the middle region of the outputs, we can see that 

combined with the self-learning method which can enhance 

the probability maps, the existed persons can be detected 

compared with the outputs adaptation method. With the 

middle-left regions of the results from Rio, the adversarial 

self-leaning method reduces the noise region for the 

predicted trees compared with the baseline and outputs 

adaptation method. With all the experiment results, the 

adversarial self-learning method can achieve state-of-the-

art results.

Fig. 2. The example results generated from the cityscapes to cross-city adaptation system for the three cities. Each city contains the original image, the 

ground truth and the predicted label maps generated from the compared adaptation methods and our proposed method.

V. CONCLUSION

In this paper, to deal with the domain shift problems of 

the different cities for the semantic segmentation system, we 

proposed an unsupervised learning method only with the 

annotated source images. The proposed method used a self-

leaning method with the pseudo labels to enhance the 

confidence of outputs probability maps and combined with 

the outputs domain adaptation to enhance the confidence of 

the pseudo labels. With the cityscapes to cross-city

experiments, our method can achieve state-of-the-art results 

for the domain shift problems. We hope that our proposed 

method can gain better performance with the synthetic to 

real segmentation tasks.
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