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Abstract—This paper borrows the concept of spectral 

clustering in the computer vision field, proposes an alternative 

approach to optimise space frame structure. Spectral clustering 

was implemented to segment the whole structure into two 

subclusters. Then genetic algorithm was used to optimise 

member sizes of each subcluster separately. It is hypothesized 

that optimizing the structural stability for subassemblies will 

largely reduce the search space, which allows greater 

computational efficiency. The program has been developed in 

MATLAB and tested on differently shaped space frame 

structure under varied loading conditions. Results show that for 

a heterogeneous structure with high a level of complexity, the 

implementation of spectral clustering can separate the 

enormous search space of GA down to smaller search space, 

leading to faster convergence with increased the computational 

efficiency, while providing an equivalent or better optimisation 

solution. 

 
Index Terms—Computational efficiency, genetic algorithm, 

space frame structure, spectral clustering, structural 

optimization. 

 

I. INTRODUCTION 

Genetic algorithm has long been used as a global optimum 

searching tool for structural optimisation. Different aspects 

of structural optimisation by genetic algorithm for skeletal 

structures such as sizing, topology and layout have been 

studied comprehensively (Shrestha and Ghaboussi [1]). Since 

space frame structures of unprecedented scale have been used 

in a wide range from aircraft to architecture and art, the 

optimisation problems of structures can be computationally 

inefficient when encountering a complex structure with too 

many variables to optimise. The growth rates of genetic 

algorithm for time complexity are mostly described as 

exponential with the addition of every new variable (Mange 

and Tomassini [2]). When solving the problems with a large 

number of variables, the search space can be considerably big, 

such that GA will lose efficiency and require a long time to 

converge (Rylander and Foster [3]).  

Simon [4], [5] suggested that hierarchical system will 

evolve more efficiently than non-hierarchical systems. When 

a system includes substructures interrelated to each other, this 

hierarchic system produced by independent subsystem has a 

potential for rapid evolution. When the substructures are 

nearly independent from each other, this system is nearly 

decomposable. A nearly-decomposable system has the 
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corresponding genes which can be supposed to operate nearly 

independently, and hierarchically control the phenotype of 

specific organs, and the time required for the evolution of a 

complex form depends critically on the number and 

distribution of the subassemblies, the systems that evolve by 

assembly of simpler systems evolves faster than 

non-hierarchical systems without subassemblies even of 

comparable size. Building upon Simon, when optimizing a 

complex structure becomes computationally infeasible for a 

considerable number of members, one way to improve 

computational efficiency is to reduce the size of search space 

according to its hierarchy and decomposability, and 

optimizing its structural stability for its subassemblies rather 

than a whole.  

It is proposed that reducing the dimension of the search 

space would result in a much more efficient optimisation with 

GA. The expected magnitude of reduction in time depends on 

the complexity of genetic algorithm (Pelikan and Lobo [6], 

He and Yao [7]). Rudolph [8] proved that the computational 

complexity for genetic algorithm can be attributed to the most 

time-consuming part, fitness evaluation. For space frame 

optimisation, fitness is evaluated via finite element approach, 

whose big O notation is O(NW²), where N is the number of 

nodes of the structure and W is the bandwidth of the banded 

stiffness matrix [9]. The stiffness matrix is the number of 

nodes multiplied by the degree of freedom per node. Thus, 

the big O notation of genetic algorithm is simplified to O(N³), 

where N denotes the number of nodes. The complexity of the 

optimisation problem will decrease drastically as the number 

of nodes decreases, as proportional to the cube of N. As in 

equation (1), were the total number of nodes reduced by half, 

the optimisation algorithm theoretically would require only 

one-fourth of the original time.  
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               (1) 

Clustering algorithm is used to decompose large data sets, 

among which spectral clustering regards the data points as 

vertexes and the similarity between all pairs of data points as 

weighted edges, transforming the clustering problem into a 

graph partition problem (Von Luxburg [10]). Spectral 

clustering has proven efficient in splitting data hierarchically 

in complex systems (Queyroi [11]). Its applications have 

been fruitful and percolated to disciplines including statistics, 

computer vision, social science, computational biology, and, 

recently, architecture, (Queyroi [11], Shi and Malik [12], Ng 

[13], Hanna [14]), but few studies are known to use it to 

partition a structure for structural analysis.  

In this paper, we test whether a space frame structure is 

more efficiently optimized as a whole, or as separate, smaller 

parts defined by clustering. The space frame structure is 

viewed as a connected, evenly weighted graph, in which the 
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tubular members connecting two nodes are regarded as the 

edges between vertices, and their size as the weight of the 

edges. We decompose the complex structure into parts by 

spectral clustering, thus reducing the input instances by 

roughly half of the original. We then optimise for each 

subassembly separately and test for computational efficiency. 

Different shapes of the space frame are compared. Any 

increase in efficiency will corroborate the hypotheses that 

space frame structures of that type are separable for structural 

optimisation, and that the implantation of spectral clustering 

can reduce the computation time according to the 

computational complexity. The process of the modified 

optimisation algorithm is demonstrated in Fig. 1. 

 

 
 
 

Fig. 1. Illustration of the proposed optimisation process. 

 

II. METHODOLOGY 

Experiments are conducted to testify the hypothesis that 

whether the implementation of the clustering algorithm can 

improve the computational efficiency of the optimisation. 

The selected structures are vertically splittable but have 

distinct decomposability. Fig. 2 shows the two space frame 

structures used in the experiments. Varieties include 

geometries, densities (number of nodes) and loading 

conditions. In the experiments, structures are subjected to a 

vertical uniform load simulating self-weight and a lateral 

uniform load representing wind. 

 
 
 

Fig. 2. Delaunay triangulated structure and connections (a) gross structure (b) 

human figure. 

 

A. Spectral Clustering 

Spectral clustering is used to partition the structure for its 

ability to process arbitrarily shaped data without making 

assumptions about the form of the cluster, and its robustness, 

converging to the global optimum without being 

oversensitive to the outliers (Xu and Tian [15]). 

The triangulated space frame structure is regarded as a 

graph, in which the nodes are deemed as the input vertices, 

whereas the steel members represent the connections 

between two vertices, i.e., the adjacency. Spectral clustering 

segments vertices based on their affinities. Regarding the 

adjacencies between all pairs of data points as weighted 

edges, the goal is to perform inherently hierarchical graph 

partitioning, where the weight of the connections between 

different subparts is as small as possible, and the total weight 

of the connections within the same group is as high as 

possible (Von Luxburg [10], Shi and Malik [12]). Spectral 

clustering algorithm will split the structure into two 

substructures with a cutting plane will cause minimal damage 

to the original structure. Fig. 3 illustrates the clustering result. 

Spectral clustering clearly separates the structure by a 

hyperplane that has a minimal effect on the topology. For 

structures with different geometrical decomposability, 

substructures can have distinct ratios. The unequal 

partitioning guarantees minimal damage but is later found to 

affect the computation efficiency improvement in the 

optimisation process. 

 

 
Fig. 3. Spectral clustering result for (a) dense gross geometry, (b) human 

figure-like structure. Left: initial point clouds; middle: Laplacian eigenmap: 

the presentation of clustered data points and centroids after unnormalized 

Laplacian mapping; right: the clustering result back into 3D space in two 

clusters. 

 

B. Optimisation with Genetic Algorithm and Finite 

Element Analysis 

Genetic algorithm was used as a search tool to find the 

optimal combination of member sizes to minimize deflection 

of the space frame structure. In this project, three genes 

together define the radius for the section of the steel member. 

The member sizes are encoded in 3-bit binary code from 000 

to 111, representing from 0.1 to 0.8, which are then translated 

to the phenotype, controlling the section radii of the members. 

The chromosome length is determined by the number of 

members. Genetic algorithm uses fitness proportionate 

selection to select two individuals from the last generation as 

parents and randomly chooses one point in chromosome for 

crossover. A 3% mutation for each allele avoids optimization 

falling into local optima. The genes are decoded from binary 

code to the corresponding real numbers, which are used as the 

input for FEA, where the stability of each structure is 

evaluated and fed back to GA as the fitness value. Finally, the 

population is sorted, and the best individual in the current 

generation is recorded. Individuals with greater deflection 

have less possibility of being chosen as a parent for the next 
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generation. The experiments terminate when the population 

has evolved through a maximum generation or when the 

maximum computation time is reached. Random seed is used 

to initialize the first population for the two optimisation 

processes using the same set of genes with an identical 

initiation.  

In the general optimisation, to minimize the deflections, 

the upper structure is always lighter, whereas the lower 

structure is always thicker. However, in the separated 

optimisation, FEA fails to analyze the whole picture between 

two substructures. A rationalization of the ratio of the two 

amounts of steel is required. A scale coefficient for the radii 

between two clusters is tested, and a plot of the average of the 

scaling factor versus deflection for ten experiments is shown 

in Fig. 4. The scale coefficient varies among different 

structures according to their geometry. The optimum scaling 

factor of 1.4 for the gross structure, and 1.7 for a 

human-figured structure is selected because a further increase 

of the scaling factor does not substantially minimize the 

deflection but leads to a waste of material. 
 

 
 Fig. 4. The scale factor for (a) structure with two-gross geometries; (b) 

human-figured structure. 

 

III. RESULTS 

A. Results for the Clearly Clustered Structure 

The first set of experiments are conducted for the 

two-gross geometry shown in Fig. 3(a) under two loading 

conditions: gravity and wind load. The deflections and the 

corresponding time for two optimisation processes are shown 

in Fig. 5. To ameliorate the effect of randomness, each result 

presented below is a diagram plotted from the average data 

for three experiments with identical initiation. 

The deflection of the separated optimisation rises intensely 

at the beginning, followed by slight fluctuation, and reaches a 

plateau in the end. The whole optimisation experiences a 

more moderate rise. The separated optimisation requires only 

41% of the time needed for the whole-structure optimisation 

to converge and stabilize at a 20.5% better fitness value. The 

efficiency of the optimisation algorithm overtime is 

computed as the deflection improvement within the time 

interval of the execution time required for one run. The 

increase of fitness of the separate cluster optimisation is 

around 1.5 times higher than that for the whole-structure 

optimisation in the first ten runs, and gradually decreases 

down to 0 with vibrations, whereas the effectiveness of the 

whole-structure optimisation is only significant in the 

beginning and quickly drops to 0 in successive generations. 

After the first ten runs, although considerable oscillations are 

observed from negative to positive, the fluctuation 

inefficiency does not change the leading position of the 

segmented optimisation in fitness. 

 

 
Fig. 5. Result with gravity and wind load for the gross structure with high 

density. 

 

Another experiment for the same geometry but with a low 

density of nodes is conducted to examine whether a different 

level of complexity has an influence on the computation 

efficiency (Fig. 6). For the structure with 69 nodes and 181 

members, the segmented optimisation takes more time than 

the whole-structure optimisation to complete 50 iterations 

and provide a fitness no higher than the whole optimisation. 

Besides, the oscillation in efficiency and the resulting 

fluctuation in fitness are considerable compared to that of the 

whole-structure optimisation.  
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Fig. 6. Result with gravity and wind load for gross truss structure with low 

density. 

 

B. Results for a Human-Figure-Like Structure 

A space frame structure modified from a human figure 

model (Fig. 3(b)) without implicit clusters is also tested to 

examine the influence of topology on efficiency. Results are 

shown in Fig. 7. 

The uneven clustering makes the computation time not 

reducible as much as when the structure is equally separated. 

Although the efficiency of the segmented optimisation is 

approximately ten times greater than that of the 

whole-structure optimisation in the first ten runs, it oscillates 

too fierce to hold an optimal deflection in the subsequent runs. 

The initial effectiveness of the whole optimisation is much 

lower than that of the segmented one, but few negative values 

are observed among all generations, constituting a smooth 

increase in fitness during the evolution. The whole-structure 

optimisation reaches a slightly higher fitness in the end, 

requiring a longer time, but presents an increasing trend till 

the last run. 

The optimisation process under gravity and lateral load 

presents a similar result. The separated-structure optimisation 

achieved a minimal deflection 23.8% higher than the 

whole-structure optimisation requiring only one-third of the 

time for the whole. Though the general deflection is higher 

due to the displacement in the horizontal axis by the lateral 

load, no obvious influences from the different load conditions 

were observed either on the fitness level or on the 

computational time.  

 

 
Fig. 7. Result with gravity left and wind load for a human 

figure-like-structure. 

 

IV. DISCUSSION 

According to the big O notation of genetic algorithm, it is 

hypothesized that when the number of vertices is reduced by 

n%, the computational time should be proportionally reduced 

to (n%) 3. The ratio of separated optimisation to whole 

structure optimisation in nodes, computation time & 

converge time, and the fitness improvement for three tested 

structures are summarized in Table I. The fitness 

improvement is computed as  
sep whole whole

/Fit Fit Fit .  

 
TABLE I: SUMMARY OF EXPERIMENTAL RESULTS 

 
Low 

density 
High density 

Clustered structure 

   

Member size 181 830 1351 

Ratio of nodes  

(upper: lower) 
1.3:1 1.5:1 2.7:1 

Ratio of required time 

(theoretical) 
25.5% 28% 41% 

Ratio of converge time 152% 35% 61% 

Fitness improvement -6.7% 21.1% -5.4% 

 

Although with various ratios of nodes, the spectral 

clustering separates the space frame structures with minimal 

damage cutting at a reasonable plane or hyperplane. Different 

level of improvement in computational efficiency is observed 

by separating the clusters with high complexity, but the 
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clustering algorithm can do more harm than good to the 

optimisation process when a structure has a low level of 

complexity. In general, spectral clustering can segment the 

space frame structures, but different structural geometries 

and different complexity level can pose an influence on the 

algorithm performance.  

A. Computational Time 

The computational time required for separated 

optimisation to reach convergence is highly reduced and is 

approximately proportional to the partition of the nodes, but 

the algorithm does not show its superiority in computational 

efficiency unless the sufficient number of nodes are involved 

in the optimisation process. 

In the structure designed to have obvious substructures, a 

greater improvement in computational time is observed when 

the complexity is high. The reductions in converge time is 

smaller than the theoretical hypothesis, which might be due 

to the oversimplification of calculation of the big O notation 

of GA and varied CPU conditions. For the structure with 

lower complexity in the same shape, not only a longer time is 

required to converge, but also a worse ultimate fitness is 

observed. This phenomenon is preliminarily explained that 

when the number of nodes is efficiently small, FEA does not 

play a dominant part in the execution time, and the clustering 

makes it harder to find an appropriate ratio between the two 

substructures. So, when complexity is lower than a certain 

level, the addition of clustering process will lose its 

advantage. 

The arbitrarily shaped structure without obvious clusters 

also presents a smaller time reduction than hypothesized. 

This gap is preliminary explained that this kind of structure is 

not a fully nearly-independent system. Because 30 

connecting members between two substructures are cut by 

the spectral clustering, the intra-structure connections of the 

system are not sufficiently small compared with the 

connections within the substructure (Belkin and Niyogi [16]). 

Thus, the influence of breaking down the system is no longer 

negligible, and a large reduction in overall time is not 

guaranteed.  

B. Computational Efficiency 

Experimental results show that separating a space frame 

for structural optimisation always gain efficiency during the 

first several runs compared with the whole structure 

optimisation, but the subsequent improvement varies 

regarding structures’ geometry properties such as topology 

and complexity. For structures beyond a certain level of 

complexity, the efficiency for segmented optimisation is 

around ten times higher than that of the whole-structure 

optimisation in the several initial runs, leading to a quick 

convergence. This considerable increase in efficiency 

attribute to the considerable reduction of the search space of 

GA, which speeds up the search process and allows the 

optimal solution to be found with a small number of 

iterations.  

However, the oscillations in the clustered optimisation are 

observed to be much fiercer, regardless of load condition. 

This is demonstrated mostly in the structure with low-level 

complexity and the unevenly separated structures. The 

fluctuation is too strong to reach or hold an optimal fitness 

value, causing an equivalent or lower fitness value compared 

with the whole structural deflection. This instability possibly 

because FEA considers a structure as an interconnected 

whole, but it fails to examine the structure as a whole when 

optimising separately; thus, when the two substructures are 

combined back into the original configuration, the topology 

of the structure, the stiffness matrix and the nodal reaction 

will change, and the optimised radii in the segmented 

structure cannot adapt to the new load condition of the whole 

structure. In this case, the solution for separated optimisation 

can be inaccurate, and the scaling factor to rationalize the 

relative radii between the two subclusters plays a more 

critical role for structural stability. The scaling coefficient 

should be chosen more carefully and recalculated more 

frequently, especially for the structures whose connecting 

members play an unignorable role in the topology. 

Considering the observations above, it can be presumed 

that to achieve a better solution. The clustered optimisation 

can be executed for 10 to 20 generations until it reaches the 

optimal solution. The whole-structure optimisation could 

then be used for the remainder of the search to achieve a 

further increase without considerable fluctuations.  

 

V. CONCLUSION 

The optimisation of irregular structures with high 

complexity lacks computational lightness, and the time 

required rises exponentially as the input data size increases. 

This project proposed a modified structural optimisation 

approach to improve computational efficiency. The spectral 

clustering algorithm is used to partition the structure into 

substructures to break down the problem size into two halves, 

and consequently, the search space of the optimisation 

algorithm is reduced to half. Genetic algorithm is then used to 

find the combination of the member sizes with which the 

structure has the least overall deflections. Experiments are 

conducted under different load conditions and with different 

structural geometries and densities. 

The results verified the hypothesis that for a heterogeneous 

structure with high level of complexity, the use of spectral 

algorithm will lead to a significant efficiency improvement 

while providing an equivalent or better optimisation solution. 

The reduction in the computational time is a function of GA’s 

search space, represented by the partition ratio of input 

vertices, and the magnitude of reduction varies according to 

the topology and the density of the structure.  

The results are limited to specific load condition and 

structural geometries, composed mostly of vertically 

segmented shapes. Further investigations need to be done to 

examine the universal feasibility of this modified 

optimisation algorithm, including experiments with different 

numbers of clusters, various types of geometries and complex 

load conditions such as point load and dynamic load. Besides, 

a weighted similarity graph according to the member size can 

be used in the clustering algorithm to improve the accuracy of 

the partitioning, and a multi-objective genetic algorithm 

which optimizes not only the cross-sectional area, but also 

the topology and configuration are recommended to extend 

the range of applications of spectral clustering and meet 

practical needs. 
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