
 

Abstract—Erythropoiesis is the specific lineage in which the 

haematopoietic stem cells (HSC) differentiate into red blood 

cells. During their development, HSC undergo global gene 

expression changes to reflect the current developmental stage 

needs. A good way to identify the set of genes that have similar 

global expression patterns across the different developmental 

stages is through clustering. Unsupervised clustering aims at 

highlighting these co-regulated genes without prior knowledge 

regards their full interactions. In this study, we apply k-means 

clustering on a gene expression microarray data that measures 

the expression levels of human genes at four erythropoiesis 

stages. Eight clusters have been identified; one cluster, in 

particular, of 450 genes (C4) is more active toward the 

maturation stages and it is involved in cell division and DNA 

replication processes, which are vital during development. 

Another cluster of 234 genes (C7) is involved in autophagy (cells 

consumption/destruction), which is known to be involved in 

enucleation (expulsion of the nucleus from the cell). 

 
Index Terms—Clustering, elbow method, erythropoiesis, 

k-means.  

 

I. INTRODUCTION 

Haematopoietic stem cells (HSCs) are multipotent stem 

cells that can develop into various types of blood cells, such 

as red blood cells, white blood cells, and platelets, realised by 

conducting different genetic programmes [1]. The specific 

lineage of developing HSCs into red blood cells (aka 

erythrocytes) is known as erythropoiesis (from Greek 

'erythro' meaning "red" and 'poiesis' meaning "to make" [1]). 

Human erythrocytes are produced continuously by the 

proliferation and the differentiation of these multipotent 

HSCs through the process of erythropoiesis [1]. 

Erythropoiesis is a specialised process that generates a cell 

dedicated to the delivery of oxygen to the tissues. As 

erythroblasts mature, they decrease in size, synthesize more 

hemoglobin, and undergo membrane reorganization and 

chromatin condensation [2]. Eventually, the cells expel their 

organelles before shaping into the biconcave discoid 

structure [2]. 

Given successes in developing different types of stem cells 

to mature tissues ex vivo, i.e. in the laboratory outside the 

body, researchers have tried to develop HSCs into mature red 

blood cells ex vivo. Success in this may potentially lead to 

laboratory production lines of blood units that replace or 

reduce dependency on blood donation [3]. 
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Nonetheless, the genetic programmes that drive the 

maturation of erythrocytes from HSCs are not fully 

understood. For instance, a phase of rapid growth and 

replication is triggered in human bodies during intermediate 

to late stages of erythropoiesis and consequently enables the 

generation of large amounts of erythrocytes from very small 

amounts of HSCs [1]. Researchers have not been able to 

trigger the same genetic programme in the laboratory, which 

prevents producing commercial amounts of erythrocytes 

given the limited amounts of HSCs available [3]. 

Another important step that happens towards the end of 

erythropoiesis is the enucleation, which is the expulsion of 

the nucleus from the red blood cell [4], [5]. The nucleus is an 

important but bulky part of cells. However, it has to be 

expelled from mature red blood cells to enable them to bend 

when travelling in the narrowest of the veins. Again, 

researchers have not been able to realise the enucleation step 

when running erythropoiesis in the laboratory. 

Understanding the pattern of gene expression and 

identifying the specific genes expressed during each stage of 

erythropoiesis are vital for a synthesis of erythroid 

developmental biology. Therefore, in this study, we analyse a 

gene expression dataset that measures the expression levels 

of every human gene over four main stages of erythropoiesis, 

namely, colony-forming unit-Erythroid (CFU-E), 

pro-erythroblasts (Pro-E), intermediate (Int-E) and Late 

(Late-E) erythroblasts [6]. The purpose is to apply clustering 

technique in order to identify interesting sets of genes 

involved in important biological processes that might 

enhance the understanding of genes behaviour during these 

stages. 

K-means algorithm is one of the most widely used 

algorithm in unsupervised learning. Running such 

explorative experiments on this dataset will emphasis the 

importance of data mining for exploring gene clusters and 

their effect on different diseases. 

The rest of paper is organised as follows: brief background 

is presented in the next section covering the main concepts of 

the paper. The dataset collection and the pre-processing steps 

needed to prepare the dataset is explained next. After 

cleaning the dataset, the results of applying K-means on the 

gene expression microarray data is presented in the following 

section. Finally, the conclusion and future work are 

summarised. 

 

II. BACKGROUND 

A. Clustering Gene Expression Patterns 

The biological data available for research is increasing 

exponentially each year [7]. Clustering algorithms is one of 
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the data mining techniques that is heavily applied on gene 

expression data. It helps discover the similarity between gene 

expression profiles and the identification of functionally 

related genes. Therefore, research in the literature had several 

studies that focused on surveying clustering algorithms that 

can be used with gene expression pattern [7]-[12]. 

From previous studies that emphasised the importance of 

using clustering algorithms to understand gene expression 

patterns, it can be deduced that applying clustering 

techniques on expression datasets identify interesting 

patterns in the genes that are useful to gain knowledge about 

the biological processes taking place in an organ [9]. 

Different clustering algorithms were applied in the literature 

in this domain. For example, hierarchal clustering of gene 

expression variations have discovered distinctive gene 

expression patterns in liver tumour tissues [10]. Another 

clustering application was performed on diffuse large B-cell 

lymphomas using two level clustering [11]. The first level is 

Self-Organizing Maps (SOM) [12], in which the clustering 

was applied on tumour samples, and then the second level, 

which is hierarchical clustering and k-means that were used 

to identify useful patterns of gene expressions.  

B. K-means 

Clustering a set of genes involved in the different stages of 

erythropoiesis requires the use of unsupervised learning due 

to the lack of knowledge regards the relation between the 

genes and cells development. One of the representative-based 

clustering algorithms is k-means [13], which aims at 

partitioning a dataset D= {xi}n 
i=1 into several k clusters 

denoted by C= {C1, C2, …, Ck}. Each cluster can be 

summarised by a representative point that is commonly 

chosen as the centroid (mean: μi) of all the points in the 

cluster. Such algorithms rely on finding the similarity 

between clusters observations. The k-means method is one of 

the simplest and most common clustering algorithms [14]. It 

follows a greedy approach that aims to minimise the sum of 

squared error (SSE, Eq. 1) over different observations [15]. 

 

𝑆𝑆𝐸 = ∑ (𝑜𝑏𝑠𝑖 −  𝑒𝑥𝑝)2𝑛

𝑖=1
                         (1) 

 

C. Cluster Validation 

Several experiments can be conducted with k-means to 

group observations of any dataset into K number of clusters. 

Hence, there are relative measures used to compare the 

validity of such clustering. The goal is to decide on the 

optimal number of clusters based on comparing such 

measures. The Elbow method is used for estimating this 

number. It considers the compactness of the clusters for each 

clustering experiment by measuring the within sum of 

squares at different iteration of clustering [16]. 

 

III. DATASET PRE-PROCESSING 

Global gene expression studies of erythroid cells have 

focused on in vitro maturation of immortalised cell lines, 

primary progenitor cells or in vivo derived erythroid cells 

from a single erythroid lineage [6], [17]-[19]. Many studies 

assess gene expressions during red blood cells development 

(Erythropoiesis). One study in particular investigated four 

developmental stages; CFU-E, Pro-E, Int-E and Late-E [6]. 

Gene expression for each stage was assessed in three 

replicates using GeneChip Human Genome U133_plus_2.0 

(Affymetrix HGU133_plus_2.0) arrays. The data were 

deposited in the National Center for Biotechnology 

Information Gene Expression Onmibus (NCBI GEO) [20]. 

Under the accession number of GSE22552. The series 

matrix of the study, which is transformed by log2, was 

downloaded from GEO and then it was cleaned by removing 

all the metadata that describes data generation protocols and 

by deleting all the unnecessary headers. The total number of 

rows in this dataset is 54,675 (probes: micro holes on the chip) 

with 13 features (4 stages each with 3 replicates in addition to 

the probe IDs). The data were pre-processed prior to 

clustering. The pre-processing steps are shown in Fig. 1. 
 

 
Fig. 1. Dataset pre-processing steps. 

 

In microarrays, each probe ID is mapped to a gene name, 

and on the array (or chip) a single gene can be represented by 

more than one probe. There are many tools available for 

converting from probe IDs to gene names, like DAVID [21]. 

Some probes represent regions in the genome that do not 

correspond to a gene, thus these probes were removed. The 

remaining probes with mapped genes are 43,957. 

In machine learning, feature reduction is a vital step 

specifically if some of the features are redundant. In this 

dataset, each developmental stage is represented by three 

values, since the stages were assessed in triplicates, therefore, 

the three values were summarised into one values, which is 
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the median, reducing the number of features to 6 (probe ID, 

gene name and the four stages). Likewise, the different 

probes that represent the same gene were also summarised 

and the maximum value among them was selected. The 

summarised data now contains 21,178 genes and their 

expression distribution is presented in Fig. 2(a). 
 

 
Fig. 2. Distribution of gene expressions. (a) Histogram of the data after 

summarising over rows and columns (n = 2,178). (b) Histogram of the data 

after filtering the silent genes (n = 16,682). 

 

 
Fig. 3. Distribution of gene expressions. (a) Histogram of the data after 

filtering the low differentially expressed genes (n = 6,566). (b) Histogram of 

the data in (a) after Z-scores normalisation. 

 

Since the main interest here is on the genes that change 

their expression across the different stages, the unexpressed 

genes (genes that show no transcription activity i.e. silent 

genes) were filtered out. The definition of silent genes was to 

have low expression levels in all the stages. Low expression 

was selected to be less than the 25th percentile in all stages. 

Total number of silent genes is 4,496. The distribution of the 

remaining genes is shown in Fig. 2(b). The next step was to 

also exclude the genes that show very little or no differential 

expression among the different stages. These genes were 

identified as the ones having small variation; i.e. their 

standard deviation across the stages is less than 0.5 (Fig. 

3(a)). 

Removing the low differentially expressed genes shifts the 

data from being skewed (Fig. 2(b)) to be more normally 

distributed (Fig. 3(a)). Now in order to expand the variation 

of gene expression at the different stages the log2 

transformed expression levels were normalised using 

Z-scores (Eq. 2 and Fig. 3(b)). This will have the exact effect 

needed to highlight the variations, even the smaller ones. Fig. 

4 shows the effect of this normalisation for the first four 

genes. 

 

Z-score = (x – μ) / σ                             (2) 

 

 
Fig. 4. Z-score normalisation effect for the first four genes. (a) Before 

normalisation. (b) After normalisation. The x-axis shows the different 

developmental stages and the y-axis shows the expression levels. 

 

 
Fig. 5. Distribution of the distortion score for different number of clusters (k) 

obtained from applying the Elbow method for k-means clustering. 

 

IV. RESULTS AND INTERPRETATION 

After cleaning, filtering and normalising the data, it 
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becomes ready for the next step; clustering. K-means is one 

of the most commonly used clustering techniques, its 

performance and results are widely acceptable. k-means takes 

the number of clusters as input, which in some cases is 

considered a problem, since no prior knowledge might be 

available. Nevertheless, some methods can help estimating 

the suitable number of clusters for a certain data. Here, the 

Elbow method was applied for k-means clustering on the 

normalised log2 transformed data, and the acceptable number 

of clusters obtained is 8, as shown in Fig. 5. 

After knowing the number of clusters, k-means was 

applied, and the 8 clusters obtained are shown in Fig. 6. Some 

clusters showed interesting patterns of groups of genes that 

change their expression levels at the late erythroid 

development stage (Late_E), like classes C2, C5 and C8. 

While other classes highlight the different behaviour of the 

genes at the intermediate stage (Int_E), like C1 and C7. 

 
Fig. 6. Line graph of the eight clusters obtained by clustering the data with 

k-means. The x-axis shows the different developmental stages and the y-axis 

shows the z-scores “normalised log2 gene expression”. The number of 

cluster along with the total number of genes in each cluster is presented. 

 

 
Fig. 7. Heatmap for gene expression (in Z-scores) across the different developmental stages. A dendrogram of some of the genes is shown on the left side of the 

map. Selected gene names are shown on the right. The key to the colours used is shown in the top left. 

 

 
Fig. 8. Heatmap for gene expression (in Z-scores) across the different developmental stages for the first 30 genes in cluster 1. 

 

Another way to visualise gene expression across the 

different stages is through heatmaps. Fig. 7 shows a heatmap 

for a random set of genes, which highlights gene patterns 

from different clusters, while Fig. 8 demonstrates the first 30 

genes from cluster 7, in which the genes express lower 

expression levels at the Int-E stage compared to other stages. 

Some of the genes in this cluster are enriched with 

autophagy (self-consumption); which is a process by which 
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cytoplasmic components and organelles are degraded [22], 

[23]. Autophagy is known to be involved in enucleation 

(expulsion of the nucleus from the cell). 

The genes in cluster 3 are more enriched in RNA 

processing and translation. While cluster 4 shows the genes 

that increase their transcription during cells growth, thus, the 

biological processes that this cluster are involved in are 

growth-related, like DNA replication and cell division. 

Summary of gene ontology terms, obtained from DAVID [21] 

is presented in Table I. 
 

TABLE I: GENE ONTOLOGY BIOLOGICAL PROCESSES TERMS 

Cluster GO ID GO Term P-value Bonferroni FDR 

C1 
GO:0045926 Negative regulation of growth 7.3E-06 8.9E-03 0.01 

GO:0071294 Cellular response to zinc ion 7.3E-06 8.9E-03 0.01 

C3 

GO:0070125 Mitochondrial translational elongation 8.4E-09 2.5E-05 1.5E-05 

GO:0006364 rRNA processing 5.6E-08 1.6E-04 1.0E-04 

GO:0070126 Mitochondrial translational termination 5.7E-08 1.7E-04 1.0E-04 

GO:0008033 tRNA processing 5.6E-07 1.6E-03 1.0E-03 

GO:0008380 RNA splicing 2.5E-05 7.1E-02 0.04 

C4 

GO:0051301 Cell division 1.4E-28 3.3E-25 2.4E-25 

GO:0007067 Mitotic nuclear division 5.6E-22 1.3E-18 9.8E-19 

GO:0006260 DNA replication 8.2E-19 2.0E-15 1.4E-15 

GO:0007062 Sister chromatid cohesion 6.0E-17 2.7E-13 2.0E-13 

GO:0006281 DNA repair 7.0E-15 1.7E-11 1.2E-11 

C6 GO:0030168 Platelet activation 1.2E-05 2.5E-02 0.02 

C7 GO:0006914 Autophagy 1.1E-05 1.2E-02 0.02 

 

V. CONCLUDING REMARKS 

Unsupervised clustering is widely applicable to various 

domains in order to uncover interesting and hidden patterns 

and similarities. In this study, k-means clustering was applied 

on human erythropoiesis, which is a specific lineage of 

developing haematopoietic stem cells into red blood cells, 

gene expression dataset that measures global gene activity 

across 4 different developmental stages; CFU-E, Pro-E, Int-E 

and Late-E. Using the Elbow method, the optimal number of 

clusters was estimated to 8. 

The identified clusters illustrate distinct interesting 

patterns, which might contribute to the understanding of the 

genetic programmes that drive the maturation of erythrocytes 

from HSCs. Cluster 4, in particular, is related to a phase of 

rapid growth and replication that is triggered in human bodies 

during intermediate to late stages of erythropoiesis and 

consequently enables the generation of large amounts of 

erythrocytes from very small amounts of HSCs. While cluster 

7 is enriched with a process called autophagy. This process is 

known to be involved in enucleation (the expulsion of the 

nucleus from the red blood cell), which gives the mature red 

blood cells the ability to bend when travelling in the narrow 

veins. 

Understanding the general behaviour of genes during each 

stage of erythroblasts development might assess the ex vivo 

studies that aim to produce them in the labs, which can 

replace or reduce dependency on blood donation. 

Besides K-means, other clustering techniques like, 

K-median and hierarchical clustering can also be applied to 

similar datasets. Furthermore, applying clustering with deep 

learning may uncover hidden patterns that traditional 

techniques did not uncover. 
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