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Abstract—The process of characterizing a city to generate

logistic profiles involves the analysis of many different aspects.
These profiles are based on secondary sources of data, mainly
road network infrastructure, socio-economic data and
population density. Following previous research, the final
profiles are given by a K-Means algorithm, which uses principal
component analysis (PCA) for correlation analysis. A caveat in
this method is that prior research has shown that PCA is
sensitive to outliers and high dimensionality, which may mislead
the following analysis and research. As such, this paper
proposes a methodology to evaluate the performance of
different clustering techniques to generate logistic profiles,
applying it to a case study in the city of Lima, Perú.

Index Terms—Clustering analysis, last mile logistics, logistics,
territorial intelligence.

I. INTRODUCTION
The world’s urban population has been growing steadily

for the last decades [1]. The most recent figures from the UN
Department of Economic and Social Affairs set up urban
population to grow by 65 million per year, where emerging
markets absorb most of the growth, specifically on
population density and infrastructure.
As a city grows, the interactions between the stakeholders

proposed by [2] become more and more complex.
Government officials look to ensure low transportation costs
to make the city more competitive and attractive, while
residents look to have a high quality of life, which from a
logistics perspective may be focused around a greener city
with high product availability.
Urban population growth directly translates into an

increased demand for goods and services (and the logistic
activities that support the supply of these goods). As such,
even though most of the stakeholder’s interests may be met
[2], the influence of urban planning and policy making may
compromise the sustainability and “liveability” of a city.
Within this context, the different layers of complexity

added to last mile operations have made urban logistics an
interesting field that benefits from the input of different
disciplines. The competition for scarce resources, such as
parking spaces and the road network itself, cause different
externalities for the city, mainly global and local pollutants
and noise.
Focusing on the business perspective, last mile operations

become extremely hard to manage and costly, especially once
the routing and warehouse location decisions must take into
account urban planning decisions such as time windows, low
emission zones and the different tolls and fares applied to

Manuscript received August 23, 2019; revised January 12, 2020.
Andres Regal is with Universidad del Pacifico, Lima, Peru (e-mail:

a.regalludowieg@up.edu.pe).

freight transport.
This situation, coupled with recent development in

analytical solutions for urban areas, make logistic profiles
interesting within the scope of Territorial Intelligence (TI). TI
focuses on the applicability of said solutions, whether they
are destined for practitioners or researchers, to understand the
underlying behaviors of the transport system of a city [3].
Recent efforts in developing TI tools focus on Geographic

Information Systems (GIS) and collaborative decision
making approaches, which are mainly applied to urban land
planning and urban transport (including urban logistics)
[4]–[6].
Even though the main indicators and software have been

thoroughly developed, there is an existing need for data
standardization and unification. Analytic approaches to
generate logistic profiles, which show a strong potential in
supporting decisions regarding urban logistics planning [3],
[7], [8], depend strongly on the databases that support them.
To overcome the challenges faced when collecting data for

cities in emerging markets, open data sources like LandScan
[9] and OpenStreetMaps [10] have been used to produce a
high level logistic profile which provides insight into how
different zones within the city behave and their similarities
[7], [8], [11].
As such, following the efforts of [8], [11], this paper looks

to implement a methodology for logistic profile generation
based on neural network clustering [12]. The resulting
profiles will be compared to the results from both of these
works, adding validation indices designed for clustering
analysis, to determine the best alternative for the city of
Lima.
The remaining sections of this paper are as follows:

Section II presents a literature review focused on applications
of clustering and zoning approaches in urban logistics,
Section III presents the methodological framework for this
paper, Section IV discusses the main findings and results and
Section V presents the main conclusions of this work.

II. LITERATURE REVIEW
Clustering analysis has mainly been applied to vehicle

routing and facility location tasks (within the context of urban
freight transport and logistics). Such applications vary
between techniques and databases, but the core objective is to
cluster a set of clients or target facilities.
As such, Affinity Propagation (AP) [13], is applied by [14]

to Vehicle Ad Hoc Networks (VANETs). This is done to
address challenges a VANET faces by clustering the network,
which in turn will help reduce risk of accidents and traffic
congestion. Similarly, [15] applies AP to a fixed-charge
facility location problem. The end result allows for facilities
to be constructed at specific nodes in a clustered network,
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which brings two main benefits: small construction costs and
good service to client nodes.
On the use of density based techniques, [16] applies

DBSCAN [17] with a particle swarm optimization algorithm
to modern logistics and vehicle distribution. This is done by
using DBSCAN to cluster routes over a network and applying
a Particle Swarm Optimization algorithm to calculate the
length of each route, average travel time and to compare the
results of this approach with the application of the ant colony
algorithm.
Focusing on green vehicle routing, [18] applies DBSCAN

in a Green Vehicle Routing Problem (G-VRP), looking to use

clustering as a heuristic for large scale routing problems
considering fuel restrictions. [19] extends DBSCAN for site
location of express enterprises, to cluster together dense
regions of costumers for a facility to be placed, which will
help reduce transportation costs around the corporate sites.
DBSCAN and HDBSCAN [20], the second density based
alternative, are compared in [21] when clustering traffic
accidents in urban areas. This analysis brings to light some
issues with these algorithms: their sensitivity to parameter
selection. This problem is addressed by implementing an
extension to the algorithms that leads to a more unsupervised
parameter selection.

Fig. 1. Proposed methodology.

Finally, zoning approaches for freight trip generation [22],
[23] have looked into the use of zoning techniques and data
collection frameworks for large urban areas, particularly
based on land use and social variables.
Describing the main computational framework applied in

this work, two main techniques need to be introduced: Self
Organizing Maps (SOM) and Uniform Manifold
Approximation and Projection (UMAP). SOM, as defined by
[12] is a competitive learning neural network approach to
perform clustering analysis. By mapping an n-dimensional
input vector to a two-dimensional Kohonen layer, multiple
neurons compete to receive an activation signal, which is
only given to the neuron which is closes to the input vector
(based on a specified distance metric). The success of this
technique is based on the lateral interaction of the neurons,
enforced by the concept of neighborhood cells [12]. This
concept refers to updating the weights of all neurons within a
defined neighborhood radius of the “wining” cell, which
decreases as training continues.
UMAP, introduced by [24], looks to find a topologically

accurate low dimension representation of high dimensional
data. This is done via the construction of a weighted graph
and minimizing the cross entropy within the high
dimensional and low dimensional graphs. This approach
looks to preserve the structure of data points in high
dimensions by taking local connectivity assumptions within
the graph, such that the resulting low dimensional
representation preserves the spatial characteristics of the data
points.

III. METHODOLOGY

The methodology for this paper consists of three stages,

visualized in Fig. 1. The first stage, the data collection stage,
consists of collecting different secondary sources of data
from open access sources. The data collected looks to
describe different characteristics from the city from a logistic
and urban freight perspective. As such, the dataset has three
main components to describe 1 km2 zones (as per [11]):
population density, road network infrastructure and
socio-economic variables.
Population levels are processed from LandScan [9]

satellite images. These images are provided in raster formats,
where each pixel value represents a 1 km2 area and the
intensity value in the image represents the population level.
By filtering the image pixels to the limits of Lima, the filtered
image is turned into database format, where geographic
position and population levels are the main features.
Using the coordinates of these pixels, road network

infrastructure data is collected by querying OpenStreetMaps
[10] with the OSMnx Python package [25]. These queries
construct multiple coefficients, calculated for the road
infrastructure contained in the 1 km bounding box of each
pixel. Metrics such as the total number of intersections,
highway length within the bounding box, the total number of
one-way streets and the betweenness centrality and circuity
factor coefficients for the bounding box segment are
collected. For further detail into the metrics the authors refer
the reader to [25].
The third component is the most difficult to collect for a

city in emerging markets. Due to the high levels of
informality, data regarding the commercial and employment
levels is often biased or incomplete. Thus, a combination of
Peru’s top 100 largest businesses directory and the directory
of small and medium businesses (DIME by its acronym in
Spanish) is used as an approximation. Each company is
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categorized into Food, Beverage and Accommodation,
Manufacturing, Retail and Other Services. The total amount
of businesses and employees per category is aggregated with
respect to the 1 km2 areas. Finally, the dataset for the next
stage consists of 652 records with 17 features.
The second stage consists of data processing and clustering.

As mentioned before, this paper will focus on a neural
network approach to cluster the city zones. Specifically,
Self-Organizing Maps (SOM) [12] will be the main
algorithm to be tested. Leveraging the results from [8], [11],
the components produced using PCA [26] and UMAP [24]
will be used as inputs as well as the raw features to test how
different dimension reduction approaches influence the end
result.
The final stage consists of an evaluation of the validity and

coherence of the results. To perform this evaluation, the
Calinski-Harabasz [27] and the Silhouette Coefficient [28]
will be calculated for each experiment, as well as a
geographical evaluation of the coherence of the profile.

IV. RESULTS
In this section the main results of this paper are presented

following the application of aforementioned methodology.
Analyzing the logistic profile of Lima requires an initial
understanding of its relevance to Peru. As a megacity with 10
million inhabitants, Lima concentrates approximately 30% of
Peru’s population and it holds both the largest airport and
port. Administratively, the city is divided into 49 districts (43
in Lima and 6 in Callao) which act independently.
To visualize the segmentations proposed by each

experiment, there are two main alternatives. First, as in Fig. 2,
a geographical plot may be used to visualize the location of
each 1 km2 zone and its respective cluster (as a color).
Following this approach, it is evident that the choice of using
a dimension reduction technique, and the decision of which
reduction method to use, has great impact in the end results of
the clustering analysis.

Fig. 2. Geographical plot for PCA clustering.

All approaches converged to 8 different zones. Using PCA

in conjunction with SOM, the zones have strong functional
relationships (since features regarding geographical
coherence have low variance). As shown in Fig. 2, the
outskirts are grouped into a single cluster, then the northern
and southern poles of the city are roughly aggregated into the
same cluster, followed up by small divisions within the core
of the city.
Given the prevalence of the functional features, spatial

coherence is not a priority for the SOM, especially as the
analysis shifts away from the historic center and the financial
district (light green and orange, respectively). Even so, PCA
is able to capture the most complex behaviors in the city. As
shown in Fig. 3, cluster 6 (a combination of the financial,
commercial and historic centers) captures the highest level of
commercial establishments with a reasonably high level of
network complexity.

Fig. 3. Main variable plot for Cluster 6.

It is also important to note, as shown in Table I, that using
PCA (looking for 95% variance) results in the worst
performing scores of the three experiments. Analyzing the
silhouette score for this approach, the 0.2731 silhouette score
and the 213.80 Calinski-Harabasz score conveys a
configuration in which data points have high intra-cluster
variance and low inter-cluster variance.
The second, and best performing, experiment was UMAP

in conjunction with SOM. In this case, the low dimensional
embedding of the characteristics of each zone results in
spatially contiguous zones which maintain functional
relationships.

Fig. 4. Geographical plot for SOM clustering with UMAP components.
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Geographically, this spatial coherence results in two
districts getting clustered on their own. One of those, San
Juan de Lurigancho (pink in Fig. 4), is the most densely
populated district in Lima. Given the high population levels,
strong presence of commercial establishments and the spatial
characteristics, separating these districts as its own cluster
reflects a real behavior of the city. This is the same case as
Callao, which gets clustered on its own. Callao’s case also
represents an administrative segmentation within Lima,
which may also be interpreted as an adequate segmentation.
Another interesting result from this algorithm comes from

the second cluster, shown in Fig. 5. Commercially it is very
similar to what the PCA approach found, but the spatial
component causes the financial, commercial and historic
centers to merge into a single cluster, including some
residential areas (increasing the intersection and population
densities).

TABLE I: CLUSTERING VALIDATION INDICES

Metric SOM with
PCA

SOM with
UMAP

SOM with raw
features

Calinski-Harabasz 213.80 5719.03 3017.98
Silhouette Score 0.2731 0.7737 0.6159

Fig. 5. Main variable plot for Cluster 2.

Fig. 6. Geographical plot for SOM clustering with raw features.

The third and final experiment consists of using the raw
features prior to the dimension reduction. Within this high

dimensional approach and given that SOM does not use local
connectivity assumptions, small differences and correlations
between the input features cause large districts to be clustered
together, instead of showing more micro behaviors for the 1
km2 zones.
The large coupling of 1 km2 zones following

administrative districts allows higher clustering scores, but
the small differences caused by clusters 4, 5 and 2 capture the
micro behaviors which are interesting from an urban logistics
perspective (Fig. 6). Thus, as shown in Fig. 7, cluster 5
captures the same commercial behavior while grouping the
residential zones into cluster 2.

Fig. 7. Main variable plot for Cluster 5.

Being able to capture the micro behavior and grouping
large areas adds a layer of complexity to the analysis of the
profile. Even though grouping large sets of zones with similar
characteristics allows for targeted policy making to focus on
the most commercial and active zones of the city, within the
large district clusters the data collection and validation may
not be the best.
When dealing with high dimensional data, missing values

or outliers (usually to the lower ends of the distribution of
each variable) from the open data sources may cause these
large clusters. Also, these large couplings into administrative
regions may point to weak data collection efforts within these
areas, highlighting the need for city-wide data collection and
validation efforts to have a more realistic view of the
system’s behavior.
Finally, the unified distance matrices (U-matrix) can bring

further insight into the inner workings of the SOM results.
Using the u-matrix and plotting the position of each data
point in this 2D map, the clusters can be identified based on
the activations of the neurons (higher color intensity). In the
figures below, lower activation values correspond to lighter
colors (following the spectral color map) and darker colors to
higher activation.
As a general interpretation rule, lower activations

represent a large distance between neurons and thus a gap
between the codebook values in the input space. A dark
coloring in the plane signifies that the codebook vectors are
close to each other in the input space. As such, dark areas can
be thought as clusters and light areas as cluster separators.
The u-matrix for the PCA based SOM is presented in Fig. 8,

where the different data points are distributed uniformly, with
no prominent activations to split the clusters (visually, there
are no distinct groups when projecting the data points in the
u-matrix surface). This is a first indicator of why the
validation scores tend to be lower than in other approaches,
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clusters are less separated within this 2D grid and the absence
of a linear correlation within the input features may make
learning this plane more complex.

Fig. 8. U-Matrix for SOM using PCA components.

Fig. 9. U-Matrix for SOM using raw features.

Fig. 10. U-Matrix for SOM using UMAP components.

When plotting the u-matrix for the raw feature experiment,
as shown in Fig. 9, SOM is capable of finding a
representation which splits the data with diagonal traces
along the plane. There are light activations which serve as
separators, but the projection does not relate to well-formed
groups aside from those at the far right of the figure.
The third approach, as shown in Fig. 10, does show a

structured plane and neuron activations splitting the clusters.
The embedding procedure performed by UMAP allows SOM
to learn a clear 2D plane in which the activations split the data

points clearly, since the high dimensional information from
the original data set is maintained through the low
dimensional graph representation. This results in clusters
with low intra cluster variance and high inter cluster variance,
hence the highest validation scores and spatial coherence.

V. CONCLUSIONS
The conclusions of this paper may be outlined as follows.

A competitive learning approach, following previous
research con the topic of logistic profile generation, has
shown that the use of dimension reduction techniques such as
UMAP can increase the performance of algorithms like SOM
thanks to the low dimension embedding of original high
dimensional feature space.
Another implication relays on this paper’s results guiding

the deployment of territorial analytics indicators and urban
freight models specifically designed with zoning approaches.
Given the spatially and functionally correlated clusters,
specific land use, socio-economic or environmental
indicators may be deployed to assess the performance of
certain city areas.
A final conclusion is that the proposed zoning, with focus

con spatial or functional characteristics, may be used as a
decision support system when designing public policy
regarding urban logistics. Since different regions of a city
behave in similar ways, data driven decisions are key to
guaranteeing a sustainable and livable city.
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