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Abstract—The coding framework for virtual reality video at 

present is first projecting 3D data to 2D format, then encoding 

it by traditional coding tools, which has much high 

computational complexity. In order to reduce the coding 

complexity based on the quality evaluation standard of virtual 

reality video, this paper presents a fast algorithm to speed up 

the Coding Unit (CU) partitioning by predicting the maximum 

depth of LCU with KNN classifier. Experimental results show 

that the proposed fast algorithm provides an average time 

reduction rate of 37.9% compared to the reference 

HM-16.16+360lib4.0, with only 1.31% BD-rate increase. 

 

Index Terms—Fast algorithm, LCU, KNN, virtual reality 

video. 

 

I. INTRODUCTION 

Virtual reality video is a special kind of video 

representing the whole scene of the environment in 360 

degree. It is captured by multiple professional cameras, and 

spliced using software and can be played by special device. It 

also provides the viewer with various functions to 

manipulate the video, such as zoom in and out and moving 

in all directions, so as to simulate and reproduce the real 

environment [1]. 

At present, the coding and transmission of virtual reality 

video mainly relies on projection every frame of the 3D style 

data into 2D one, and then using traditional coding 

framework such as HEVC, H.264 to fulfill encoding. The 

commonly used projection formats are ERP, EAP, and CMP 

and so on. In addition, different from traditional video, 

virtual reality video has its own quality evaluation metric. In 

this paper, we will study the virtual reality video in ERP 

projection format. 

HEVC is one of the coding framework used in virtual 

reality video coding. HEVC adopts the coding structure of 

coding tree unit (CTU), which is the basic processing unit of 

HEVC. A CTU consists of 1 brightness CTB, 2 chromaticity 

CTB and corresponding syntax elements. Figure 1 shows a 

frame divided into CUs in CTU. A CTU may contain only 

one encoding unit (CU), and HEVC can also use quadtree 
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structure to recursively divide CU into many different sizes 

of CU [2]. 
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Fig. 1. Example of code tree unit. 

 

There are four kinds of CU in HEVC: 64×64, 32×32, 

16×16, and 8×8. For a LCU with size 64×64, encoder first 

treat it as a CU, calculate the best prediction mode of it, and 

record the best prediction data in the current partitioning 

mode. Then encoder divide the current LCU into four 32×32 

CUs. Encoder calculate the best prediction mode of the 

32x32 CUs, and record the best prediction data. Similarly, 

the encoder divides each 32×32 CU into four 16×16 CUs, 

and calculate the best prediction model of each 16×16 CU 

and record it, and divides each 16×16 CU into four 8×8 CUs. 

Then Encoder calculate the best prediction model 

corresponding to 8×8 and record the prediction data. Since 

8x8 is the smallest CU, here encoder just loop through the 

best prediction model corresponding to each 8×8 and record 

its data. When 8x8 CUs’ calculating is complete, encoder 

compare the sum of four 8×8 CUs’ RD-Costs to the RD-Cost 

corresponding to the 16×16 CU’s to decide whether to 

choose the four 8×8 CUs or the a 16×16 CU. After the first 

16×16 CU is completed, encoder repeat the previous steps to 

determine whether the second 16×16 CU is divided into four 

8×8 CUs or 16×16 CU, and then the third 16×16 CU and the 

fourth 16×16 CU. After the 16×16 CU is completed, encoder 

compare the sum RD-Cost of the four 16×16 CUs with the 

RD-Cost of a 32×32 CU to determine whether to select 

32×32 CU or 16×16CUs. When the first 32×32 CU is 

completed, encoder repeat the previous steps to determine 

the partitioning pattern for the second, third, and fourth 

32×32 CU. When all four 32×32 computations are complete, 
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we compare the sum RD-Costs of the 32×32CUs with the 

RD-Cost of a 64×64CU, and then decide whether to choose 

64×64 CU or four 32×32 CUs and its descending partition. 
 

 
Fig. 2. The optimal CUs. 

 

In HEVC, to determine whether a block in quadtree 

coding structure needs to be further partitioned, it is 

necessary to compare the coding cost of all blocks with that 

of the block after traversal of all the blocks mentioned above. 

If the RD-cost of CU is larger than the sum of RD-cost of its 

sub-CU, the smaller CUs are needed. If the RD-cost of the 

current CU is larger than the RD-cost of the parent CU, 

there is no need to divide it, and the current CU as a whole. 

Obviously, these comparisons occur after the end of all CU 

traversals of different sizes, which means much high 

computation burden. In fact, in many cases, the size of CU 

varies in the optimal partition, if we can predict the 

maximum depth in a LCU, we can terminate the 

partitioning process in advance, and there is no need to 

traverse all the possibilities. 

In this paper, we use KNN to predict the maximum depth 

of LCU, and to reduce the redundancy of LCU partitioning 

operation. 

 

II. RELATED WORKS 

In [3], K. Choi proposed a coding tree termination 

method for the CU SKIP mode. Deyuan Liu [4] proposed a 

fast CU size decision algorithm based on Support Vector 

Machines (SVM). The [5] uses weighted SVM to predict CU 

premature termination to optimize computation complexity. 

In [6], a Bayesian decision rule based early termination 

method was reported, in which on-line learning and off-line 

learning were jointly applied to generate model parameters 

of classifiers.  

In [7], a fast CU partitioning algorithm is proposed for 

HEVC encoder, which early on terminates the CU 

partitioning process based on the Bayesian decision rule 

using joint online and offline learning. In [8], author 

proposed a fast and efficient mode decision algorithm based 

on the Newman-Pearson rule, which consists of early SKIP 

mode decision and fast CU size decision. In [9], author 

proposed a machine learning-based fast coding unit (CU) 

depth decision method for High Efficiency Video Coding 

(HEVC), which optimizes the complexity allocation at CU 

level with given rate-distortion (RD) cost constraints.[10] 

proposes a fast CU splitting algorithm which can narrow CU 

depth range and early terminate the CU splitting based on 

the Sobel edge detection operator.[11] proposed a method to 

reduce the high encoding time by pruning the coding 

quad-trees using prediction residuals statistics.  

Until now, a number of methods have been proposed to 

reduce the encoding complexity of HEVC on early CU 

decision. However, the experiment of this part of algorithm 

is only used for HEVC. Although the virtual reality video is 

encoded by HEVC after projection, its quality evaluation 

standard is different from HEVC. Moreover, in the 

above-mentioned articles, some of the algorithms are based 

on the threshold of video statistics for fast partitioning. But 

the statistical threshold does not always apply to all videos. 

 

III. LCU DEPTH PREDICTION BASED ON KNN 

LCU may contain four sizes of CU. If we predict the size 

of the smallest CU in LCU before encoding LCU, and skip 

calculating the smaller CU after encoding this CU, we can 

improve the encoding efficiency of the encoder when 

dividing CU. 

In this paper, the minimum CU size in LCU is predicted 

to skip the calculation of CU partitioning method in LCU in 

advance. This problem can also be regarded as a 

classification problem. Because of the computational 

efficiency and the complexity of model training, KNN 

classifier is adopted in this paper. This part mainly includes 

LCU feature selection, classification method, classification 

accuracy analysis, KNN parameter K and prediction set 

proportion judgment. 

A. LCU Complexity Feature Analysis Based on Sobel 

Filtering 

Generally, the simpler area can get better coding effect 

under the larger CU, while in the more complex area, it 

needs to be divided into smaller CU for prediction. 

According to this idea, many people have proposed some 

related algorithms, which can achieve the goal of fast 

partitioning CU to a certain extent. In this paper, the Sobel 

operator is used to filter the content of the encoding LCU to 

calculate the complexity of the encoding LCU. 

In this paper, we use horizontal and vertical Sobel 

filtering for CU content to be coded. The gradients Gx , Gy  

in horizontal and vertical directions are obtained by 

calculation. A in the equation (1) represents the content of 

LCU. 
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                          (2) 

After obtaining Gx  and Gy , we calculate edge points and 

average gray values by equations (3) and (4). i  and j   

represent the coordinates of each pixel, and n   represent the 

width of the LCU .The more the number of edge points in an 
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LCU is, the more complex the block is, and the greater the 

depth level of division is. 

( , )

Mean
*

m n

i j

Gx

Gx i j

n n

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                       (3) 
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Gy i j

n n

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B. Prediction of CU Depth Range Based on the Number 

of Edge Means 

 After encoding, the LCU with the optimal partitioning 

result may have 64×64 CU, 32×32 Cu, 16×16 CU and 8×8 

minimum CU blocks. These four different sizes of CU 

blocks also represent the four different depths of CU. We 

define the minimum CU size in the LCU as the depth of the 

LCU. According to the depth of LCU, LCU can be divided 

into four categories: 
0LCU ,

1LCU ,
2LCU ,

3LCU .  It means 

that the minimum CU sizes in a LCU are 64×64, 32×32, 16

×16, and 8×8. 

If the size of the smallest CU block is predicted before 

LCU partitioning, further partitioning can be terminated 

after encoding the corresponding size CU, thus improving 

the encoding efficiency. 

Through experiments, we find that the horizontal and 

vertical edge mean values of LCU are closely related to its 

depth. 

 

 

 

 

 Fig. 3. Distribution of LCU at different depths in threshold range. 

 

As shown in the Fig. 3, statistical data show that the 

majority of 
0LCU and 

1LCU   are located in 
Gxmean < 9 and 

Gymean  < 80 regions. 

The different LCU ratios in the thresholds are shown in 

the following Table I: 

 
TABLE I: PROPORTION WITHIN IN DIFFERENT THRESHOLDS 

 0LCU  
1LCU  

2LCU
 3LCU  

 
Gx

mean < 9 88.3% 85.5% 18.2% 2.1% 

Gy
mean < 80 87.6% 83.3% 20.1% 0.6% 

Gx
mean < 9 & 

Gy
mean < 80

 
85.1% 80.3% 15.6% 0.15% 
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 0LCU  
1LCU  

2LCU
 3LCU  

 
Gx

mean < 400 97.4% 95.6% 85.0% 16.9% 

Gy
mean < 6000 95.4% 96.3% 85.1% 20.1% 

Gx
mean < 400 & 

Gy
mean <6000  95.4% 95.6% 80.3% 8.9% 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%
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meanGx<400 meanGy<6000 total

 
 

It can be seen that 
Gxmean  and 

Gymean  can effectively 

classify LCUs of different depths. 

At present, the commonly used fast CU algorithm often 

extracts the features of CU, quantifies them and then 

extracts the threshold value, which is used to process the CU 

larger than or less than the threshold value. However, the 

threshold of this algorithm is usually derived from the 
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statistics of the test video, and it may not be able to represent 

all the features of the video very well. 

For different videos, the optimal threshold will not be the 

same because the image characteristics and complexity of 

each video are different. The statistical thresholds are often 

neutralized by the characteristics of the statistical video set. 

The statistical thresholds are not necessarily optimal for the 

video to be coded. 

C. Adjustment of Classification Method 

The experimental results show that the edge 

characteristics of 
0LCU  and 

1LCU  frames are similar, and 

it is difficult to distinguish them by using edge features. 

We counted the proportion of each CU in the video, as 

shown in the Table II. 

 
TABLE II: LCU STATISTICS 

 QP 22 QP 27 QP 32
 

QP 37 

0
LCU

 
5.02% 10.80% 15.91% 19.25% 

1
LCU  19.77% 22.95% 23.97% 24.35% 

2
LCU

 
28.03% 27.60% 26.55% 25.75% 

3
LCU

 
47.17% 38.63% 33.55% 30.66% 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

QP 22 QP 27 QP 32 QP 37

LCU0 LCU1 LCU2 LCU3

 
 

As shown in the table, statistically, 
0LCU  does not 

account for a large proportion of video. Because it is similar 

to 
1LCU , we classify it as

shallowLCU . 

Therefore, in this classification, we classify LCUs into 

three class, which are:
shallowLCU , 

2LCU , 
3LCU . 

D. LCU Depth Prediction Based on KNN Classifier 

Because LCU depth prediction itself can also be regarded 

as a classification problem, we can use classifier to encode a 

part of the video frame normally, record the depth and edge 

features of LCU, and then use these data to predict the depth 

of the LCU of another part of the frame. 

Since the training of classifier in this algorithm is carried 

out in coding, it is necessary to select the algorithm with 

lower computational complexity for training and prediction 

in order to achieve the goal of improving coding efficiency. 

KNN algorithm is low in training complexity and 

relatively simple in structure. Although the time complexity 

of prediction is relatively high, its computational complexity 

is much lower than that of traversing all depth LCUs. 

Therefore, this paper intends to use KNN to predict the 

depth of LCU. 

KNN is a basic classification and regression method. Its 

input is the feature vector of an instance. By calculating the 

distance between the new data and the trained data, K (K >= 

1) neighbors are selected for classification and judgment 

(voting) or regression. If K = 1, the new data is simply 

assigned to the class of its nearest neighbors. 

As shown in Fig. 4, which class is the blue circle 

determined to be, is it a red square or a green triangle? If K = 

3, the green circle will be assigned to the green triangle class 

because the proportion of the red square is 2/3. If K = 5, the 

green circle will be assigned to the blue quadrangle class 

because the proportion of the green triangle is 4/5. The KNN 

method is more suitable than other methods for the 

intersection or overlap of class domains. 

 

 
Fig. 4. KNN classification example. 

 

The KNN algorithm itself is simple and effective. It is a 

lazy-learning algorithm. The classifier does not need 

training set, and the training time complexity is 0. The 

computational complexity of KNN classification is directly 

proportional to the number of documents in the training set, 

that is, if the total number of data in the training set is n, the 

classification time complexity of KNN is O (n). Although 

the KNN method also depends on the limit theorem in 

principle, it is only related to a small number of adjacent 

samples in class decision making. KNN method is more 

suitable than other methods for the intersected or overlapped 

sample sets because it mainly depends on the neighboring 

samples, rather than on the method of discriminating class 

domains. Because of the distribution characteristics of 

Gxmean and Gymean in LCU, KNN is more suitable for 

classification. 

In this algorithm, as shown as Fig. 5 we divide the 

encoded sequence into frames set, and each frames set has 

some frames. Among them, some frame is the training set, 

and the rest is the prediction set. 

········

A Frames Set

Train Set Predict Set
 

Fig. 5. Frames set. 

 

When encoding the training set video, the original 

algorithm is used to partition the LCU, and the edge density 

attributes 
Gxmean and 

Gymean  of the LCU are recorded at 

the same time, and the depth after encoding is recorded. 

Before encoding a LCU, the edge density features 
Gxmean  
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and 
Gymean  are extracted. It is input into KNN classifier to 

classify and predict LCU depth. 

If the predicted result is
shallowLCU , it will only code 64×

64 CU and 32×32 CUs, and stop dividing deeper after 

coding 32×32 CUs. 

If the predicted result is
2LCU , then the 64×64 CU and 8

×8 CUs are skipped, and only 32×32 CUs and 16×16 CUs 

are coded, from which the optimal partition results are 

selected. 

If the predicted result is
3LCU , then the 64×64 CU is 

skipped, only 32×32 CUs, 16×16 CUs and 8×8 CUs are 

coded, from which the optimal partition results are selected. 

E. KNN Parameter Selection 

For a given input sample x , if its true value is y , the 

output value ŷ  predicted by the classifier ˆ ( )y f x  may be 

inconsistent with the true value y . The result of correct 

classification is measured by the correct rate function and 

recorded as ( , ( ))R y f x . 

1, ( )
( , ( ))

0, ( )


 



y f x
R y f x

y f x
                      (5) 

If the total number of frames is N , then the correct rate 

P  of the classifier is: 

( , ( ))

R y f x

P
N

                              (6) 

In this algorithm, since the prediction result is the depth 

of the LCU, if 
2LCU  is predicted to be 

3LCU , the LCU 

with depth of 2 will be calculated at 8×8 CUs, but in fact it 

has no effect on the coding result. If the number of 
2LCU  

divided into 
3LCU  is 

23L , the overall accuracy of the 

classifier is achieved: 

23( , ( ))



Total

R y f x L
P

N
                     (7) 

If the total number of frames of the coded video is N , and 

the number of frames using KNN to predict LCU depth is 

PFN , the proportion of training frames 
PFR  is: 

100%PF
PF

N
R

N
                             (8) 

In this paper, there are two parameters to be determined 

for KNN classification. One is the value of k and the other 

is
PFR . The PTotal

 of different 
PFR and k is as Table III. 

Because the increase of k and the decrease of the 

proportion of predicted frames will affect the efficiency of 

the fast algorithm, we choose the KNN classifier with k  to 

be 2 and PFR  to be 60%. 

TABLE III: TOTAL ACCURACY RATE 

k 

PFR  
2 3 4 5 6 

80%
 

83.7% 82.1% 81.8% 82.9% 82.3% 

60% 86.7% 85.2% 85.0% 84.4% 84.7% 

40% 84.9% 84.3% 86.6% 86.0% 86.0% 

20% 86.1% 83.9% 86.8% 86.2% 87.1% 

 

IV. EXPERIMENTAL RESULTS 

360Lib is the JVET testing platform for virtual reality 

video. 360Lib is maintained under JVET under Subversion 

code. Users need to download the Subversion client for code 

download and version control. 360Lib mainly completes the 

projection of panoramic video. 360Lib can be used as 

plug-in, integrated into HM and JEM, and can be run 

separately. The main difference is that after conversion 

projection, it can send compression code directly instead of 

intermediate YUV, saving middle time. At this stage 360 lib 

is only responsible for projection, video coding is still 

dependent on HM or JEM. This paper aims at the 

optimization of 360lib in HM16.16. 

We use our proposed LCU depth prediction algorithm on 

HM16.16 + 360lib4.0 to evaluate the effectiveness of the 

algorithm. Time reduction is calculated by: 
 

16.16 360 4.0

16.16 360 4.0

T *100%





 

HM lib propoesd

HM lib

T T

T
             (9) 

 

16.16 360 4.0HM libT   is the coding time of HM16.16 + 

360lib4.0,
propoesdT  is the coding time of HM16.16 + 

360lib4.0 using the proposed algorithm, and ∆T is the time 

reduction.  

WS_PSNR is an objective quality assessment standard of 

virtual reality video adopted by 360Lib. According to the 

evaluation criterion, the pixels of different latitudes have 

different weights when projecting a 2D image onto a 

spherical field of view, and virtual reality videos are 

evaluated by adding weights to different latitudes of the 2D 

images projected from virtual reality videos. Assuming that 

the size of the 2D image after projection is MxN, the 

weighted mean square error is as follows: 

1 1
2

1 1
0 0

0 j 0

1
     [ ( , ) ( , )] * ( , )

( , )

 

 
 

 






M N

M N
i j

i

WMSE

y i j y i j w i j

w i j

       (10) 

( , )y i j  and ( , )y i j  are reference and test pixel values. 

( , )w i j  is the weight. 

2I
_ 10log( ) MAXWS PSNR

WMSE
                   (11) 

MAXI is the largest grayscale in the current image. Since 

WS_PSNR is directly calculated from the projected 2D 

image, its weight ( , )w i j  is related to the projection format. 

The weight of the ERP format video is as follows: 

( 0.5 / 2)
( , ) cos

 
ERP

j N
w i j

N

                 (12) 
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Due to the characteristics of the virtual reality video, 

WS_PSNR is used as the objective quality assessment 

standard. We use WS_PSNR instead of the original PSNR to 

calculate the BD-rate in video coding. 

The actual encoding time is measured on a workstation 

with a 3.60-GHz processor and 8GB of RAM. The anchor is 

under “encoder intra main” with “encoder 360 ERP” 

configuration. As shown in Table IV, the proposed 

algorithm achieves 37.9% time reduction, 1.31% BD-rate 

increase. 
 

TABLE IV: EXPERIMENT RESULTS OF PROPOSED ALGORITHM 

Class Sequence △WS_PSNR_Y(dB) BD-rate_Y (%) △ T(%) 

A 

AerialCity -0.04 1.27% 37.3% 

PoleVault -0.09 1.80% 36.1% 

DrivingInCountry -0.03 1.43% 40.5% 

DrivingInCity -0.03 1.14% 30.2% 

B 

Balboa -0.04 1.59% 38.4% 

Broadway -0.08 1.74% 42.3% 

Landing2 -0.02 1.25% 41.6% 

BranCastle2 -0.03 1.03% 42.1% 

C 

GasLamp -0.01 0.97% 39.8% 

ChairliftRide -0.03 1.21% 36.9% 

SkateboardInLot -0.05 1.4% 32.1% 

Trolley -0.01 0.93% 38.0% 

Average  -0.04 1.31% 37.9% 

 

V. CONCLUSION 

In order to reduce the computational complexity of virtual 

reality video coding, this work proposes a fast algorithm to 

speed up the CU partition process based on KNN classifier.  

The classifier use edge information to predict the depth of 

LCU and terminate the CU partition process based on this 

depth in advance. Experimental results show that the 

proposed fast algorithm provides an average time reduction 

rate of 37.9% compared to the reference 

HM-16.16+360lib4.0, with only 1.31% BD-rate increase. 
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