



Abstract—The coding framework for virtual reality video at

present is first projecting 3D data to 2D format, then encoding

it by traditional coding tools, which has much high

computational complexity. In order to reduce the coding

complexity based on the quality evaluation standard of virtual

reality video, this paper presents a fast algorithm to speed up

the Coding Unit (CU) partitioning by predicting the maximum

depth of LCU with KNN classifier. Experimental results show

that the proposed fast algorithm provides an average time

reduction rate of 37.9% compared to the reference

HM-16.16+360lib4.0, with only 1.31% BD-rate increase.

Index Terms—Fast algorithm, LCU, KNN, virtual reality

video.

I. INTRODUCTION

Virtual reality video is a special kind of video

representing the whole scene of the environment in 360

degree. It is captured by multiple professional cameras, and

spliced using software and can be played by special device. It

also provides the viewer with various functions to

manipulate the video, such as zoom in and out and moving

in all directions, so as to simulate and reproduce the real

environment [1].

At present, the coding and transmission of virtual reality

video mainly relies on projection every frame of the 3D style

data into 2D one, and then using traditional coding

framework such as HEVC, H.264 to fulfill encoding. The

commonly used projection formats are ERP, EAP, and CMP

and so on. In addition, different from traditional video,

virtual reality video has its own quality evaluation metric. In

this paper, we will study the virtual reality video in ERP

projection format.

HEVC is one of the coding framework used in virtual

reality video coding. HEVC adopts the coding structure of

coding tree unit (CTU), which is the basic processing unit of

HEVC. A CTU consists of 1 brightness CTB, 2 chromaticity

CTB and corresponding syntax elements. Figure 1 shows a

frame divided into CUs in CTU. A CTU may contain only

one encoding unit (CU), and HEVC can also use quadtree

Manuscript received July 20, 2019; revised June 5, 2020. This work is

supported by the National Natural Science Foundation of China

(No.61370111), Beijing Municipal Natural Science Foundation

(No.4172020), Great Wall Scholar Project of Beijing Municipal Education

Commission (CIT&TCD20180304), Beijing Youth Talent Project

(CIT&TCD 201504001), and Beijing Municipal Education Commission

General Program (KM201610009003).

The authors are with the North China University of Technology Beijing,

China (e-mail: lzliu@ncut.edu.cn, 18336343993@163.com,

muchmeng@126.com).

structure to recursively divide CU into many different sizes

of CU [2].

0 1

2 3

4

5

6 7

8 9
10

11 12

0 1 2 3

54

6 7 8 9

10 11 12

Fig. 1. Example of code tree unit.

There are four kinds of CU in HEVC: 64×64, 32×32,

16×16, and 8×8. For a LCU with size 64×64, encoder first

treat it as a CU, calculate the best prediction mode of it, and

record the best prediction data in the current partitioning

mode. Then encoder divide the current LCU into four 32×32

CUs. Encoder calculate the best prediction mode of the

32x32 CUs, and record the best prediction data. Similarly,

the encoder divides each 32×32 CU into four 16×16 CUs,

and calculate the best prediction model of each 16×16 CU

and record it, and divides each 16×16 CU into four 8×8 CUs.

Then Encoder calculate the best prediction model

corresponding to 8×8 and record the prediction data. Since

8x8 is the smallest CU, here encoder just loop through the

best prediction model corresponding to each 8×8 and record

its data. When 8x8 CUs’ calculating is complete, encoder

compare the sum of four 8×8 CUs’ RD-Costs to the RD-Cost

corresponding to the 16×16 CU’s to decide whether to

choose the four 8×8 CUs or the a 16×16 CU. After the first

16×16 CU is completed, encoder repeat the previous steps to

determine whether the second 16×16 CU is divided into four

8×8 CUs or 16×16 CU, and then the third 16×16 CU and the

fourth 16×16 CU. After the 16×16 CU is completed, encoder

compare the sum RD-Cost of the four 16×16 CUs with the

RD-Cost of a 32×32 CU to determine whether to select

32×32 CU or 16×16CUs. When the first 32×32 CU is

completed, encoder repeat the previous steps to determine

the partitioning pattern for the second, third, and fourth

32×32 CU. When all four 32×32 computations are complete,

Fast CU Spliting Algorithms for Virtual Reality Video

Based on KNN

Zhi Liu, Peiran Song, and Mengmeng Zhang

International Journal of Machine Learning and Computing, Vol. 10, No. 6, November 2020

777doi: 10.18178/ijmlc.2020.10.6.1005

mailto:18336343993@163.com

we compare the sum RD-Costs of the 32×32CUs with the

RD-Cost of a 64×64CU, and then decide whether to choose

64×64 CU or four 32×32 CUs and its descending partition.

Fig. 2. The optimal CUs.

In HEVC, to determine whether a block in quadtree

coding structure needs to be further partitioned, it is

necessary to compare the coding cost of all blocks with that

of the block after traversal of all the blocks mentioned above.

If the RD-cost of CU is larger than the sum of RD-cost of its

sub-CU, the smaller CUs are needed. If the RD-cost of the

current CU is larger than the RD-cost of the parent CU,

there is no need to divide it, and the current CU as a whole.

Obviously, these comparisons occur after the end of all CU

traversals of different sizes, which means much high

computation burden. In fact, in many cases, the size of CU

varies in the optimal partition, if we can predict the

maximum depth in a LCU, we can terminate the

partitioning process in advance, and there is no need to

traverse all the possibilities.

In this paper, we use KNN to predict the maximum depth

of LCU, and to reduce the redundancy of LCU partitioning

operation.

II. RELATED WORKS

In [3], K. Choi proposed a coding tree termination

method for the CU SKIP mode. Deyuan Liu [4] proposed a

fast CU size decision algorithm based on Support Vector

Machines (SVM). The [5] uses weighted SVM to predict CU

premature termination to optimize computation complexity.

In [6], a Bayesian decision rule based early termination

method was reported, in which on-line learning and off-line

learning were jointly applied to generate model parameters

of classifiers.

In [7], a fast CU partitioning algorithm is proposed for

HEVC encoder, which early on terminates the CU

partitioning process based on the Bayesian decision rule

using joint online and offline learning. In [8], author

proposed a fast and efficient mode decision algorithm based

on the Newman-Pearson rule, which consists of early SKIP

mode decision and fast CU size decision. In [9], author

proposed a machine learning-based fast coding unit (CU)

depth decision method for High Efficiency Video Coding

(HEVC), which optimizes the complexity allocation at CU

level with given rate-distortion (RD) cost constraints.[10]

proposes a fast CU splitting algorithm which can narrow CU

depth range and early terminate the CU splitting based on

the Sobel edge detection operator.[11] proposed a method to

reduce the high encoding time by pruning the coding

quad-trees using prediction residuals statistics.

Until now, a number of methods have been proposed to

reduce the encoding complexity of HEVC on early CU

decision. However, the experiment of this part of algorithm

is only used for HEVC. Although the virtual reality video is

encoded by HEVC after projection, its quality evaluation

standard is different from HEVC. Moreover, in the

above-mentioned articles, some of the algorithms are based

on the threshold of video statistics for fast partitioning. But

the statistical threshold does not always apply to all videos.

III. LCU DEPTH PREDICTION BASED ON KNN

LCU may contain four sizes of CU. If we predict the size

of the smallest CU in LCU before encoding LCU, and skip

calculating the smaller CU after encoding this CU, we can

improve the encoding efficiency of the encoder when

dividing CU.

In this paper, the minimum CU size in LCU is predicted

to skip the calculation of CU partitioning method in LCU in

advance. This problem can also be regarded as a

classification problem. Because of the computational

efficiency and the complexity of model training, KNN

classifier is adopted in this paper. This part mainly includes

LCU feature selection, classification method, classification

accuracy analysis, KNN parameter K and prediction set

proportion judgment.

A. LCU Complexity Feature Analysis Based on Sobel

Filtering

Generally, the simpler area can get better coding effect

under the larger CU, while in the more complex area, it

needs to be divided into smaller CU for prediction.

According to this idea, many people have proposed some

related algorithms, which can achieve the goal of fast

partitioning CU to a certain extent. In this paper, the Sobel

operator is used to filter the content of the encoding LCU to

calculate the complexity of the encoding LCU.

In this paper, we use horizontal and vertical Sobel

filtering for CU content to be coded. The gradients Gx , Gy

in horizontal and vertical directions are obtained by

calculation. A in the equation (1) represents the content of

LCU.

Gx =

-1 0 1

-2 0 2

-1 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

*A
 (1)

1 2 1

0 0 0 *

1 2 1

Gy A

 
 


 
    

 (2)

After obtaining Gx and Gy , we calculate edge points and

average gray values by equations (3) and (4). i and j

represent the coordinates of each pixel, and n represent the

width of the LCU .The more the number of edge points in an

International Journal of Machine Learning and Computing, Vol. 10, No. 6, November 2020

778

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=

LCU is, the more complex the block is, and the greater the

depth level of division is.

(,)

Mean
*

m n

i j

Gx

Gx i j

n n



 (3)

(,)

Mean
*

m n

i j

Gy

Gy i j

n n



 (4)

B. Prediction of CU Depth Range Based on the Number

of Edge Means

 After encoding, the LCU with the optimal partitioning

result may have 64×64 CU, 32×32 Cu, 16×16 CU and 8×8

minimum CU blocks. These four different sizes of CU

blocks also represent the four different depths of CU. We

define the minimum CU size in the LCU as the depth of the

LCU. According to the depth of LCU, LCU can be divided

into four categories:
0LCU ,

1LCU ,
2LCU ,

3LCU . It means

that the minimum CU sizes in a LCU are 64×64, 32×32, 16

×16, and 8×8.

If the size of the smallest CU block is predicted before

LCU partitioning, further partitioning can be terminated

after encoding the corresponding size CU, thus improving

the encoding efficiency.

Through experiments, we find that the horizontal and

vertical edge mean values of LCU are closely related to its

depth.

 Fig. 3. Distribution of LCU at different depths in threshold range.

As shown in the Fig. 3, statistical data show that the

majority of
0LCU and

1LCU are located in
Gxmean < 9 and

Gymean < 80 regions.

The different LCU ratios in the thresholds are shown in

the following Table I:

TABLE I: PROPORTION WITHIN IN DIFFERENT THRESHOLDS

 0LCU
1LCU

2LCU
 3LCU

Gx

mean < 9 88.3% 85.5% 18.2% 2.1%

Gy
mean < 80 87.6% 83.3% 20.1% 0.6%

Gx
mean < 9 &

Gy
mean < 80

85.1% 80.3% 15.6% 0.15%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

LCU0 LCU1 LCU2 LCU3

meanGx<9 menaGy<80 Total

 0LCU
1LCU

2LCU
 3LCU

Gx

mean < 400 97.4% 95.6% 85.0% 16.9%

Gy
mean < 6000 95.4% 96.3% 85.1% 20.1%

Gx
mean < 400 &

Gy
mean <6000 95.4% 95.6% 80.3% 8.9%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

LCU0 LCU1 LCU2 LCU3

meanGx<400 meanGy<6000 total

It can be seen that
Gxmean and

Gymean can effectively

classify LCUs of different depths.

At present, the commonly used fast CU algorithm often

extracts the features of CU, quantifies them and then

extracts the threshold value, which is used to process the CU

larger than or less than the threshold value. However, the

threshold of this algorithm is usually derived from the

International Journal of Machine Learning and Computing, Vol. 10, No. 6, November 2020

779

statistics of the test video, and it may not be able to represent

all the features of the video very well.

For different videos, the optimal threshold will not be the

same because the image characteristics and complexity of

each video are different. The statistical thresholds are often

neutralized by the characteristics of the statistical video set.

The statistical thresholds are not necessarily optimal for the

video to be coded.

C. Adjustment of Classification Method

The experimental results show that the edge

characteristics of
0LCU and

1LCU frames are similar, and

it is difficult to distinguish them by using edge features.

We counted the proportion of each CU in the video, as

shown in the Table II.

TABLE II: LCU STATISTICS

 QP 22 QP 27 QP 32

QP 37

0
LCU

5.02% 10.80% 15.91% 19.25%

1
LCU 19.77% 22.95% 23.97% 24.35%

2
LCU

28.03% 27.60% 26.55% 25.75%

3
LCU

47.17% 38.63% 33.55% 30.66%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

QP 22 QP 27 QP 32 QP 37

LCU0 LCU1 LCU2 LCU3

As shown in the table, statistically,
0LCU does not

account for a large proportion of video. Because it is similar

to
1LCU , we classify it as

shallowLCU .

Therefore, in this classification, we classify LCUs into

three class, which are:
shallowLCU ,

2LCU ,
3LCU .

D. LCU Depth Prediction Based on KNN Classifier

Because LCU depth prediction itself can also be regarded

as a classification problem, we can use classifier to encode a

part of the video frame normally, record the depth and edge

features of LCU, and then use these data to predict the depth

of the LCU of another part of the frame.

Since the training of classifier in this algorithm is carried

out in coding, it is necessary to select the algorithm with

lower computational complexity for training and prediction

in order to achieve the goal of improving coding efficiency.

KNN algorithm is low in training complexity and

relatively simple in structure. Although the time complexity

of prediction is relatively high, its computational complexity

is much lower than that of traversing all depth LCUs.

Therefore, this paper intends to use KNN to predict the

depth of LCU.

KNN is a basic classification and regression method. Its

input is the feature vector of an instance. By calculating the

distance between the new data and the trained data, K (K >=

1) neighbors are selected for classification and judgment

(voting) or regression. If K = 1, the new data is simply

assigned to the class of its nearest neighbors.

As shown in Fig. 4, which class is the blue circle

determined to be, is it a red square or a green triangle? If K =

3, the green circle will be assigned to the green triangle class

because the proportion of the red square is 2/3. If K = 5, the

green circle will be assigned to the blue quadrangle class

because the proportion of the green triangle is 4/5. The KNN

method is more suitable than other methods for the

intersection or overlap of class domains.

Fig. 4. KNN classification example.

The KNN algorithm itself is simple and effective. It is a

lazy-learning algorithm. The classifier does not need

training set, and the training time complexity is 0. The

computational complexity of KNN classification is directly

proportional to the number of documents in the training set,

that is, if the total number of data in the training set is n, the

classification time complexity of KNN is O (n). Although

the KNN method also depends on the limit theorem in

principle, it is only related to a small number of adjacent

samples in class decision making. KNN method is more

suitable than other methods for the intersected or overlapped

sample sets because it mainly depends on the neighboring

samples, rather than on the method of discriminating class

domains. Because of the distribution characteristics of

Gxmean and Gymean in LCU, KNN is more suitable for

classification.

In this algorithm, as shown as Fig. 5 we divide the

encoded sequence into frames set, and each frames set has

some frames. Among them, some frame is the training set,

and the rest is the prediction set.

········

A Frames Set

Train Set Predict Set

Fig. 5. Frames set.

When encoding the training set video, the original

algorithm is used to partition the LCU, and the edge density

attributes
Gxmean and

Gymean of the LCU are recorded at

the same time, and the depth after encoding is recorded.

Before encoding a LCU, the edge density features
Gxmean

International Journal of Machine Learning and Computing, Vol. 10, No. 6, November 2020

780

and
Gymean are extracted. It is input into KNN classifier to

classify and predict LCU depth.

If the predicted result is
shallowLCU , it will only code 64×

64 CU and 32×32 CUs, and stop dividing deeper after

coding 32×32 CUs.

If the predicted result is
2LCU , then the 64×64 CU and 8

×8 CUs are skipped, and only 32×32 CUs and 16×16 CUs

are coded, from which the optimal partition results are

selected.

If the predicted result is
3LCU , then the 64×64 CU is

skipped, only 32×32 CUs, 16×16 CUs and 8×8 CUs are

coded, from which the optimal partition results are selected.

E. KNN Parameter Selection

For a given input sample x , if its true value is y , the

output value ŷ predicted by the classifier ˆ ()y f x may be

inconsistent with the true value y . The result of correct

classification is measured by the correct rate function and

recorded as (, ())R y f x .

1, ()
(, ())

0, ()


 



y f x
R y f x

y f x
 (5)

If the total number of frames is N , then the correct rate

P of the classifier is:

(, ())

R y f x

P
N

 (6)

In this algorithm, since the prediction result is the depth

of the LCU, if
2LCU is predicted to be

3LCU , the LCU

with depth of 2 will be calculated at 8×8 CUs, but in fact it

has no effect on the coding result. If the number of
2LCU

divided into
3LCU is

23L , the overall accuracy of the

classifier is achieved:

23(, ())



Total

R y f x L
P

N
 (7)

If the total number of frames of the coded video is N , and

the number of frames using KNN to predict LCU depth is

PFN , the proportion of training frames
PFR is:

100%PF
PF

N
R

N
  (8)

In this paper, there are two parameters to be determined

for KNN classification. One is the value of k and the other

is
PFR . The PTotal

 of different
PFR and k is as Table III.

Because the increase of k and the decrease of the

proportion of predicted frames will affect the efficiency of

the fast algorithm, we choose the KNN classifier with k to

be 2 and PFR to be 60%.

TABLE III: TOTAL ACCURACY RATE

k

PFR
2 3 4 5 6

80%

83.7% 82.1% 81.8% 82.9% 82.3%

60% 86.7% 85.2% 85.0% 84.4% 84.7%

40% 84.9% 84.3% 86.6% 86.0% 86.0%

20% 86.1% 83.9% 86.8% 86.2% 87.1%

IV. EXPERIMENTAL RESULTS

360Lib is the JVET testing platform for virtual reality

video. 360Lib is maintained under JVET under Subversion

code. Users need to download the Subversion client for code

download and version control. 360Lib mainly completes the

projection of panoramic video. 360Lib can be used as

plug-in, integrated into HM and JEM, and can be run

separately. The main difference is that after conversion

projection, it can send compression code directly instead of

intermediate YUV, saving middle time. At this stage 360 lib

is only responsible for projection, video coding is still

dependent on HM or JEM. This paper aims at the

optimization of 360lib in HM16.16.

We use our proposed LCU depth prediction algorithm on

HM16.16 + 360lib4.0 to evaluate the effectiveness of the

algorithm. Time reduction is calculated by:

16.16 360 4.0

16.16 360 4.0

T *100%





 

HM lib propoesd

HM lib

T T

T
 (9)

16.16 360 4.0HM libT  is the coding time of HM16.16 +

360lib4.0,
propoesdT is the coding time of HM16.16 +

360lib4.0 using the proposed algorithm, and ∆T is the time

reduction.

WS_PSNR is an objective quality assessment standard of

virtual reality video adopted by 360Lib. According to the

evaluation criterion, the pixels of different latitudes have

different weights when projecting a 2D image onto a

spherical field of view, and virtual reality videos are

evaluated by adding weights to different latitudes of the 2D

images projected from virtual reality videos. Assuming that

the size of the 2D image after projection is MxN, the

weighted mean square error is as follows:

1 1
2

1 1
0 0

0 j 0

1
 [(,) (,)] * (,)

(,)

 

 
 

 






M N

M N
i j

i

WMSE

y i j y i j w i j

w i j

 (10)

(,)y i j and (,)y i j are reference and test pixel values.

(,)w i j is the weight.

2I
_ 10log() MAXWS PSNR

WMSE
 (11)

MAXI is the largest grayscale in the current image. Since

WS_PSNR is directly calculated from the projected 2D

image, its weight (,)w i j is related to the projection format.

The weight of the ERP format video is as follows:

(0.5 / 2)
(,) cos

 
ERP

j N
w i j

N

 (12)

International Journal of Machine Learning and Computing, Vol. 10, No. 6, November 2020

781

Due to the characteristics of the virtual reality video,

WS_PSNR is used as the objective quality assessment

standard. We use WS_PSNR instead of the original PSNR to

calculate the BD-rate in video coding.

The actual encoding time is measured on a workstation

with a 3.60-GHz processor and 8GB of RAM. The anchor is

under “encoder intra main” with “encoder 360 ERP”

configuration. As shown in Table IV, the proposed

algorithm achieves 37.9% time reduction, 1.31% BD-rate

increase.

TABLE IV: EXPERIMENT RESULTS OF PROPOSED ALGORITHM

Class Sequence △WS_PSNR_Y(dB) BD-rate_Y (%) △ T(%)

A

AerialCity -0.04 1.27% 37.3%

PoleVault -0.09 1.80% 36.1%

DrivingInCountry -0.03 1.43% 40.5%

DrivingInCity -0.03 1.14% 30.2%

B

Balboa -0.04 1.59% 38.4%

Broadway -0.08 1.74% 42.3%

Landing2 -0.02 1.25% 41.6%

BranCastle2 -0.03 1.03% 42.1%

C

GasLamp -0.01 0.97% 39.8%

ChairliftRide -0.03 1.21% 36.9%

SkateboardInLot -0.05 1.4% 32.1%

Trolley -0.01 0.93% 38.0%

Average -0.04 1.31% 37.9%

V. CONCLUSION

In order to reduce the computational complexity of virtual

reality video coding, this work proposes a fast algorithm to

speed up the CU partition process based on KNN classifier.

The classifier use edge information to predict the depth of

LCU and terminate the CU partition process based on this

depth in advance. Experimental results show that the

proposed fast algorithm provides an average time reduction

rate of 37.9% compared to the reference

HM-16.16+360lib4.0, with only 1.31% BD-rate increase.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

AUTHOR CONTRIBUTIONS

All authors made substantial contributions to conception

and design, analysis, and interpretation of data, and critical

review of the manuscript. Zhi Liu carried out the idea and

design of the study, optimized the algorithm, and wrote the

manuscript. Peiran Song carried out the experiments, and

performed the statistical analyses. Mengmeng Zhang got the

funding for the study, and helped rewrite the manuscript

substantially during the revision process.

REFERENCES

[1] S. E Alshina, J. Boyce, A. Abbas, and Y. Ye, “JVET common test

conditions and evaluation procedures for 360° video,” Joint Video

Exploration Team of lTU-T SG16 WP3 and ISO/IEC

JTC1/SC29/WG11 JVET-H1030 Macau, 2017.

[2] G. J. Sullivan, R. Ohm, and W. J. Han, “Overview of the high efficiency

video coding (HEVC) standard,” IEEE Transactions on Circuits &

Systems for Video Technology, vol. 22, no. 12, pp. 1649-1668, 2012.

[3] K. Choi, S. H. Park, and E. S. Jang, “Coding tree pruning based CU early

termination,” JCTVC-F092, JCT-VC of ISO/IEC and ITU-T, Torino,

Italy, July 2011.

[4] X. Shen and L. Yu, “CU splitting early termination based on weighted

SVM,” EURASIP J. Image Video Process., vol. 2013, pp. 1-11, Jan.

2013.

[5] H. Poor, An Introduction to Signal Detection and Estimation, New

York: Springer-Verlag, 1985, ch. 4.

[6] H. S. Kim and R. H. Park, “Fast CU partitioning algorithm for HEVC

using an online-learning-based Bayesian decision rule,” IEEE Trans.

Circuits Syst. Video Technol., vol. 26, no. 1, pp. 130-138, Jan. 2016.

[7] H. S. Kim and R. H. Park, “Fast CU partitioning algorithm for HEVC

using an online-learning-based Bayesian decision rule,” IEEE Trans.

Circuits Syst. Video Technol., vol. 26, no. 1, pp. 130-138, Jan. 2016.

[8] Q. Hu, X. Zhang, Z. Shi, and Z. Gao, “Neyman-pearson based early

mode decision for HEVC encoding,” IEEE Trans. Multimedia, vol. 18,

no. 3, pp. 379-391, Mar. 2016.

[9] Y. Zhang, S. Kwong, X. Wang, H. Yuan, Z. Pan, and L. Xu, “Machine

learning-based coding unit depth decisions for flexible complexity

allocation in high efficiency video coding,” IEEE Trans. Image Process.,

vol. 24, no. 7, pp. 2225-2238, Jul. 2015.

[10] K. Goswami, B. G. Kim, D. S. Jun, S. H. Jung, and J. S. Choi, “Early

coding unit-splitting termination algorithm for High Efficiency Video

Coding (HEVC),” Electron. Telecommun. Res. Inst. J., vol. 36, no. 3,

pp. 407-417, Jun. 2014.

[11] H. L. Tan, C. C. Ko, and S. Rahardja, “Fast coding quad-tree decisions

using prediction residuals statistics for High Efficiency Video Coding

(HEVC),” IEEE Trans. Broadcast., vol. 62, no. 1, pp. 128-133, Mar.

2016.

Copyright © 2020 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work

is properly cited (CC BY 4.0).

Zhi Liu is a doctor of engineering, master instructor. He

received the B.S. degree in electronic information

technology and the Ph.D. in signal and information

processing from Beijing Jiaotong University, China in

2001 and 2011 respectively. Currently, he is a lecturer in

North China University of Technology. His major

research interests include the video codec, pattern

recognition, and self-organizing network.

Peiran Song is studying master of North China

University of Technology. Her major research is HEVC.

Mengmeng Zhang is a doctor of engineering, professor,

master instructor, master of Communication and

Information Systems. His major research interests include

the video codec, embedded systems, image processing, and

pattern recognition. He has authored or co-authored more

than 40 refereed technical papers in international journals

and conferences in the field of video coding, image

processing, and pattern recognition. He holds 21 national

patents and 2 monographs in the areas of image/video coding and

communications.

International Journal of Machine Learning and Computing, Vol. 10, No. 6, November 2020

782

https://creativecommons.org/licenses/by/4.0/

