
  
Abstract—Problem Statement: Extending the concept of 

Round Robin algorithm (RR) to incorporate user or system 
defined priority and consider the case of different arrival times 
of process and suggesting a novel approach that minimizes 
context switching overhead, average waiting time and 
turnaround time. Approach: We calculate Optimum Priority 
‘OP’ for each process which determines the order of execution 
of processes, Optimum Service Time ’OST’ for each process 
which determines time of execution of process in a single round 
and execute the processes in RR fashion using the calculated 
parameters. Results: Based on experiments and calculations, 
the proposed algorithm is successful in reducing afore 
mentioned problems. Conclusion: Our proposed algorithm can 
be effective in priority based systems where burst time and 
arrival time can be easily predicted. 

 
Index Terms—Scheduling algorithm, context switch, waiting 

time, arrival time, turnaround time, priority, round robin, 
time quantum. 

I. INTRODUCTION 
A CPU scheduling algorithm should focus on maximising 

throughput and CPU utilization and minimizing turnaround 
time, waiting time and response time. Apart from these 
parameters there are other factors to consider like number of 
context switches, fairness etc. [1] [2] [3] [4] [11] [12]. 
Existing scheduling techniques based on priority of the 
process are not fair and responsive and suffer from the 
problem of starvation. If we use RR algorithm then we can 
achieve fairness and responsiveness but at the cost of 
neglecting the effect of user or system defined priority 
totally and large number of context switches. Neglecting 
priority is certainly not always good. If we use priority 
based RR algorithm [9] we still have the problem of large 
number of context switches. Some algorithms; that have 
been worked out; do not consider the case of different 
arrival times of the process. The effect of context switching 
overhead is considerable which can be checked from [8]. 
This motivated us to work on a novice algorithm that adopts 
an approach that is fairer, gives consideration to user 
defined or system defined  priority of the process and 
minimizes the number of context switches and thus more 
suitable for priority based systems or soft real time systems. 
We incorporate the concept of optimum service time rather 

 

Manuscript received March 30, 2012. This work was supported by 
Faculty of Department of Computer Science and Engineering, Madan 
Mohan Malviya Engineering College, Gorakhpur, India. 

Authors are with Computer Science and Engineering from Madan 
Mohan Malviya Engineering College, Gorakhpur, India (email: 
himanshi57@gmail.com; pidge.1000@gmail.com) 

 

than time quantum for deciding the time for which a process 
is allowed to execute when competing for CPU time and 
optimum priority rather than user or system defined priority 
of process to decide the order of execution of processes. 

The rest of the paper is divided as follows: Section II 
deals with existing algorithms. Section III describes related 
work till now. Section IV gives the details of our proposed 
approach. Section V compares the performance of our 
proposed scheduling algorithm with DQRRR [10] which 
considers the case of different arrival times of the process 
but fails to consider the effect of user or system defined 
priority of the process. Conclusion and direction of future 
work is given in section VI. 

II. EXISTING ALGORITHMS 
Many scheduling algorithms have been proposed for 

processor assignment, but there is no suitable algorithm for 
all purposes. We discuss the most commonly used 
algorithms Priority based algorithm and RR algorithm in 
this section and highlight the drawbacks of these two. 

Priority scheduling algorithm assigns CPU to competing 
processes according to the priority of the process. Priority 
can be determined by the user or by the system. Priority 
assignment can be fixed or dynamic and the approach 
adopted can be pre-emptive or non pre-emptive. Priority 
scheduling algorithm suffers from problem of starvation. 
They are not fair as they are biased to process of high 
priority.  

Round Robin algorithm is simplest, fairest and most 
widely used scheduling algorithm especially designed for 
time sharing systems [5] [6] [7] [9] [10]. A small unit of 
time called time quantum is defined. All runnable processes 
are kept in circular queue. The CPU scheduler goes around 
this queue allocating the CPU to each process for a time 
interval of one quantum. New processes are added to tail of 
the queue. It does not suffer from problem of starvation and 
is fair. Round Robin algorithm, however does not take into 
account the priority of process at all. It is not desirable if the 
size of the jobs or tasks are strongly varying [2] [4] [5]. It 
also has more context switching overhead than other 
algorithms. 

III. RELATED WORK 
Efforts have been made to modify RR in order to give 

better turnaround time, average waiting time and minimize 
context switches. Changes to time quantum according to the 
nature of process have been suggested in [5] [6] [7] [9] [10] 
[11]. Employing the concept of priority along with RR has 
been suggested in [9]. The concept of dynamic time 
quantum has been suggested in [5] [6] [7] [9] [10]. 

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

113

Design and Performance Evaluation of Optimum Service 
Time Concept for Round Robin Algorithm (OSTRR) 

F.A. Himanshi Saxena and S.B. Prashant Agarwal 



IV. PROPOSED ALGORITHM 

A.   Approach 
For achieving low average waiting time and turnaround 

time it is advisable to execute processes with small burst 
time early. We also propose that any process that has 
arrived earlier should not be stalled for long and should be 
executed as early as possible. Since we consider priority 
based systems, we employ the concept of Optimum Priority 
which combines user defined priority, effect of shorter burst 
time and effect of arrival time in a way so as to achieve 
better turnaround time and average waiting time.  

We assign a weight of 0.5 to user or system defined 
priority, a weight of 0.3 to burst time and 0.2 to arrival time. 
This ensures that user defined priority; burst time; and 
arrival time get consideration while deciding order of 
execution of processes. Note that a higher priority process 
gets a higher number; a shorter process also gets a higher 
number; and a process that arrived earlier also gets a higher 
number in our numbering scheme. We now calculate 
Optimum Priority ‘OP’ which is: 

OP= 0.5*P + 0.3*BT+0.2*AT                       (1) 

Here P is user or system defined priority; BT is priority 
number assigned according to shorter burst time; and AT is 
priority number assigned according to early arrival of the 
process. We round off the value of ‘OP’ to the nearest 
integer for rest of the calculations.  

We now decide a time quantum which is selected while 
taking into account the same considerations that is taken 
while selecting time quantum for RR algorithm. Now we 
decide the Optimum service time ‘OST’ for each process. It 
is given by: 

OSTi = OPi * q                                      (2) 

where OSTi  is the service time of process with Optimum 
priority ‘OPi’. ‘q’ is the decided time quantum.  

We place all the processes in a priority queue. Priority 
queue can be implemented as heap. After calculating the 
service time of each process we assign CPU to the process 
with highest optimum service time. In case of conflict the 
process with shorter burst time is given preference. If 
conflict still persists the process that arrived early is given 
preference.  The process decided executes for a period that 
is equal to optimum service time of the process OSTi. or its 
burst time whichever is smallest. In case a process or the set 
of process with same value of ‘OP’, which so ever is 
applicable, finish execution after a single round, we 
redistribute the value of ‘OST’ removing the value of OST 
of finished process and redistributing the value of ‘OST’ 
accordingly. For e.g. suppose there are five processes P1, P2, 
P3, P4, P5 whose ‘OP’ and ‘OST’ have been calculated. 
Value of ‘OST’ for the processes is 12, 16, 8, 8 and 16 
respectively. Suppose P1 finishes execution. Then the value 
of ‘OST’ for P2 and P5 will remain 16 but for P3 and P4, it 
will change to 12 and 12 respectively thus increasing the 
execution time for rest of the process after the round. The 
value of ‘OST’ is self adjusting in this way. 

B.  Pseudo Code of Algorithm 
process_priority_queue = empty 
 
while (true) { 
       for each new process { 
                 add process to process_priority_queue 
                 along with its priority P  
                 }  
scheduler();  
if (process_terminate) { 
                    if (process_priority_queue is empty) 
                            wait until new process arrives 
                     else 
                           recalculate_OST ( ); } } 
                
pre_scheduler(q) { 
  for each process i   { 
       Assign BT to all the processes such that processes 
       with shorter burst time get higher number and assign
       AT to all the processes such that processes that 
arrived 
      earlier get higher number  
 OP= 0.5*P + 0.3*BT+0.2*AT//Round of FP to nearest 
integer 
 OSTi = OPi * q // calculate OST  
                                   } }                      
                              
scheduler ( ) { 
     pre_scheduler (time_quantum) 
     //process_selector  
        assign CPU to process with highest value of OST.  
         If more than one process assign CPU to process          
         with shorter burst time among them, if conflict 
         still persist assign CPU to process that arrived early.   
if (burst time < optimum service time) 
                           execute process till its burst time 
              else  
                           execute process till OSTi 
      
 
      //next_process  
      select  next process from process_priority_queue 
                          } 
 
recalculate_OST ( ) { 
      if (process_terminate) 
           redistribute_OST 
       else 
                    do nothing 
               }

 

V. EXPERIMENTS AND ILLUSTRATION 
We compare our algorithm with DQRRR [12] in terms of 

number of context switches, average turnaround time and 
average waiting time. DQRRR does not take into account 
the effect of user or system defined priority which gives our 
algorithm an intrinsic advantage in priority based systems.  

A. Assumptions 
All experiments are assumed to be performed in 

uniprocessor environment and all the processes are 

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

114



independent from each other. The attributes of all the 
processes like burst time and user or system priority are 
known before submitting the process. All processes are 
CPU bound. No process is I/O bound.  

B.   Experiment 
Case 1) Suppose there are five processes with following 
burst time, user priority and increasing order of arrival time 
as shown in Table I: 

TABLE I: PARAMETERS FOR CASE I 
 Process Burst time User Priority ‘P’ Arrival Time ‘AT’

P1 28 5 0 

P2 35 4 2 

P3 50 3 6 

P4 82 2 6 

P5 110 1 8 

 
Burst time and arrival time have been assumed to be in 

milliseconds. Assuming time quantum to be 25 millisecond. 
We assign value of BT in such a way that shorter process 
gets higher number and AT such that process that arrived 
earlier gets higher number as shown in Table II: 

 
TABLE II: CALCULATION OF OP AND OST FOR CASE II 

Process AT BT P ‘OP’ ‘OST’ for 1st round 

P1 5 5 5 5.0 5*25 = 125 

P2 4 4 4 4.0 4*25 = 100 

P3 3 3 3 3.0 3*25 = 75 

P4 3 2 2 2.2 2*25 = 50 

P5 2 1 1 1.2 1*25 = 25 

 

We begin with P1. After 1st round of execution P1, P2 
and P3 have finished executing. So we assign redistribute 
‘OST’ and now ‘OST’ of P4 becomes 125 and ‘OST’ of P5 
becomes 100. In 2nd round P4 and P5 finish execution as 
shown in Table III. Scheduling with DQRRR is shown in 
Table IV. 

 
TABLE III: OSTRR 

Process 
OST 

1st round 2nd round 

P1 125 0 

P2 100 0 

P3 75 0 

P4 50 125 

P5 25 100 

  
Gantt chart according to our proposed algorithm is shown 

in Fig.1. 

P1 P2 P3 P4 P5 P4 P5
   0              28             63            113          163           188       220       305        

Fig. 1. Gantt chart with OSTRR for case 1 

TABLE IV: DQRRR 
Algorithm Time Quantum 

DQRRR 28, 66, 30, 14 

 
 

Gantt chart of DQRRR is shown below in Fig2: 

P1 P2 P5 P3 P4 P5 P4 P5
0       28            63              129         179        245         275          291      305         
                 Fig. 2. Gantt chart with DQRRR for case 1 

To calculate the average waiting time, turnaround time 
and number of context switches we have performed 
simulations in C on gcc compiler. The snapshot of results of 
simulation has been shown. We have shown the comparison 
of several parameters for OSTRR and DQRRR in Table V 
and through a chart in Fig 4. 

 

 
Fig.3: Snapshot of simulation of OSTRR for case 1 

 

TABLE V: COMPARISON FOR CASE I 

Algorithm Turnaround 
time (TAT) 

Average waiting 
time (AWT) 

Context 
Switches (CS)

DQRRR 209.8 147.8 7 

OSTRR 141.4 80.4 6 

 

0

250

TAT AWT CS

DQRRR

OSTRR

Fig.4: Comparison of DQRRR and OSTRR for case1 
 

Case 2) Suppose there are 5 processes with following 
burst time, user priority and decreasing order of arrival time 
as shown in Table VI: 

 
TABLE VI: PARAMETERS FOR CASE II 

 Process Burst time User Priority ‘P’ Arrival Time ‘AT’

P1 80 5 0 

P2 72 4 2 

P3 65 3 3 

P4 50 2 4 

P5 43 1 5 

 

Time quantum is 25 milliseconds. Calculating ‘OP’ and 
‘OST’ we get as shown in table VII: 

 
 

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

115



TABLE VII: CALCULATION OF OP AND OST FOR CASE II 
Process BT UP AT ‘OP’ ‘OST’ for 1st round

P1 1 5 5 3.8 4*25=100 

P2 2 4 4 3.4 3*25=75 

P3 3 3 3 3.0 3*25=75 

P4 4 2 2 2.6 3*25=75 

P5 5 1 1 2.2 2*25=50 
 

 Scheduling with OSTRR is shown in Table VIII: 
 

TABLE VIII: OSTRR 

Process 
OST 

1st Round 

P1 100 

P2 75 

P3 75 

P4 75 

P5 50 

 
Gantt chart for OSTRR is shown in Fig 5: 

    P1       P4        P3       P2        P5 
0              80                     130                   195                    267                 310 

Fig 5: Gantt chart for OSTRR case 2 
 
Scheduling with DQRRR is shown in Table IX: 

TABLE IX: DQRRR 
Algorithm Time Quantum 
DQRRR 80, 57, 11, 4 

 

Gantt chart for DQRRR is shown in Fig 6: 

 P1  P2   P3  P4  P5  P1  P2  P4 
0         80         123            180         230          287         298         306      310 

Fig 6: Gantt chart for DQRRR case 2 

The snapshot of results of simulation has been shown in 
Fig 7.  

 
Fig.7: Snapshot of simulation of OSTRR for case 2 

 
Comparison between both the algorithms is shown in Table 
X and Fig 8. 

TABLE X: COMPARISON OF PARAMETERS FOR CASE II 

Algorithm Turnaround time 
(TAT) 

Average waiting 
time (AWT) 

Context 
Switches (CS) 

DQRRR 209.8 147.8 7 

OSTRR 193.6 131.6 4 

0

250

TAT AWT CS

DQRRR

OSTRR

 
Fig.8: Comparison of DQRRR and OSTRR for case2 

 
Case 3) Suppose there are 5 processes with following 

burst time, user priority and random order of arrival time as 
shown in Table XI: 

 
TABLE XI: PARAMETERS FOR CASE III 

 Process Burst time User Priority ‘P’ Arrival Time ‘AT’ 

P1 26 5 0 

P2 82 4 1 

P3 70 3 2 

P4 31 2 5 

P5 40 1 7 

 
Time quantum is 25 milliseconds. Calculating ‘OP’ and 

‘OST’ as shown in Table XII we get: 
 

TABLE XII: CALCULATION OF OP AND OST FOR CASE III 
Process BT UP  AT ‘OP’ ‘OST’ for 1st round

P1 5 5 5 5.0 5*25=125 

P2 1 4 4 3.1 3*25=75 

P3 2 3 3 2.7 3*25=75 

P4 4 2 2 2.6 3*25=75 

P5 3 1 1 1.6 2*25=50 
 

Scheduling with OSTRR is shown in Table XIII:  
 

TABLE XIII: OSTRR 
Process OST 

1st Round 

P1 125 

P2 75 

P3 75 

P4 75 

P5 50 

 
Gantt chart for OSTRR is shown in Fig 9: 

     P1     P4      P3        P2     P5     P2 
0            26             57                 127                   209                242          249 

Fig 9: Gantt chart for OSTRR case 3 
 
Scheduling with DQRRR is shown in Table XIV: 

TABLE XIV: DQRRR 
Algorithm Time Quantum 

DQRRR 26, 55, 21, 6 

 
Gantt chart for DQRRR is shown in Fig 10: 

P1  P4   P2  P5  P3  P2  P3  P2 
0         26          57             112          152          207     228           243       249 

Fig 10: Gantt chart for DQRRR case 3 

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

116



The snapshot of results of simulation has been shown in 
Fig 11: 

 
Fig 11: Snapshot of simulation of OSTRR for case 3 

Comparison between both the algorithms is shown in Table 
XV and Fig 12: 

TABLE XV: COMPARISON FOR CASE III 

Algorithm Turnaround 
time (TAT) 

Average waiting 
time (AWT) 

Context Switches 
(CS) 

DQRRR 145.4 95.6 7 

OSTRR 137.2 87.4 4 

0

50

100

150

TAT AWT CS

DQRRR

OSTRR

Fig 12: Comparison of DQRRR and OSTRR for case 3 

 

VI. CONCLUSION 
From the experimental results we found that our proposed 

algorithm performs better than DQRRR in terms of 
decreasing the number of context switches, turnaround time 
and average waiting time. This has been possible by 
prefering process with shorter burst time in addition to their 
priority and considering the effect of arrival time on priority. 
Future work can be based on this algorithm that includes the 
effect of deadlines for real time systems. 

 

REFERENCES 
[1] William Stallings, “Operating Systems: internals and design 

principles”, 6th edition, Prentice Hall, ISBN-13:978-0136006329. 
[2] Tanenbaum, Andrew S., “Modern Operating Systems”, 3rd edition, 

Prentice Hall, ISBN: 13:9780136006633. 
[3] A. Silberschatz, P.B. Galvin and G.Gagne, “Operating Systems 

Concepts”, 7th edition, John Wiley and Sons, ISBN: 13:978-
0471694663. 

[4] C. Yaashuwanth and R.Ramesh “A New Scheduling Algorithm for 
Real Time System”, International Journal of Computer and 
Electrical Engineering (IJCEE), Vol.2, No.6, pp 1104 -1106, 
December (2010). 

[5] H.S. Behera et al. “Comparative and Performance Analysis of Multi-
Dynamic Time Quantum Round Robin (MDTQRR) Algorithm with 
Arrival Time”, Indian Journal of Computer Science and Engineering 
(IJCSE), Vol.2 No.2 Apr-May 2011, ISSN: 0976 – 5166.   

[6] Rami J. Matarneh “Self-Adjustment Time Quantum in Round Robin 
Algorithm depending on Burst Time of Running Process”, American 
Journal of Applied Sciences, ISSN 1546-9239, 6 (10):1831-1837, 
2009. 

[7] H.S. Behera and et. al. ”A new Dynamic Round Robin and SRTN 
Algorithm with Variable Original Time Slice for Soft Real Time 
Systems”, International Journal of Computer Applications 16 (1):54-
60, February 2011. 

[8] Chuapeng Li, Chen Ding and Kai Shen “Quantifying The Cost of 
Context Switch” ACM 978-1-59593-751 Exp CS June-2007.    

[9] Rakesh  Mohanty and H.S. Behera “Priority based Dynamic Round 
Robin with Intelligent Time Slice for Soft Real Time Systems” , 
International Journal of Advanced Computer Science and 
Applications, Vol.2, No.2, pp. 46- 50, February 2011.    

[10] H.S. Behera and Rakesh Mohanty, “A new proposed Dynamic 
Quantum with Re-adjusted Round Robin Scheduling Algorithm and 
its Performance”, International Journal of Computer Applications 
(0975-8887) Vol.5- No.5, August 2010. 

[11]  Moonju Park, Hong Jin Yoo, Jinseok Chae “Quantum Based Fixed 
Priority Scheduling”, International Conference on Advanced 
Computer Theory and Engineering (2008). 

[12] Rami Abielmona, Scheduling Algorithmic Research, Department of 
Electrical and Computer Engineering Ottawa-Carleton Institute, 2000.  

                                                                                                                                         

 

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

117




