

Abstract—In Grid Computing, the grid collaborative

frameworks that support easy and effective collabaration and
coordination between many remote users have emerged as an
important research topic recently. In our previous paper [1], we
have proposed a grid collaborative framework that is both
general purpose and plan supported. With the theoretical
foundation based on the activity theory and designed on top of
existing OGSA infrastructure, our proposed framework aims at
accelerating the development of grid collaborative systems that
consider working plans as central role. To support plans, our
framework needs including a workflow language that not only
can invoke Web services, but also Grid services. Among current
workflow languages, the BPEL seems to be most suitabe for our
framework, but it still lacks of Grid service invocation
capability. Therefore, in our other work [2], a clean solution for
this problem has been proposed by using ODE engine. This
paper aims to combine these results into a more complete
picture of our framework.

Index Terms— Grid collaborative framework, Grid services,
BPEL, BPEL engine, ODE, Grid computing.

I. INTRODUCTION
Over the last decade, Grid Computing has played an

important role in resolving a real and specific problem of
coordinated resource sharing and problem solving in
dynamic, multi-institutional virtual organizations [3]. Grid
research has progressed to its third generation [4], which
focuses on resolving problems that occur when large scale
and autonomic grid systems need to be built. This generation
has seen an increase in the adoption of service-oriented
architecture and the development of a comprehensible
architecture for large scale grid applications. The Open Grid
Service Architecture (OGSA) was developed to support the
creation, maintenance and application of ensembles of
services in Virtual Organizations (VO). OGSA adopted the
OASIS Web Service Resource Framework to bring Grid
services closer to Web services community, allowing them to
share and reuse tools that have been well developed for Web
services.

In our previous paper [1], we have proposed a grid
collaborative framework that is both general purpose and
plan supported. With the theoretical foundation based on the
activity theory and designed on top of existing OGSA
infrastructure, our proposed framework aims at accelerating
the development of grid collaborative systems that consider

Manuscript received February 12, 2012, revised February 27, 2012.
Binh T. Nguyen and Duc Huu Nguyen are with the school of Electronics

and Telecommunication of the Hanoi University of Science and Technology,
Vietnam (e-mail: ntbinh1974@gmail.com; ducnh-fit@mail.hut.edu.vn).

Doan B. Hoang is with Computing and Communications, Faculty of
Engineering and Information Technology, the University of Technology,
Sydney (UTS), Australia (e-mail: Doan.Hoang@uts.edu.au).

working plans as central role. Our framework has a
component called Activity Planning that is responsible for
creating a new working plan or updating existing ones.
Among the current workflow tools and languages that can
support in creating working plans so far, the BPEL seems to
be the best choice for our framework.

BPEL (Business Process Execution Language) has been
deployed successfully in composing workflows of Web
services for business applications. It is not surprised to see
efforts to use BPEL for composing Grid services into higher
level and structured tasks as Gridflows. However, due to the
stateful nature of Grid services, BPEL and its engines cannot
be deployed without additional features.

Much effort in recent researches attempts to overcome this
problem. Some proposals have been suggested to invoke
Grid services from BPEL [5, 6], but they are only for the
ActiveBPEL engine. For the open source BPEL engine, ODE
(Orchestration Director Engine), so far we are not aware of
any concrete solution. Therefore, a clean solution for this
problem has been proposed in our other work [2].

For deployment of BPEL processes in the ODE engine, an
another issue still exists in the deployment stage, that requires
manual preparation of a specific deployment file. This
procedure is so time consuming and error prone that makes it
very hard to let the BPEL processes run by this engine. This
issue has also been solved by our solution in another work
[7].

From these results, we have tried to integrate the engine
into our framework in order to make it work, and this paper
aims to describe this integration process.

The structure of the paper is as follows. Section 2 will
present some background. Section 3 will present our
collaborative framework. In section 4, our solution for
invoking Grid services within the ODE engine will be
presented. And then in section 5, a solution allowing
automation of the deployment stage of BPEL processes in the
ODE engine will be described. Section 6 will discuss about
related work and make comparison with ours. The last
section 7 summarizes the contributions and concludes the
paper.

II. BACKGROUND

A. WSRF
Before Grid services, a Web service refers to a stand-alone

service with each instance is completely independent of any
other instances of the same service as they do not keep any
state information about themselves once they deliver their
output to the requested Web client. This stateless makes Web
services client-server model simple, however, developing
transactional services based on Web services requires
complicated manipulation of the persistent states at the server

Binh Thanh Nguyen, Duc Huu Nguyen, and Doan Bang Hoang

Towards A Grid Collaborative Framework

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

99

end that is not consistent with the nature of stateless Web
services. For this reason, OASIS has adopted Web Service
Resource Framework (WSRF), a standard that allows Web
services to access their persistent states in a consistent and
interoperable manner. In this framework, a state is called
stateful resources. WSRF aims to model and manage stateful
resources based on a construct called WS-Resource, which is
composed of a Web service and its associated stateful
resources [8]. WSRF defines means by which:
- WS-Resources can be created and removed.
- A stateful resource is used when message exchanges of

Web service are executed.
- A stateful resource can be queried and modified via

message exchanges of Web service.
Each stateful resource usually has many independent

instances that may be created and destroyed. When a new
instance of a stateful resource is created, normally by a Web
service referred to as a resource factory, it may be assigned
an identity (also called resource key).

WSRF defines a special kind of relationship, called
implied resource pattern, between a Web service and its
stateful resources. This relationship is a mechanism to
associate a stateful resource with execution of message
exchanges of a Web service. The term implied means that the
stateful resource associated with a given message exchange is
considered as an implicit input for the execution of the
message request. Implicit input means that the stateful
resource is not provided as an explicit parameter in the body
of the message request. Therefore, the association occurs
mostly in a dynamic manner, which is at the time of the
execution of the message exchange [8].

To represent the address of a Web service deployed at a
given network endpoint, WSRF uses the Endpoint Reference
construct from WS-Addressing. The main part of an endpoint
reference is an Endpoint Address of the Web service. The
endpoint reference may also contain a metadata associated
with the Web service such as service description information
and reference properties (this name is used in WSRF version
1.1. In version 1.2 it has been changed to reference
parameters). The reference properties play an important role
in the implied resource pattern, as it is used to keep the
resource key of the instance of stateful resource.
Grid services are the Web services that follow WSRF
standard. They are also called WSRF-compatible Web
services.

B. Axis2
Axis2 is the new version of Axis (Apache eXtensible

Interaction System), a SOAP engine and a Web Service
middleware tool. It is a SOAP messaging system with
modular architectural design. The Axis2 Framework is built
up of 7 core modules. Non-core/other modules are layered on
top of these core modules. Among the seven core modules,
XML Processing and SOAP Processing modules are relevant
to our research.
• XML Processing Module: Processing SOAP Messages

is the most important and most complex task in Axis2,
and its efficiency is the single most important factor that
decides the performance. Axis2 makes use of AXIOM
(AXis Object Model) to provide a simple API for

improved SOAP and XML handling performance over
Axis.

• SOAP Processing Module: This module controls the
execution order of the processing. Besides defining
different built-in phases of the execution, the model
supports extensible capability by permitting users to
extend the Processing Model at specific plug-in places.
The SOAP Processing Model is shown in Fig. 1.

Two basic actions a SOAP processor are sending and
receiving SOAP messages. To support these, the architecture
provides two pipes (or messages processing flows) called In
Pipe and Out Pipe. The implementation of these two pipes is
via definition of two methods, send() and receive() in the
Axis2 Engine.

Extensible capability of the SOAP processing model is
provided by handlers. When processing a SOAP message,
only the handlers that are registered will be executed. Axis2
supports three scopes that the handlers can be registered in,
global, service, or operation. The final handler chain will be
calculated by combining the handlers from all the scopes.

Acting as interceptors, the handlers process parts of the
SOAP message and provide add-on services. The different
stages of the pipes are called phase, which provides a
mechanism to specify the ordering of handlers. A handler
always runs inside a specific phase. Both Pipes have built-in
phases, as well as the places for 'User Phases' which can be
defined by users.

Fig. 1. SOAP processing model of Axis2.

C. ODE Engine
ODE is an open source BPEL engine of Apache. The latest

stable version 1.2 offers many interesting features such as:
• ODE supports for both the WS-BPEL 2.0 OASIS

standard and the BPEL4WS 1.1.
• ODE supports two communication layers: Web Services

http transport of Axis2 and ServiceMix on the JBI
standard.

• ODE can be easily integrated with virtually any
communication layer thank to the high level API to the
engine.

• ODE allows hot-deployment of processes. This means
that one only needs to copy all the necessary files to a
specific directory (a deployment directory regulated by
the engine), and the running engine will automatically
detect these files, compile them and prepare them ready
for use.

The current ODE does not recognize all necessary
information sent from a BPEL process and is not able to
support the invocation of Grid services. The session 4 will

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

100

investigate this issue further and provide the basis of our
solution.

III. OUR PLAN-SUPPORTED GRID COLLABORATIVE
FRAMEWORK

A. Objectives
The main objective of the architecture is to serve as a

plan-supported Grid framework for a wide range of
collaborative applications. The characteristic of plan
supported of the framework can be explained in more details
as follows.

 Each collaborative work needs to have two related parts, a
working plan and a work script. The working plan which
corresponds to the activity level, consists of sequence of
actions. Each action aims to achieve a goal among all goals of
that plan/activity. The plan only takes care of what actions of
work need to be done, and not of who will do those actions
and how they can be done. In contrast, a work script needs to
define clearly who will do what actions and how the actions
can be implemented. Therefore, it composes of a sequence of
operations and control structures. The operations are
executable components such as programs, functions, services
(Web and Grid services), etc.

Our framework aims to allow many users in concurrence
to edit the working plans and scripts, as well as to run and
monitor the status of the running scripts. During the process
of editing a script, each user may try and select the best
resources by his or her own experience, so that the script
could be run most effectively. Fig. 2 shows the overview of
our framework.

Fig. 2. Overview of the framework

B. Approaches
Activity Theory: There are two reasons for us to choose

the theory as a theoretical foundation for our framework.
Firstly, under the light of this theory, the role of plan of work
and its relationship with the work itself can be understood
more clearly. As stated in [9], “plans as socially constructed
and used artifacts,” this means that on one hand, a plan is the
object of a collective activity. On the other hand, when the
plan has been completed, it again becomes an artifact for
achieving future work. Then after having finished, the work
in turn may become a plan for the next work. This
understanding is crucial for the development of
plan-supported collaborative framework. Secondly, the
activity theory implies and suggests a comprehensive set of
collaborative tools of a general-purpose collaborative
framework.

OGSA and grid infrastructure: recently, with the rapid
development of both standardization and infrastructure, grid
computing seems to become the most appropriate candidate
for building geographically distributed and highly
heterogeneous environments.

C. Architecture
Our framework composes of two layers:
Collective Activity Layer: this layer allows different

users to collaborate in order to build working plans, edit work
scripts, then run and monitor the edited work. Major
components of this layer are described below (see Fig. 3):

(1) VO and Group Management: this component is
responsible for updating of Virtual Organizations
(VOs), groups in the VOs, users in the groups. It
also needs to manage access rights and roles of the
users in VOs.

(2) Activity Planning: this component is responsible
for creating a new working plan or updating
existing ones.

(3) Action Assigning: this component is responsible
for assigning the action(s) in the working plan to
each user.

(4) Selecting Resources and Artifacts: this
component allows users to find and select suitable
resources used by actions in the working plans as
well as necessary collaborative artifacts for
collaboration of the actions. The final result of the
selection will be a work script

(5) Running and Monitoring: this component is
responsible for launching, running, monitoring, and
terminating activities.

(6) Resource Directory: this component contains
resources needed for running operations of work.

(7) Collaborative Artifact Store: this store contains
all collaborative artifacts.

Resource Coordination Layer: The main task of this
layer is to manage distributed resources and make them ready
for usage of the upper layer. The existing grid infrastructure
(Globus Toolkit 4) will be used for this layer.

IV. A SOLUTION FOR INVOKING GRID SERVICES WITHIN THE
ODE ENGINE

As mentioned above, the current ODE engine can only
support the invocation of Web services and not Grid
services.This problem needs to be investigated in detail,
before providing a suitable solution. In [2], we developed a
test determine how ODE engine invokes Web services and to
locate exactly the problem when the ODE has to deal with
invocation of an external grid service from a BPEL process.
From understanding of the issue, we proposed a clean
solution to solve it. To make it convenient for our readers,
here we will describe briefly what have been done in our last
research [2].

A. The Test
Our test comprises of two parts:
The main part is a BPEL process called

Test-FactoryGS-V2. Diagram of the process is illustrated in

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

101

Figure 4. The process will be run by ODE engine which is
deployed in Apache Tomcat 6.

The secondary part is a grid service called MathService,
which has been adapted from the example in [10]. This grid
service will be invoked from the above BPEL process. The
service already follows the factory/instance pattern [11],
which requires each grid service having its factory service
called MathFactoryService, a normal Web service whose
main role is to create instances of the Grid service. Besides
creating new instances, this operation (called createResource
in our example) also returns ResourceKeys for the instances.
The Globus Toolkit version 4.2 has been used to deploy this
grid service in its web service container.

In order to locate the problem, our BPEL process is
designed to inspect three activities:

The first activity is to invoke the Grid service in order to
get its ResourceKey. It invokes the operation createResource
of MathFactoryService and stores the returned ResourceKey
in a variable called CreateResourceOut by the following
code:

<invoke name="Invoke1" partnerLink="MathFactoryServicePL"

operation="createResource"

xmlns:tns="http://www.globus.org/namespaces/examples/core/Fact
oryService"

 portType="tns:FactoryPortType"

 inputVariable="CreateResourceIn"

outputVariable="CreateResourceOut"/>

The second activity is to assign this ResourceKey

(represented by a variable called CreateResourceOut) to a
PartnerLink, allowing the PartnerLink to carry the
ResourceKey. The code for this activity as follows:

<assign name="Assign5">

<copy>

 <from variable="CreateResourceOut" part = "response"/>

 <to partnerLink="MathServicePL"/>

</copy>

</assign>

The third activity is to use the PartnerLink to invoke

another operation called getValueRP of the Grid service.
The assignment of CreateResourceOut to the PartnerLink

MathServicePL was performed successfully. However, the
invocation of the third activity failed. Through checking the
in/out messages, the exact cause of the problem was found. In
the message sent to invoke operation getValueRP of the grid
service, the necessary MathResourceKey was not found.

It is clear from our investigation; two steps are required for
getting endpoint reference (EPR). The first step is to invoke
the operation CreateResource that returns the EPR from the
Grid service, and then the returned EPR needs to be stored in
a PartnerLink for later use. Surprisingly, even though the
EPR contains the ResourceKey, the ODE still supports these
two steps very well (please remember that in a Web service,
its EPR contains no ResourceKey, and the ODE only

supports Web services, not Grid services).
The issue of ODE in the Grid service invocation occurs

exactly when the PartnerLink carrying the EPR is used to
invoke operations in the Grid service. The reason is that the
message used in this invocation lacks the ResourceKey.

B. The Solution
It is clear from our investigation that in order to enable the

ODE engine to support Grid services invocation, we have to
develop a mechanism to allow adding suitable ResourceKey
into the message sent to invoke an operation of the Grid
service. Because ODE engine is built on Axis2, which uses
handlers (interceptors) to proceed messages, we need to
develop new handlers whose roles are to find out necessary
ResourceKeys and add them into the suitable messages.
Furthermore, these handlers have to be positioned in proper
positions in the series of existing handlers. In ODE, each
handler is implemented by a Java class.

Fig. 3. Diagram of BPEL process Test-FactoryGS-V2

Inherited from Axis2, the ODE engine also uses the file

axis2.xml to setup its configuration parameters such as
TransportSender, TransportReceiver, MessageReceiver,
Handlers and Handlers Processing Order, etc. Following is
the phaseOrder part, which setups the Handlers Processing
Order, extracted from configuration file axis2.xml of the
ODE engine. In this extraction, the bold part shows our
handlers that would be inserted after they have been
implemented:

<phaseOrder type="InFlow">

 …
 <!-- System pre defined phases -->
 <!-- After Postdispatch phase module author or service author
can add any phase he want -->
 <phase name="ProcessHeader">
 <handler name="SessionInHandler"

class="org.apache.ode.axis2.hooks.SessionInHandler">

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

102

 <order phase="PostDispatch"/>
 </handler>
 <handler name="ResourceKeyInHandler"
 class="our class here">
 <order phase="PostDispatch"/>
 </handler>

 </phase>
 <phase name="OperationInPhase"/>
 <phase name="soapmonitorPhase"/>
 </phaseOrder>

<phaseOrder type="OutFlow">
 <!-- user can add his own phases to this area -->
 <phase name="ProcessHeader">
 <handler name="SessionOutHandler"

class="org.apache.ode.axis2.hooks.SessionOutHandler">
 <order phase="PreDispatch"/>
 </handler>
 <handler name="ResourceKeyOutHandler"
 class="our class here">
 <order phase="PostDispatch"/>
 </handler>

 </phase>
 <phase name="soapmonitorPhase"/>
 …
 </phaseOrder>

C. Discussion on the Solution
We are not aware of any existing solutions that enable the

invocation of Grid services with ODE engine.
We can only comment on solutions that use different

BPEL engines.
i) Compared to the solution in [6] that extends the standard

BPEL by adding new activities, our solution is much simpler
on two points. First, with the solution that extends BPEL, the
users will not only have to learn newly added activities, but
also have to determine whether the service is a Grid service
or a Web service when they invoke the service. With our
solution invoking a Grid service is just like invoking a
normal Web service. Second, the solution that extends BPEL
requires many changes, from the module for compilation of
BPEL process, to the runtime module for the compiled
process. In contrast, our solution does not make any change
to these modules. It only adds some independent handlers
(each one is a Java class), and makes suitable changes only in
the configuration file to register the new handlers.

ii) The solution proposed in [5] is similar to ours but for the
ActiveBPEL engine, not for the ODE engine. Similar to the
ODE, this BPEL engine has not supported Grid services
invocation, but only Web services invocation. This solution,
however, has not mentioned this issue in the ActiveBPEL
engine. Only using tricks in a BPEL process and without
overcoming the issue of the BPEL engine, it seems very hard
to invoke successfully Grid services from the process.

In brief, our solution is the only one available so far for the
ODE BPEL engine for invoking Grid services. It is simple,
does not require modifications of the BPEL engine, and
requires little effort from BPEL process developers.

V. A SOLUTION FOR AUTOMATION OF DEPLOYMENT STAGE
OF BPEL PROCESSES IN ODE ENGINE

A. The Existing Issue in Deployment Stage of BPEL
Processes in ODE Engine
In order to deploy a BPEL process in ODE, a sequence of

steps has to be performed: Firstly, Partner Links have to be
created from the WSDL files and from the BPEL process
itself. Except one partner link that presents entities that will
use the BPEL process, other partner links represent external
web services that will be invoked in the BPEL process. After
that, a specific deployment file (deploy.xml) has to be created
according to the ODE’s structural specification of ODE.
Lastly, all necessary files related to the ODE-BPEL process
are copied to a specified directory to be compiled. If some
errors occur, which is often the case, the log file of the Web
server hosting the ODE has to be inspected manually for the
error message and determine the reason for the error. Even if
the compilation is successful, a runtime error can still exist
and the inspecting and guessing process has to repeat again
and again until successful.

It is clear from the above description that the
pre-deployment process is complicated, time consuming and
error prone. Even when one is familiar with the deployment
of Web services, it is still an unnecessary complicated
manual process that requires the understanding of BPEL, the
intimate knowledge of WSDL structures and syntaxes, and
the specific ODE’s specific structure of deploy.xml files. It is
also a tedious and time consuming process in manually
creating the Partner Link component in various WDSL and
deploy.xml files. The process is certainly prone to error. The
most tedious part of the process is to find errors from the log
file, which is extremely long and not well-structured as it
contains all kinds of messages from the Web server, not just
error messages relevant to one’s BPEL deployment
preparation process. This necessitates the development of an
automated tool for the process.

B. Our Solution
In the paper [7], we present a tool that supports the

deployment of BPEL processes in ODE. This tool will
resolve the problems mentioned above by providing
following capabilities:

• Automatically checking the validation of BPEL process
file and related WSDL files. If they are all valid then a
necessary deploy.xml file will be created.

• Automatically collecting all necessary files to
deployment directory of ODE, and initiating the
compilation process.

• Filtering and returning only relevant and useful
information about the potential errors associated with the
preparing and compilation process.

• Suggesting the possible solutions and reasons of the
errors.

• Facilitating the integration with BPEL editors. In the
next stage, the tool will be developed as an Eclipse
plug-in, so that it can be easily plugged into our
collaborative workflow editor that is currently being

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

103

developed in our research centre.
Our tool has been developed in form of a JAVA program.

In order to run the tool, it requires two arguments, one input
is the directory that contains all necessary files such as BPEL
and WSDL files; and one output is a deploy.xml file if all
necessary files on the input directory are valid. Otherwise, it
will display an error that helps find the reason why the
deploy.xml cannot be produced. In this tool, in order to read
and write BPEL and WSDL files that are all XML files, we
use DOM (Document Object Model) API of JAVA.

Our tool has been tested with several different projects of
BPEL. With the projects that all files are valid, our tool also
produces valid appropriate deploy.xml files that are ready for
the deployment of these projects in deployment directory of
ODE. In this case, our tool also supports two kinds of WSDL
files:

• The normal WSDL file: with this type of files, the file
contains all information about partner links, services and
ports. Therefore, it is quite easy to get all this information
by reading only one file.

• The wrap WSDL file: This type is an extension of a
normal WSDL file. This file extracts the partner links
from the appropriate normal WSDL file and wrap them in
a new WSDL file. This wrap file has to import the normal
file. Once the wrap WSDL file is created, the partner link
information will be extracted, and then following the
import link, the information about the service and port
can also be extracted.

VI. RELATED WORK

A. Existing Approaches in Invoking Grid Services from
BPEL
A Grid service is a stateful web service: a Web service plus

persistent resources. Each resource has its own ID called
Resource Key. The combination of grid service address and
its resource defines an endpoint reference (EPR). Normally,
the value of grid service address is static and known before its
running time. However, the value of resource key is dynamic
and this presents a problem for the ODE to deal with Grid
services. Possible approaches for resolving this problem
include:

• Extending BPEL by adding new activities [6] into the
standard BPEL. Among these activities, one (called
gridCreateResourceInvoke) is used to get EPR, and
other one (called GridInvoke) is for calling operations
of the Grid service.

• Adding an operation in the Grid service that needs to
be invoked, as suggested in [5, 11]. This operation
will return EPR of an instance of that Grid service
(therefore the operation is normally called
CreateResource).

Clearly, extending BPEL is not a simple task, as it requires
numerous changes in the standard BPEL engine, from the
compilation of BPEL processes to the implementation of new
activities.

Our effort focuses on the adding the operation to Grid
services as it potentially provides cleaner and better

solutions.

B. Existing GCFs
1) The Patient Scheduler [12]
It is a prototype developed in the project SAIK whose

objective is to investigate how network-based computers
could improve cooperation and coordination of patient
treatment. This objective shares some similarities with our
project.

The development of PATIENT SCHEDULER aims at
illustrating how the coordination and collaboration of
healthcare work can be supported by computers. However,
this product is only a prototype, and is only applied into the
healthcare domain.

2) GridCole
GridCole [13] is a collaborative E-learning system that

supports the realization of scripted learning situations which
each of them consists of sequence of activities. In addition,
with the desirable feature of tailorability, end-users of this
system (educators and students) can integrate external tools
into the learning situations. By using the grid services
approach, this integration enables different kinds of tools;
even those require supercomputer capabilities and specific
hardware. In this system, IMS Learning Design (IMS-LD)
specification has been used to describe learning situations.
There are two kinds of external tools in GridCole, individual
and collaborative. Among two of them, collaborative tools
will be used to coordinate activities within each learning
situation.

The description of the collaborative learning situations has
been provided by means of a unit of learning which is
according to IMS-LD specification. Two types of unit of
learning can be used: complete and incomplete. Complete
units of learning are those that contain all necessary
information for integration of actual tools in the stage of
realization of the learning situations. Otherwise incomplete
units of learning do not have such information, but only a
generic description of needed tools. Therefore, incomplete
units of learning cannot be realized until they have been
transformed to complete ones.

The main limitation of this system is not plan-supported.
Even though that the incomplete units of learning seems to
play the role of plans, but actually they are not independent
plans.

3) Collaborative Design
The Collaborative Design Grid (CDG) [14] is a framework

that aims to resolve two main problems in collaborative
design: resource sharing and geographically distributed
collaboration. The architecture of this framework bases
mostly on OGSA, implemented Grid services on Globus
Toolkit 3. This framework, however, has neither focused on
supporting scripted work nor working plan.

4) Grid-enabled large scale
A framework called Grid-based Cooperative Framework

[15] has been developed aiming to build Grid-enabled
Large-scale Collaboration Environment. This environment
aims to support users to create large-scale and real/natural
collaborations with some main features:

• Large scale collaboration (deeper and wider
collaboration, hierarchical structures).

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

104

• Various cooperative modes (syn/asyn,
intra-group/inter-group).

• Various coordination mechanisms
(explicit/implicit/improvise).

• Integration of several coordination mechanisms into a
single one

Even though this framework aims to develop large-scale
collaboration environment, but it has not supported scripted
learning situations which play an important role as working
plans for learning processes. Without these plans, it is very
difficult to manage the sequence of activities in learning
processes, and this may lead to ineffective and uncontrollable
learning processes.

5) Open Collaborative Grid Service Architecture
(OCGSA) [16]
This architecture aims to provide a common framework for

collaborative applications. In this architecture, the Grid
service concept in OGSA (as low level service) is extended to
Collaborative Grid service (high level service), by the
extension of Grid service portType with metadata for group
management and security. In parallel, the notification
mechanism is also extended with the ability of predefinition
of notification topics. Another new component in OCGSA
compared to OGSA is the Event Archiving service that is
responsible for managing the logs/messages exchanged
between users/groups. However, this architecture only offers
a basic level that does not include adequate concrete
mechanisms for supporting realistic collaboration. This
makes it very hard to be applied in development of real grid
collaborative frameworks or applications.

VII. CONCLUSIONS
The contribution of the paper is summarized as follows.
Firstly, this paper connects main ideas of the Activity

Theory to Grid by proposing a Plan-supported Collaborative
Grid Framework. This framework allows three levels of
collaboration from coordinating activity, cooperating activity
to coconstructive activity. Interactions between these levels
and components of the framework allow collaborative plans
to be created and dynamically modified; objectives to be
shared and co-optimised; and actions to be distributed and
optimally executed by participants. The aim is to provide a
generic Grid Framework for supporting collaborative work
applicable to a wide range of application domains. The
significance of such a solution is that it allows various Grid
services to be composed into structured Grid/Workflows
using BPEL and to be invoked through the Grid
infrastructure underneath. This implies complex sequences
of tasks can be composed and automated over the Grid
computing environment rather than simple Grid requests.

Secondly, we thoroughly investigated the problem with the
ODE BPEL engine to pin point the reason for it not being
able to invoke stateful Grid services. It offered a simple and
practical solution that is not known to exist.

Lastly, the issue of manual preparation of deployment
stage of BPEL processes by the ODE engine has also been
solved completely by our tool. This simplified greatly this

stage and allowed the BPEL process creators focusing only
on the process creation step, not on following deployment
step any more.

Our next step is to implement and deploy the solution for
Gridflows applications.

REFERENCES
[1] Binh Thanh Nguyen and D. B. Hoang, "Building a Plan-Supported

Grid Collaborative Framework” in 2nd International Cenference on
Communications and Electronics (ICCE 2008) Golden Sand Resort,
Hoi An City, Vietnam, 2008.

[2] Binh Thanh Nguyen, Doan B. Hoang, and T. T. Nguyen, "Enabling
Grid Services from BPEL process using ODE engine," in IEEE ICCSIT
2011 Chengdu, China, 2011.

[3] C. K. Ian Foster , Steven Tuecke, "The Anatomy of the Grid,"
International Journal of High Performance Computing Applications,
2001.

[4] M. A. B. David De Roure , Nicholas R. Jennings , Nigel R. Shadbolt,
"The evolution of the Grid," John Wiley & Sons, 2003.

[5] Onyeka Ezenwoye , S. Masoud Sadjadi , Ariel Cary , and M. Robinson,
"Grid Service Composition in BPEL for Scientific Applications,"
Spinger-Verlag, 2007.

[6] T. Dornemann , Thomas Friese , S. Herdt , and B. Freisleben, "Grid
Workflow Modelling Using Grid-Specific BPEL Extensions," German
e-Science, 2007.

[7] Binh Thanh Nguyen and D. B. Hoang, "An automatic tool for
deployment of BPEL processes in ODE Apache," in EEE'09 - The 2009
International Conference on e-Learning, e-Business, Enterprise
Information Systems, and e-Government Monte Carlo Resort, Las
Vegas, Nevada, USA 2009.

[8] Ian Foster, Jeffrey Frey, Steve Graham, Steve Tuecke, Karl Czajkowski,
Don Ferguson, Frank Leymann, Martin Nally, Igor Sedukhin, David
Snelling, Tony Storey, William Vambenepe, and S. Weerawarana,
"Modeling Stateful Resources with Web Services version 1.1," 2004.

[9] J. E. Bardram, "Plans as situated actions: An activity theory approach
to workflow systems," in Proceedings of the 5th European Conference
on Computer Supported Collaborative Work, Lancaster, UK, 1997, pp.
17–32.

[10] B. Sotomayor, "The Globus Toolkit 4 Programmer's Tutorial."
[11] Onyeka Ezenwoye, S. Masoud Sadjadi, Ariel Cary, and M. Robinson,

"Orchestrating WSRF-based Grid Services," School of Computing and
Information Sciences Florida International University 2007.

[12] J. E. Bardram, "Collaboration, Coordination and Computer Support -
An Activity Theoretical Approach to the Design of CSCW," in Aarhus,
1998.

[13] E. G.-S. Miguel L. Bote-Lorenzo, Guillermo Vega-Gorgojo , Yannis A.
Dimitriadis, Juan I. Asensio-Perez, Ivan M. Jorrin-Abellan, "Gridcole:
A tailorable grid service based system that supports scripted
collaborative learning," Computers and Education, 2007.

[14] X. J. Zhi Li , Yuan Cao , Xiaoyun Zhang , Yuanyin Li, "Architecture of
collaborative design grid and its application based on LAN," Advances
in Engineering Software, 2007.

[15] S. Y. Y. Li , Jinlie Jiang , Meilin Shi, "Build Grid-enalbled large-scale
Collaboration Environment in e-Learning Grid," ScienceDirect, 2006.

[16] G. v. L. K. Amin , S. Nijsure, "Open Collaborative Grid Service
Architecture," Euroweb, 2002.

Msc Binh T. Nguyen, a lecturer at the school of
Electronics and Telecommunication of the Hanoi
University of Science and Technology, received his
Master in computer science at the Francophonie Institute
for Information (IFI).

His research interests include Grid Computing, Cloud
Computing, Collaborative Systems and Workflow
Languages.

Huu-Duc Nguyen, a lecturer at the school of
Information Technology anf Communication of the
Hanoi University of Science and Technology, received
his Ph.D. in computer science from the Japan
Advanced Institute of Science and Technology.

His primary research interest is in the area of
foundation for programming languages, specifically

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

105

design and implementation of parallel programming languages for
multicore/manicore architechtures. He also has interests in problems relating
to high performance computing, grid computing and cloud computing.

Doan B. Hoang is a Professor in the School of
Computing and Communications, Faculty of
Engineering and Information Technology, the
University of Technology, Sydney (UTS). He is a
Director of iNEXT - UTS Centre for Innovation in IT
Services and Applications, a research centre at the
University of Technology, Sydney for developing and
nurturing innovation for the NEXT generation IT

services and applications, including Internet-enabled business applications,
mobile health services, high-end visualization technologies, novel image
processing architectures, and advanced video surveillance systems.

His research interests include Next Generation Networks (Security,
Quality of Service, Mobility, Service-Oriented Architecture, Peer-to-Peer),
Broadband Service Architecture, Collaborative Grid and Cloud Computing,
Wireless Sensor Networks and e-Health. He is currently leading research into
establishing an innovation culture, reducing the cost of healthcare system
through advanced technologies and assistive health Grid/Cloud, and
generating wealth through innovative use of the Broadband Internet.

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

106

