
  

  
Abstract— Support Vector Machine (SVM) is a powerful and 

flexible learning machine. In recent years combination of SVM 
and Transductive learning has attracted more and more 
attention. In many applications such as gene expression, 
unlabeled data is abundant and available. However labeling 
data is much more difficult and expensive. Dealing with gene 
expression datasets, challenges such as curse of dimensionality 
and insufficient labeled data is inevitable. This paper introduces 
Iterative Transductive Support Vector Machine (ITSVM). This 
method which constructs a hyperplane using both training set 
and working set approximates the optimal solution. Applying 
proposed algorithm on gene expression datasets show that the 
proposed method can exploit unlabeled data distribution. In 
many cases our method improved the accuracy compared to 
related methods. 
 

Index Terms—Transductive learning; gene expression; 
support vector machine; cancer. 
 

I. INTRODUCTION 
Reliable and successful classification is essential for 

diagnosing patients for further treatment. The DNA 
micro-array technology has brought to data-analysts 
extensive patterns of gene expression simultaneously 
recorded in a single experiment [1]. cDNA microarray and 
high density oligonucleotide chips are novel biotechnologies 
increasingly used in gene expression research [2]. 
Monitoring gene expression levels in cells may lead to better 
understanding of the molecular variations among tumor. 
Gene expression datasets has many challenges such as large 
number of features (usually thousands of features), relatively 
insufficient number of labeled data, noise and etc. the noise in 
datasets arises from irrelevant features and error in dataset 
preparation phase. In this situation we can easily find a linear 
classifier to separate the training data but it will perform 
poorly on working sets. In other words we deal with sparse 
points in the feature space. 

It is crucial that the learner be able to generalize well using 
little training data [3]. So, we seek overall risk minimization 
to minimize empirical error on both training and working set. 
The transduction problem is to estimate the value of 
classification function at the given points in the working set. 
This contrasts with the standard inductive learning problem 
of estimating the classification method at all possible values 
and then using the fixed function to deduce the classes of the 
working dataset [4].  

In this paper, we introduce a new Transductive learning 
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algorithm based on SVM called Iterative Transductive 
Support Vector Machine (ITSVM). We use the ITSVM to 
solve transductive problem using overall risk minimization 
(ORM) posed by Vapnik. ITSVM tries to approximate 
optimal solution by iterative procedure. Many feature 
reduction techniques exist that can be useful for extracting 
proper features and discard others. Discarding features may 
cause loss of important information and needs careful 
observation. The proposed method, which constructs a 
hyperplane using both training set and working set, 
approximates the optimal solution. The experimental results 
show that the proposed method can exploit the distribution of 
unlabeled data on the used gene expression datasets. The 
experimental results show that in many cases the proposed 
method improves the accuracy compared to related methods. 

The rest of the paper is organized as follows: In section II 
we review some related work on transductive learning. Then, 
we introduce the Iterative Transductive Support Vector 
Machine (ITSVM) in section III. Details about gene selection 
and experimental results discussed in section IV and the 
conclusion of the paper is given in section V. 

 

II. RELATED WORKS 
The foundations of Support Vector Machine (SVM) have 

been developed by Vapnik based on the foundations of the 
statistical learning theory [5]. Various algorithms based on 
support vector machine try to use transductive approach 
instead of inductive approach to minimize error on empirical 
data in training and working set at the same time [6]-[8]. 
SVM uses Structural Risk Minimization (SRM) to minimize 
empirical misclassification rate and the capacity of the 
classification function using only training data. According to 
structural risk minimization, for a fixed empirical 
misclassification rate, larger margins prevent overfitting and 
lead to better generalization [4], [9]. 

There are several algorithms that are proposed for 
transductive learning based on SVM. In this section we 
briefly review two methods that are superior to other 
methods. 

A. Transductive vs. Inductive Approach 
The main goal of learning classifiers is to assign labels to 

the working set (unlabeled data) using the training set 
(labeled data). If the working set is empty the methods 
become supervised learning. If the training is empty methods 
become unsupervised learning that many clustering 
approaches exist in such situations. Transductive and 
semi-supervised learning occur in the problem that both 
working set and training set are non-empty and used for 
learning phase of classifiers. 
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The transductive approach is used when the only concern 
is labeling working set while inductive approach tries to 
classify whole problem space. Inductive approach is to learn 
a decision rule based on training set and then apply it to 
working set. Fig. 1 illustrates separation using only training 
data. This may not seem perfect solution when size of 
training data is relatively small. In other words when we only 
want to know the labels of some points in feature space, 
inductive learning tries to solve bigger problem with little 
information. Fig. 2 shows hyperplane separator when 
transductive approach is applied. The output of transductive 
methods is only labels of working sets, not the classifier. 

B. Support Vector Machine 
Consider the problem of separating the set of binary class 

training example in feature space. Given a set of training 
example, 
,ଵݔ)  ,(ଵݕ … , ,௟ݔ) (௟ݕ  ∈  ܴ௡  × {−1, +1} (1)

 
where vector ݔ௜ is a sample of training set in the feature space, 
SVM aims to build the following separating hyperplane 
based on the training set. 
ݓ  ∙ ݔ + ܾ = 0 

 
(2)

So that 
ݓ  ∙ ௜ݔ + ܾ ≥ ௜ݕ  ݂݅    1 = 1 
 
And 
 

(3)

ݓ ∙ ௜ݔ + ܾ ≤ ௜ݕ ݂݅   1− = −1, ݅ = 1, … , ݈ 
 

(4)

Or equivalently 
.ݓ)௜ݕ  ௜ݔ + ܾ) ≥ 1 ݅ = 1, … , ݈ 
 

(5)

According to structural risk minimization, for a fixed 
empirical misclassification rate, larger margin leads to better 
generalization and prevents overfitting [4]. The hyperplane 
that separates vectors ݔ௜  correctly and has the maximal 
margin is optimal hyperplane [5]. The distance of margin 
given by 
ܦ  = min௫೔|௬೔ୀଵ .ݓ ௜ݔ + |ݓ|ܾ −  max௫೔|௬೔ୀିଵ .ݓ ௜ݔ + |ݓ|ܾ  

(6)

 
Hence to maximize the margin, we seek vector ݓ  that 
minimizes 
(ݓ)ߠ  = 12 ห|ܹ|หଶ

 
 

(7)

subject to constraint given in equation (5). The optimization 
problem can also be expressed as 
 min௪,௕ maxఈ  ൝12 ห|ݓ|หଶ − ෍ .ݓ)௜ݕ௜ሾߙ ௜ݔ + ܾ) − 1ሿ௟

௜ୀଵ ൡ 
(8)

 
Fig. 1.  Illustration of separator hyperplane constructed by SVM. triangle, 

circle an star are positive, negative and unlabeled points. 
 

Above problem is known as hard margin SVM. For the 
non-linear separable case, soft margin SVM has been 
introduced by Vapnik. Soft margin allows SVM to have some 
mislabeled examples to maximize the margin. If there exist 
no hyperplane that split training example, the soft margin 
method chooses a hyperplane that splits data as cleanly as 
possible. This method uses slack variable, ߦ௜ which can be 
interpreted as error penalty. Constraints in this situation 
become: 
.ݓ)௜ݕ  ௜ݔ + ܾ) ≥ 1 − ,௜ߦ ݅ = 1, … , ݈ (9)

And optimization problem becomes 
 min௪,క,௕ maxఈ ൝12 ห|ݓ|หଶ + ܥ ෍ ௜௟ߦ

௜ୀଵ− ෍ .ݓ)௜ݕ௜ሾߙ ௜ݔ + ܾ) − 1ሿ௟
௜ୀଵ− ෍ ௜௟ߦ௜ߚ
௜ୀଵ ൡ 

(10)

 
Another property of SVM is kernel functions that can be 

used for non-linear classification. In this work we only focus 
on linear classification. For more information about kernel 
functions in SVM please refer to [5]. 

 

C. Transductive Inference in Support Vector Machine 
The new type of inference, the transductive inference, has 

been introduced in order to improve performance on the 
given working set. For a class of linear indicator functions, 
Vapnik proved that bounds on test error rate are better than 
bounds on error rate for inductive inference. To formulate our 
discussion, we have 
,ଵݔ)  ,(ଵݕ … , ,௟ݔ) (௟ݕ ∈ ܴ௡  × {−1, +1} 
,∗ଵݔ)  ,(∗ଵݕ … , ,∗௞ݔ) (∗௞ݕ ∈ ܴ௡  × {−1, +1} 
 

(11)

And objective function is to estimate ݕଵ∗, . . , ∗௞ݕ  that 
minimize the number of errors in the working set. 
Transductive inference suggests that solution with maximal 
margin separation leads to better performance. As a more 
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general setting (non-separable case), the optimization 
problem would be (ݓ)ߠ = 12 ||ܹ||ଶ + ܥ  ෍ ௜௟ߦ

௜ୀଵ + ∗ܥ ෍ ௜∗௞ߦ
௜ୀଵ  

(12)

.ݏ .ݓ)௜ݕ   .ݐ ௜ݔ + ܾ) ≥ 1 − ,௜ߦ ݅ = 1, … , ݈ 
.ݓ)∗௜ݕ  ∗௜ݔ + ܾ) ≥ 1 − ,∗௜ߦ ݅ = 1, … , ݇ 
∗௜ߦ  > 0, ݅ = 1, … , ݈ 
∗௜ߦ  > 0, ݅ = 1, … , ݇ 
 

Note that finding the optimal solution to this problem 
requires searching all possible values of ݕଵ∗, . . ,  ௞∗ and chooseݕ
one that leads to maximal margin separation. This needs 2௞ 
times of solving quadratic optimization that is infeasible for 
large numbers (more than 10 samples) of working set. 
Some algorithms have been developed to approximate the 
optimal solution. We will discuss some of them in the rest of 
this section. 

D. Related Algorithms 
Currently, the most important work of transductive 

learning using SVMs is TSVM developed by Joachims [3]. 
TSVM tries to approximate the optimization problem (12). 
The most contribution of TSVM lies in the fact that it can 
solve the optimization algorithm that effectively handles 
large scale datasets. TSVM algorithm can be summarized in 
following steps: 

 
Step 1: specify C and C* where C is penalty factor for 
misclassification in training set and C* is "effect factor" for 
unlabeled samples in working set. Assign a number N to the 
estimation of positive samples in working set. 
 
Step 2: based on inductive inference classification using 
labeled samples, Label N samples with largest decision 
function value as positive samples and label others as 
negative. Assign a temporary factor C*

+ and C*
- for main 

loop. 
 
Step 3: Train SVM with current assigned labels and current 
effect factor. Switch labels of two different-labeled samples 
that at least one of them is currently misclassified. Based on 
switching condition, it guarantees that objective function 
decreases. This procedure continues until no samples satisfy 
the switching condition. 
 
Step 4: increase temporary factor C*

+ and C*
- slightly, if it 

exceeds the C* factor, the algorithm is finished. Otherwise go 
to Step 3. 

 
Optimization formula in TSVM is similar to the one that is 

presented by K. Bennett  in  the  semi-supervised  support 
vector machine (S3VM) [4]. But their approaches differ in 
solving optimization function. 

Another algorithm in the transductive learning based on 
SVM is Progressive Transductive Support Vector Machine 
(PTSVM) developed by Chen, Wand and Dong [8]. PTSVM 
states that its method outperforms TSVM in some datasets 
and converges faster. The algorithm used in the PTSVM has 
no prior knowledge about positive and negative samples. 

 

 
Fig. 2. Illustration of separator hyperplane constructed by Transductive 

approach. triangle, circle an star are positive, negative and unlabeled points. 
 

Their progressive method selects the largest margin data in 
the margin area and labels it with current separation 
hyperplane. To prevent hyperplane to move just one side, at 
each step PTSVM labels positive and negative samples. We 
can summarize PTSVM in following steps: 
 
Step 1: specify C and C* where C is penalty factor for 
misclassification in training set and C* is "effect factor" for 
unlabeled samples in working set. 
 
Step 2: label one positive unlabeled sample and one negative 
unlabeled sample such that they satisfy the condition 9 or 10. 
 ݅ଵ = ݃ݎܽ max௜|଴ழ௙(௫೔∗)ழଵ|݂(ݔ௜∗)| 
 

(13)

݅ଶ = ݃ݎܽ max௜|ିଵழ௙(௫೔∗)ழ଴  |(∗௜ݔ)݂|
 

(14)

Step 3: train SVM with training data and extra labeled data. 
Compute decision function value for every unlabeled 
example in the working set. Cancel all inconsistent labels. 
 
Step 4: if no sample satisfy condition 9 or 10 anymore, label 
others based on decision function value and stop the 
algorithm, otherwise go to step 2. 
 

When no samples satisfy these two conditions, it means 
that remaining samples lies out of margin area. In this 
situation PTSVM labels remaining samples based on 
classification function value and output labels. 

The basic idea of PTSVM is moving the hyperplane based 
on most confidence unlabeled sample. PTSVM at each 
iteration cancels all the labels that are inconsistent with 
current hyperplane, so it doesn't guarantee that the algorithm 
will converge and it surely doesn't prove progress in each 
iteration. 

III. ITERATIVE TRANSDUCTIVE SUPPORT VECTOR MACHINE 
Experiments shows that TSVM can achieve better 

performance than inductive SVM in many applications 
because it successfully uses distribution information 
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implicitly in the working set.  
However TSVM has its own drawbacks. Its performance is 

mainly sensitive to estimation of parameter N that has to be 
assigned in the beginning of the algorithm. Parameter N is the 
estimation of positive-negative sample ratio and 
positive-negative ratio of output will be around N. In 
practical applications this bias can be very destructive to 
method performance. For example in cancer classification 
datasets there is about half positive and half negative samples, 
but the ratio in real patients has a big deviation from datasets. 
Also, computation effort in TSVM can be high based on 
unlabeled data size. Based on computation needed for TSVM, 
PTSVM can be much faster than TSVM. PTSVM labeling is 
based on SVM decision hyperplane. A drawback of PTVM is 
that in this method, unlabeled data in margin area will be 
labeled before unlabeled data out of margin area. In other 
words, PTSVM tries to label most confident data in each step 
but it chooses data in margin area to label, that contradicts 
with its goal. In this situation, some data out of margin area 
will be switched in other steps.  

A new transduction approach to SVM is proposed in this 
section to approximate the optimization problem presented 
before. In this method, positive-negative ratio in not specified 
with prior knowledge and in each Iteration some unlabeled 
data will be classified. We call this method Iterative 
Transductive Support Vector Machine (ITSVM). 

The basic idea of ITSVM is choosing the most reliable 
sample and label it based on optimization formula. The 
method chooses the candidate sample as accurate as possible 
in each step and because of that there is no need to fix earlier 
decision. First of all we need to answer some questions: 

 

1. Could the distance from separator hyperplane be an 
accurate measurement? 

2. Which sample is the most confident sample? 

3. How do we label the most confident sample? 
 

Currently, the presented algorithms such as PTSVM 
chooses most confident samples based on the distance from 
separator hyperplane and label them based on SVM 
classification. Note that transductive approach will be used in 
area that inductive SVM doesn’t achieve promising results. 
So finding samples and labeling them with current 
hyperplane may lead classifier to wrong direction. Also we 
have another issue, some samples have a same distance from 
hyperplane but choosing one or another can be very different 
for the learner. As you can see in Fig. 3, samples 1 and 2 have 
same distance from hyperplane. Based on iteration we can 
label sample 2 as negative and still have a separation 
hyperplane, but there is no way to label sample 1 as negative 
and be able to classify linear. This simple figure shows that 
the distance from the hyperplane may not be the best 
measurement. To answer the second and third question, we 
define the most confident sample as follows: 

 
The most confident sample is the one that labeling it as 

positive (or negative) benefits the optimization formula the 
most than labeling it as negative (or positive). 
 

 
Fig. 3. Illustrating samples with same distance from hyperplane.  

 
SVM hyperplane is linear combination of only Support 

Vectors and not entire training set, but the sample extracted 
from above definition is dependent to entire data training 
distributions.  

Iterative methods suffer from earlier mistakes and fixing 
them is not always possible. Every labeling should be as 
accurate as possible. Adding every unlabeled sample to 
training set can shift and rotate hyperplane slightly, and we 
hope that this extra information leads the current hyperplane 
to the optimal solution. 

The most confident sample can be computed based on 
formulation below. We can assign optimization value to any 
sample based on positive or negative labels. 
,ݓ)ߠ  ∗௞ାଵݕ , ∗௞ାଵݔ , ݇)= 12 ||ܹ||ଶ + ܥ  ෍ ௜௟ߦ

௜ୀଵ+ ∗ܥ ෍ ௜∗௞ߦ
௜ୀଵ + ∗௞ାଵߦ ∗ܥ   

(15)

.ݏ  .ݓ)௜ݕ   .ݐ ௜ݔ + ܾ) ≥ 1 − ,௜ߦ ݅ = 1, … , ݈ 
.ݓ)∗௜ݕ  ∗௜ݔ + ܾ) ≥ 1 − ,∗௜ߦ ݅ = 1, … , ݇ + 1 
∗௜ߦ  > 0, ݅ = 1, … , ݈ 
∗௜ߦ  > 0, ݅ = 1, … , ݇+1 
 
And we define difference optimization value of sample ݔ௝∗ (k 
is number of unlabeled data that is classified currently) as: 
,∗௝ݔ൫ܦ  ݇൯ = ,ݓ൫ߠ −1, ,∗௝ݔ ݇൯ − ,ݓ൫ߠ  +1, ,∗௝ݔ ݇൯ (16)

 
In simple words, difference optimization value is the 

measurement of a sample labeling in optimization function. 
The positive (or negative) value means that positive (or 
negative) labeling of the sample leads to minimum value for 
the optimization method. 

Now, we can summarize ITSVM in following steps: 
 
Step 1, Specify parameters C* and C. 
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Step 2, Set parameter k as unlabeled data count that are 
labeled so far. Compute optimization difference value for 
every sample in working set. 
Step 3, If exists, find sample with the highest positive value. 
Label it as positive data and remove it from working set. 
 
Step 4, If exists, find sample with the lowest negative value. 
Label it as negative data and remove it from working set. 
 
Step 5, If exists, unlabeled data in working set, go to step 2, 
otherwise stop the algorithm. 
 

The main contribution of this approach is that every 
decision is based on transductive objective function instead 
of sample distances of current hyperplane and decision 
function. This approach guarantees that all training samples 
contribute to choose the best sample to be labeled in each 
step. 

IV. EXPERIMENTAL RESULTS 
Gene expression datasets usually have more than thousand 

features with less than hundred samples. In this problem 
space you can easily find a classifier that successfully 
separates training samples, but will perform poorly on test set. 
Generalization from this sparse space often leads to 
overfitting. Overfitting arises in areas that number of training 
patterns is relatively small due to the number of features. We 
use SVM Recursive Feature Elimination as a gene selection 
method. Using small subset of features (Genes) we can build 
a high accuracy classifier [10], [11]. 

The method SVM-RFE can be used for identification of 
discriminate genes which are of practical interest. Gene 
subset that we extract in this method can be very useful. 
Many irrelative genes are discarded in this procedure. 

SVM-RFE is an iterative procedure based on ranking 
criterion. Ranking criterion can be computed from vector 
weights in SVM hyperplane. SVM-RFE builds a SVM 
classifier based on training samples in each step and 
computes ranking criterion for all features and discards 
feature with smallest ranking criterion. 

In order to evaluate the proposed algorithm, computer 
experiments are conducted. In these experiments, we use the 
following gene expression data sets: Leukemia, Colon, and 
Prostate. The Leukemia dataset contains 72 Leukemia 
samples reported by Golub et al. [12]. It contains total of 
(training and test) 47 samples of acute lymphoblastic 
leukemia and 25 samples of acute myeloblastic leukemia. In 
this dataset, gene expression of 6,817 genes is collected. This 
dataset is available on web at http://www.genome 
wi.mit.edu/MPR 

The colon dataset contains 62 samples from colon-cancer 
patients reported by Alon et al. [13]. It is a collection of 40 
tumor biopsies samples are from tumors and 22 normal 
samples from healthy parts. 2,000 genes out of 6500 are 
selected based on confidence in experimental measurement. 
This dataset is available on web at 
http://microaaray.princeton.edu/oncology 

The prostate dataset contains 136 samples from non-tumor 
and tumor prostate samples reported by Dinesh Singh et al. 
[14]. It is a collection of 52 prostate tumor and 50 non-tumor 

samples with around 12,600 genes. This dataset is available 
on web at http://www-genome.wi.mit.edu/mpr/prostate 

The cancer datasets Leukemia, Colon and Prostate is 
widely used for cancer classification. We used SVM-RFE to 
extract relevant genes and reduce feature space. In all 
experiments we selected top 100 genes of every dataset based 
on training set. This feature space is easily linear separable 
and we do not need any kernel function. Two experiments 
were designed for our method; classification accuracy and 
optimization values. 

Table 1 shows average test error in 20 independent runs. 
We used different unlabeled sample size in each datasets and 
perform experiment. This could cover the cases were 
unlabeled samples are low or high. If one method could 
classify better in most cases, it would be more likely to do 
better in real world. 

Test error values in Table 1 shows that ITSVM proposed in 
this paper performs better than inductive SVM in most 
experiments. It indicates our methods exploits from 
unlabeled data distribution for better classification. In nine 
out of twelve experiments the ITSVM achieved increase in 
generalization compared to other transductive methods. In 
most cases, our proposed method could separate gene 
expression samples more accurately. In each experiment the 
method which performs better is shown bold in Table 1 and 
Table 2. 

Table 2 shows optimization values based on transductive 
optimization formula (12) for all methods. Based on theorem 
proposed by Vapnik, we try to minimize objective function 
and it will reduce average test error in general. As you could 
see in Table 2 ITSVM method could reduce the cost function 
compared to other methods and as a result larger margin 
could be obtained. In eleven out of twelve experiments 
ITSVM could optimize the equation better than related 
methods. 
 

V. CONCLUSIONS 
An iterative transductive support vector machine (ITSVM) 

is presented in this paper as an attempt to approximation the 
optimal solution. We define a new measurement for choosing 
and labeling sample in transductive inference in SVM. The 
experimental results show that ITSVM is not sensitive to 
datasets and informal decision in labeling samples can lead to 
better generalization. The proposed method calculates the 
quantitative value for unlabeled samples and chooses best 
action at each step. This feature could help us build a novel 
transductive multi-class classifier. 

Classifiers used in cancer classification always suffer from 
relatively small number of training data; in this paper we 
study how samples with unlabeled data tackle this problem. 

Still many questions are left, how do we apply ITSVM in 
multi-class problems? Kernel based methods can be used in 
ITSVM. Using kernel functions in ITSVM needs to be 
explored. How we use unknown patients' data to classify 
target patient? How well knowledge about relevant genes 
effects transductive methods accuracy? What is the effect of 
problem space VC-Dimension on accuracy? All this 
questions deserves further research. 
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TABLE I:  AVERAGE TEST ERROR ACCURACY OF SVM,TSVM,PTSVM AND ITSVM ON DATASETS 
Experiments Averaging Test Error Rate 

Dataset Unlabeled 
Samples Labeled Samples SVM PTSVM TSVM ITSVM 

Leukemia 

12 60 4.0% 2.8% 18.4% 2.8% 
24 48 7.3% 5.8% 16.2% 3.8% 
36 36 7.6% 7.6% 14.7% 5.8% 
48 24 16.5% 12.7% 19.8% 10.4% 

Colon 

10 52 15.4% 15.4% 22.7% 13.8% 
21 41 19.8% 19.1% 22.8% 18.0% 
31 31 21.9% 19.3% 23.5% 18.2% 
41 21 24.4% 23.3% 24.9% 24.0% 

Prostate 

17 85 6.7% 7.4% 17.1% 7.4% 
34 68 9.1% 9.28% 15.3% 7.6% 
51 51 10.6% 9.2% 19.0% 9.5% 
68 34 17.0% 12.9% 18.8% 10.6% 

 
 

TABLE II:  OPTIMIZATION VALUE OF SVM,TSVM,PTSVM AND ITSVM ON DATASETS 
Experiments Averaging Test Error Rate 

Dataset Unlabeled 
Samples Labeled Samples SVM PTSVM TSVM ITSVM 

Leukemia 

12 60 0.281 0.279 0.454 0.274 
24 48 0.310 0.316 0.433 0.306 
36 36 0.390 0.390 0.534 0.349 
48 24 0.489 0.506 0.646 0.479 

Colon 

10 52 1.029 0.943 1.238 0.944 
21 41 1.026 1.020 1.255 1.019 
31 31 1.205 1.060 1.514 1.032 
41 21 1.164 1.060 1.626 1.026 

Prostate 

17 85 9.016 8.809 10.495 8.658 
34 68 9.407 10.394 11.570 9.217 
51 51 12.568 14.571 16.565 10.082 
68 34 14.657 13.795 18.011 10.861 
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