
  

  
Abstract—This paper represents a novel approach to 

improve de-speckling in SAR images. At firstl, Smoothing of the 
coefficients of the highest wavelet sub-bands is applied on 
decomposed wavelet coefficients. A Gaussian low pass filter 
using a tours algorithm has been used to decompose the image. 
Then, the learning of a Kohonen self organizing map (SOM) is 
performed directly on the de-noised image to take out the blur. 
Traditional speckle reduction approaches cause artificial 
structures, blurred and smoothed image, although intelligent 
de-blurring technique captured these problems. Quantitative 
and qualitative comparisons of the results obtained by the new 
method with the results achieved from the other speckle noise 
reduction techniques demonstrate its higher performance for 
speckle reduction in SAR images. 
 

Index Terms—Directional smoothing, de-blurring, de-noising, 
wavelets.  
 

I. INTRODUCTION 
Imaging techniques using coherent illumination, such as 

laser imaging, acoustic imagery and synthetic aperture radar 
(SAR), which generate coherent images [1], are subject to the 
phenomenon of speckle noise. Speckle noise is generated due 
to constructive and destructive interference of multiple 
echoes returned from each pixel.  As a result, a granular 
pattern is produced in the radar image which corrupts 
significantly the appearance of the image objects. Speckle 
noise can be modeled as multiplicative random noise in 
spatial domain [2].  

Many attempts were made to reduce the speckle noise. An 
appropriate method for speckle reduction is one which 
increases the signal to noise ratio while preserving the edges 
and lines in the image. Generally, there are two main 
approaches for speckle noise removal. The first is applied 
before image generation which is called multi-look 
processing [3]. In this method the synthetic aperture is 
divided into some pieces. Each of these apertures is 
processed separately to obtain a pixel with a special 
along-track dimension.  The N images are summed to form an 
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N-look SAR image. The N-look processing reduces the 
standard deviation of the speckle. The second approach is 
filtering the image using different filters [4]-[9]. Two types of 
filters are used for speckle reduction. Low pass filters such as 
mean or median generally smooth the image. The second 
type is adaptive filtering [4]-[5].  

These filters adapt themselves to the local texture 
information within a box surrounding a central pixel in order 
to calculate a new pixel value. Adaptive filters demonstrated 
their superiority compared to low pass filters, since they take 
into account the local statistical properties of the image. 
Adaptive filters perform much better than low-pass 
smoothing filters, in preservation of the image sharpness and 
details while suppressing the speckle noise.  

Both multi-look processing and spatial filtering reduce 
speckle at the expense of resolution and they both essentially 
smooth the image. Therefore, the amount of speckle 
reduction desired must be balanced with the particular 
application and the amount of details required. 

Speckle is a phenomenon inherent in coherent imaging 
systems with spatial resolution greater than the wavelength. 
Synthetic aperture radar (SAR) is an example of such an 
imaging system. Due to the roughness of the imaged surface, 
each resolution cell will contain several scatterers, and the 
resulting image will have a granular appearance due to 
constructive and destructive interference. Speckle appears as 
spatially correlated, multiplicative noise that is statistically 
independent of the image intensity, although it is a radio- 
metric feature of the imaged object. The granular nature of 
speckled images makes them hard to interpret, both for the 
human eye and automated segmentation and classication 
algorithms [10]. 

The usual goal of SAR imaging is to construct a 
two-dimensional representation of a portion of the earth’s 
surface (or the surface of another planetary body, e.g. the 
Magellan mission to Venus [6]). The radar transmits an 
electromagnetic pulse from a side-looking antenna and 
‘listens’ for its return. The pulse reflects, or scatters, from 
targets on the ground back to a receiving antenna. The radar 
begins digitizing the scattered signal after a pre-defined delay 
after pulse transmission, which can be calculated based on 
the flying height and the desired swath offset to the nadir 
track of the platform. While moving, the antenna 
continuously sends and receives pulses, according to the 
pulse repetition frequency (PRF), to construct a 2-D array of 
digitized signals. These two dimensions are (a) the azimuth 
direction, which corresponds to the travel direction of the 
platform and (b) the orthogonal range direction. Figure1 
shows SAR pre-processing chain. 
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Fig. 1. SAR pre-processing chain 

 

In many practical situations, a recorded image presents a 
noisy and blurred version of an original scene. The image 
degradation process can be adequately modeled by a linear 
blur and an additive noise process. Then the degradation 
model is described by [1] 

nDfg +=                                             (1)

However, for multiplicative noise, which generally it is 
called speckle, we propose the follow degradation model [1] 

sDfg •=   (2)

where the vectors g, f, n and s represent, respectively, the 
lexicographically (raster scan) ordered noisy blurred image, 
the original image, the additive noise, and the multiplicative 
noise (speckle). The matrix D is the linear degradation 
process, and the operator “•” means element-by-element 
multiplication. The image de-blurring problem calls for 
obtaining an estimate of  f  given g and D. For the blind 
restoration problem, D is not known [2]. 

The true radiometric values of the image are represented 
by I, and the values measured by the radar instrument are 
represented by Is. The speckle noise is represented by S. The 
parameters r and c means row and column of the respective 
pixel of the image. If S’(r,c)=S(r,c)-1 and N(r,c)=I(r,c)S’(r,c), 
we begin with a multiplicative speckle S and finish with an 
additive speckle N  [3], which avoid the log-transform, 
because the mean of log transformed speckle noise is not 
equal to zero [1] and thus requires correction to avoid extra 
distortion in the restored image. 

Speckle noise in SAR images is usually modeled as a 
purely multiplicative noise process of the form [2] 

),(),(),( crScrIcrIs =  

)],('1)[,( crScrI +=  

),(),( crNcrI +=  
(3)

For single-look SAR images, S is Raleigh distributed (for 
amplitude images) or negative exponentially distributed (for 
intensity images) with a mean of 1. For multi-look SAR 
images with independent looks, S has a gamma distribution 
with a mean of 1. Further details on this noise model are 
given in [4]. 

A large number of techniques exist for the de-noising [5] 
[6] [7] and the de-blurring problems [8] [9] [10]. The image 
restoration problem is an ill-posed problem. Therefore, a 
common ingredient in all restoration approaches is that prior 
information is used in order to restrict the number of possible 
solutions (basic idea of regularization). Such prior 
knowledge can be stochastic (i.e., the original image is a 
sample of a random field) or deterministic (the high 
frequency energy of the restored image is bounded) in nature 
[11]. Regularization theory is also applied to the blind 
restoration problem [12]. 

In this paper, an original approach is developed toward 
both the de-noising and the de-blurring problems. Such a 
(nontraditional) approach for de-noising is based on the work 
of Mastriani and Giraldez [12]. They directly apply the 
Directional Smoothing (DS) filter [13] in the Bidimensional 
Discrete Wavelet Transform (DWT-2D) domain to reduce 
the presence of speckles, because the edges will be protected 
from blurring while smoothing. While, in order to face blur 
generated for the de-speckling process, the learning of a 
Kohonen self-organizing map (SOM) is performed directly 
on the de-speckled image [14]. The proposed algorithms 
differ from the reported results in the literature in a number of 
ways. Kohonen SOM, for example, is designed from a 
different point of view than is previously reported in the 
literature. In the proposed approach, each image to be used 
for the de-blurring problem contains both the low frequency 
information of the degraded image (the one which is 
represented by the degraded edges generated for the 
de-speckling process) and the corresponding high frequency 
information of the original image. Further improvements 
may be achieved by using Gaussian low pass filter and a trous 
algorithm for decomposition.  This algorithm is well-known 
for using non-decimated wavelet transform which minimizes 
the artifact in the denoised data [15]. Shift invariancy is one 
of the important properties of a trous algorithm.  In speckle 
noise reduction this property can improve the performance of 
the algorithm. 

II. SYNTHETIC APERTURE RADAR 
Synthetic Aperture Radar (SAR) image data provide 

information different from that of optical sensors operating in 
the visible and infrared regions of the electromagnetic 
spectrum. SAR data consist of high-resolution reflected 
returns of radar-frequency energy from terrain that has been 
illuminated by a directed beam of pulses generated by the 
sensor. The radar returns from the terrain are mainly 
determined by the physical characteristics of the surface 
features (such as surface roughness, geometric structure, and 
orientation), the electrical characteristics (dielectric constant, 
moisture content, and conductivity), and the radar frequency 
of the sensor. By supplying its own source of illumination, 
the SAR sensor can acquire data day or night without regard 
to cloud cover.  Elachi (1988) provides a technical overview 
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of radar wave-surface interactions and their applications to 
land, water, and ice phenomena in Spaceborne Radar Remote 
Sensing. Most other remote sensing textbooks also provide 
introductory material on SAR system properties and image 
data applications [16]. 

Synthetic aperture radar (SAR) satellite systems currently 
in operation include the European Space Agency's (ESA) 
European Remote Sensing Satellite 1 (ERS-1), launched July 
1991, and the Japanese Earth Resources satellite (JERS-1), 
launched February 1992. Contacts are provided for ERS-1 
data and JERS-1 data. The ERS-1 sensor operates in the 
C-band frequency (approx. 5.6 cm wavelength) and JERS-1 
operates in the L-band frequency (approx. 23 cm 
wavelength). Both sensors have a nominal spatial resolution 
of approximately 30 m. The Canadian Space Agency plans to 
launch its RADARSAT in 1995. The SAR systems are now 
beginning to provide SAR image data on a long-term, 
sustained basis. The ERS-1 satellite, with a projected  
lifespan of three years, will be followed by an ERS-2 satellite 
planned to continue SAR data acquisition into the late 1990s, 
when advanced SAR sensors are expected to become 
operational as part of the Earth Observing System (EOS) 
[17]. 

The current level of experience in operational use of SAR 
data is very limited compared to the use of visible and 
infrared data acquired by the multispectral satellite sensors. 
Several major characteristics of SAR data taken together, 
however, may promote more extensive evaluation and use of 
SAR data for land-use and land-cover information. These 
characteristics include 1) the unique information of surface 
roughness, physical structure, and electrical conduction 
properties; 2) the high spatial resolution; 3) the 24-hour, 
all-weather data-acquisition capability; and 4) the now- 
realizable long-term continuity of the data that enables 
repetitive (seasonal) coverage of major global land regions 
[18]. Figure 2 shows linear model of observation SAR 
system. 
 

 
Fig. 2. Linear model of observation system 

 

III. DIRECTIONAL SMOOTHING 

A. Bi-Dimensional Discrete Wavelet Transfer 
In this section, some of the aspects of the WT and of the 

Over Complete Wavelet Transform (OCWT) will be very 
briefly discussed. For a more exhaustive study, [19] must be 
consulted.   

The WT proposes the study of a complex phenomenon, 
dividing it into different simpler pieces [20]. 

                       (4) 
being  f the discrete signal of length  N  and ψj  a discrete 

wavelet atom,  n  the space coordinate, j a  the resolution and 
j  the number of iteration. This means projecting it in a 
particular function space in which it is located by measuring 
its degree of similarity with each basic function. In a WT, the 
basic functions come from dilations and translations of a 
“mother wavelet”, ψ , localized in both, time and frequency. 

                                        (5) 

Therefore, each term of the basis allows the representation 
of the signal at a given scale and so the WT can focus on 
structures with a “zooming” procedure [21]. In 2D, a wavelet 
basis is constructed with separable products of a scaling 
function and a wavelet. Three wavelets are then defined, each 
of them extracting details at different orientations. 

Since Sveinsson et al. [14] directly apply the 
Enhanced-Lee filter in the Bi-dimensional Discrete Wavelet 
Transform (DWT-2D) domain to reduce the presence of 
speckles. We use the DS [13], because the edges will be 
protected from blurring while smoothing. The experimental 
results demonstrate that DS is better than Enhanced-Lee filter 
in all the carried out experiments. Therefore, we begin 
decomposing the speckled SAR image into four wavelet 
subbands: Coefficients of Approximation (CA), and speckled 
coefficients of Diagonal Detail (CDDs), Vertical Detail 
(CVDs), and Horizontal Detail (CHDs), respectively. We 
apply DS within each high subband, and reconstruct a SAR 
image from the modified wavelet coefficients, that is to say, 
despeckled coefficients of Diagonal Detail (CDDd), Vertical 
Detail (CVDd), and Horizontal Detail (CHDd), respectively, 
as shown in Figure 1, where: IDWT-2D is the inverse of 
DWT-2D. Based on Equation (1) SmoothShrink does not 
need log-transform [13]. 

B. Theory of Directional Smoothing 
To protect the edges from blurring while smoothing, a 

directional averaging filter must be applied. Spatial averages 
d(r,c:Θ) are calculated in several directions as [22] 

∑ ∑
Θ Θ∈ ∈Θ

−−=Θ
Wk Wl

lckrx
N

crd ),(1):,(             (6) 

And a direction Θ* is found such that  |x(r,c)-d(r,c:Θ*)| is 
minimum, where x is the respective detail sub-band. Then 

*):,(),( Θ= crdcrd (7)

Gives the desired result for the suitably chosen window W, 
NΘ is the number of directions, and k and l depends on the 
size of such windows (kernel) [14]. 

The DS filter has a speckle reduction approach that 
performs spatial filtering in a square-moving window defined 
as kernel, and is based on the statistical relationship between 
the central pixel and its surrounding pixels as shown in 
Figure 3. 

The size of the filter window can range from 3-by-3 to 
33-by-33, with an odd number of cells in both directions. A 
larger filter window means that a larger area of the image will 
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be used for calculation and requires more computation time 
depending on the complexity of the filter’s algorithm. If the 
size of filter window is too large, the important details will be 
lost due to over smoothing. On the other hand, if the size of 
the filter window is too small, speckle reduction may not be 
very effective. In practice, a 3-by-3 or a 7-by-7 filter window 
usually yields good results in the cases under study [23]. 

 
    Fig. 3. Smoothing of Coefficients in wavelet domain  

 

 

Fig. 4. 3-by-3 filter window on a sub-band 
 
 

DS performs the filtering based on either local statistical 
data given in the filter window to determine the noise 
variance within the filter window, or estimating the local 
noise variance using the effective equivalent number of looks 
(ENL) of the image under study. The estimated noise 
variance is then used to determine the amount of smoothing 
needed for each sub-image. The noise variance obtained from 
the local filter window is more applicable if the backscatter of 
an area is constant (flat and homogeneous) [12]. 

Most simple nonlinear thresholding rules for wavelet 
based de-noising assume that the wavelet coefficients are 
independent [11] [13]. However, wavelet coefficients of 

natural images have significant dependencies. In this paper, 
we will consider the dependencies between the coefficients 
and their neighbors in detail. The Smooth Shrink do not 
assume the independence of wavelet coefficients, because, It 
is based on the DS algorithm, which keeps in mind the 
incidence of the neighboring elements by means of the 
employing of a mask, which can be observed in the algorithm 
that is detailed next. 

IV. SELF-ORGANIZATION MAP  
Researches on neurobiology have shown that centers of 

diverse activities as thought, speech, vision, hearing, lie in 
specific areas of the cortex and these areas are ordered to 
preserve the topological relations between information’s 
while performing a dimensionality reduction of the 
representation space. Such organization led Kohonen to 
develop the SOM algorithm [24]. This kind of competitive 
neural network is composed of one or two dimensional array 
of processing elements or neurons in the input space. All 
these neurons receive the same inputs from external world. 
Learning is accomplished by iterative application of 
unlabeled input data. As training process, the neurons evolve 
in the input space in order to approximate the distribution 
function of the input vectors. After this step, 
large-dimensional input vectors are, in a sense, projected 
down on the one or two-dimensional map in a way that 
maintains the natural order of the input data. This 
dimensional reduction could allow us to visualize and to use 
easily, on a one or two-dimensional array, important 
relationships among the data that might go unnoticed in a 
high-dimensional space. 

The model of SOM used in our application is a one 
dimensional array of n nodes. To each neuron Ni, a weight 
vector wi=(wi1,wi2,...,wij)t €Rp is associated [25]. 

During learning procedure, an input vector x € Rp  
randomly selected among vectors of the training set, is 
connected to all neurons in parallel. The input x is compared 
with all the neurons in the Euclidean distance sense via 
variable scalar weight wij. At the kth step, we assign the vector 
x to the winning or leader neuron Nl if: 

][][
1 min k

ii

k wxwx −=−  (8)  

All the neurons within a certain neighborhood around the 
leader participate in the weight-update process. Considering 
random initial values for w[0], i ,(0 ≤ i ≤ n), this learning 
process can be described by the following iterative 
procedure: 

)( ][][][][]1[ k
i

kk
li

k
i

k
i wxHww −+=+  (9) 

The lateral interactions among topographically close 
elements are modeled by the application of a neighborhood 
function or a smoothing Kernel defined over the winning 
neuron [12]. This Kernel can be written in terms of the 
Gaussian function 

)
)(2
),(exp( 2][

2
][][

k
kk

li
ildH

σ
α −=  (10)

where d(l, i) = ||l - i|| is the distance between the node l and i in 
the array σ[k](t) is the learning-rate factor and σ[k] defines the 
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width of the Kernel at the iteration k. For the convergence, it 
is necessary that Hli

[k] → 0 when k → T, where T is the total 
number of step of the process [21]. Therefore, for the first 
step, α[k] should start with a value that is close to unity, 
thereafter decree-sing monotonically [21]. To achieve this 
task, we use 

)1(]0[][

T
kk −= αα  (11)

Moreover, as learning proceeds, the size of the 
Neighborhood should be diminished until it encompasses 
only a single unit. So, we applied for the width of the Kernel 
the monotonically decreasing function: 

)/(
]0[

][
]0[][ )( lTk

lT
k −

−

=
σ

σσσ  (12)

The ordering of the map occurs during the first steps, while 
the remaining steps are only needed for the fine adjustment of 
the weight values. 

The learning process is performed directly on the real 
image to be de-blurred. An input vector is filled with the grey 
levels of the pixels of the image (see Figure 5, 6). Therefore, 
each neuron has rows-by-columns weights allowing locating 
it in the input space. At each step, the weights are modified 
according to Equation (12). Experiments have shown that 
this training strategy provides as good results as an ordered 
image scanning process while spending less processing time. 

 

 
Fig. 5. The distance graph between the 100 neurons of the SOM before 

learning. 
 

 
Fig. 6. The distance graph between neurons obtained after 

learning. 

V. ASSESSMENT PARAMETERS FOR DESPECKLING  
In this work, the assessment parameters that are used to  

evaluate the performance of speckle reduction are Noise  
Variance, Mean Square Difference, Noise Mean Value, 
Noise  Standard Deviation, Equivalent Number of Looks, 
Deflection  Ratio, and Pratt’s figure of Merit [26], [27]. 

A. Noise Mean Value (NMV), Noise Variance (NV), and  
Noise Standard Deviation (NSD) 
NV determines the contents of the speckle in the image. A 

lower variance gives a “cleaner” image as more speckle is 
reduced, although, it not necessarily depends on the intensity.  
The formulas for the NMV, NV and NSD calculation are 

                                                                   (13) 

                                                  (14) 

                                                                         (15) 
where R-by-C pixels is the size of the de-speckled image Id.  
On the other hand, the estimated noise variance is used to 
determine the amount of smoothing needed for each case for 
all filters. 

B. Mean Square Difference (MSD) 
MSD indicates average square difference of the pixels 

throughout the image between the original image (with 
speckle) Is and Id , see Fig. 4. A lower MSD indicates a 
smaller difference between the original (with speckle) and 
de-speckled image. This means that there is a significant 
filter performance. Nevertheless, it is necessary to be very 
careful with the edges. The formula for the MSD calculation 
is [28] 
 

                                  (16) 

C. Equivalent Numbers of Looks (ENL) 
Another good approach of estimating the speckle noise 

level in a SAR image is to measure the ENL over a uniform 
image region [1]. A larger value of ENL usually corresponds 
to a better quantitative performance. The value of ENL also 
depends on the size of the tested region, theoretically a larger 
region will produces a higher ENL value than over a smaller 
region but it also tradeoff the accuracy of the readings. Due to 
the difficulty in identifying uniform areas in the image, we 
proposed to divide the image into smaller areas of 25x25 
pixels, obtain the ENL for each of these smaller areas and 
finally take the average of these ENL values. The formula for 
the ENL calculation is 

                                      (17) 

The significance of obtaining both MSD and ENL 
measure- ments in this work is to analyze the performance of 
the filter on the overall region as well as in smaller uniform 
regions [29]. 
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D. Deflection Ratio (DR) 
A fourth performance estimator used in this work is the 

DR proposed by H. Guo et al (1994), [30]. The formula for 
the deflection calculation is 

                  (18) 

The ratio DR should be higher at pixels with stronger 
reflector points and lower elsewhere. In H. Guo et al‘s paper, 
this ratio is used to measure the performance between 
different wavelet shrinkage techniques. In this paper, the 
ratio approach to all techniques after de-speckling in the 
same way [27] is applied. 

E. Pratt’s Figure of Merit (FOM) 
To compare edge preservation performances of different 

Speckle reduction schemes, the Pratt’s figure of merit is 
adopted [31] defined by 

                 (19) 
where N ̂  and Nideal are the number of detected and ideal edge 
pixels, respectively, di is the Euclidean distance between the 
ith detected edge pixel and the nearest ideal edge pixel, and α 
is a constant typically set to 1/9. FOM ranges between 0 and 1, 
with unity for ideal edge detection. 

The de-blurring task consists in using the Equation (15) 
over the image. For each iteration, the corresponding input 
vector x is compared with all the neurons using Equation (14). 
The winning neuron, the one which leads to the smallest 
distance, gives the class of the winner pixel in which iteration. 
However, before any de-blurring task, we have to calibrate 
the map in order to associate the label mean or edges to each 
neuron. 

Assuming that the input vector x0 = (0,…,0)t should 
represent an image setting on an identical mean value, it is 
very useful to define the distance graph representing the 
Euclidean distance in the rows-by-columns-dimensional 
space between the point x0 and all the neurons. Such a graph 
is given in Figure 3 and Figure 4 respectively before and after 
learning for a 512- by-512-neuron network [32]. 

Both figures show that the maximal distance between two 
successive cells is smaller after learning than before. We 
show only 100 of 512x512 neurons around the winner. We 
can deduce that, after learning, neurons that are topologically 
close in the array are close in the input space too [33]. 

VI. EXPERIMENTAL RESULTS  
Here, besides our approach, we present a set of 

experimental results using one ERS SAR Precision Image 
(PRI) standard of Buenos Aires area. For statistical filters 
employed along, i.e., Median, Lee, Kuan, Gamma-Map, 
Enhanced Lee, Frost, Enhanced Frost [13]  Wiener [11], DS 
[13] [14]  and Enhanced DS (EDS) [12], we use a 
homomographic speckle reduction scheme [14], with 3-by-3, 
5-by-5 and 7-by-7 kernel windows. Besides, for Lee, 
Enhanced Lee, Kuan, Gamma-Map, Frost and Enhanced 
Frost filters the damping factor is set to 1[11] [12]. On the 
other hand, the statistical filters used inside SmoothShrink 

method were DS and EDS . 
Figure 7(a) [12] shows a noisy image used in the 

experiment from remote sensing satellite ERS-2, with a 
242-by-242 (pixels) by 65536 (gray levels); and the filtered 
images, processed by using VisuShrink (Hard-Thresholding), 
BayesShrink, OracleShrink, SURE-Shrink, and 
Smooth-Shrink techniques respectively, see Table I. All the 
thresholding techniques used Daubechies 15 wavelet basis 
and 1 level of decomposition (improvements were not 
noticed with other basis of wavelets) [11, 12, 13]. Besides, 
Figure 5 summarizes the edge preservation performance of 
the Smooth Shrink technique vs. the rest of the shrinkage 
techniques with a considerably acceptable computational 
complexity. 

All the wavelet-based techniques used Daubechies 1 
wavelet basis and 1 level of decomposition (improvements 
were not noticed with other basis of wavelets) [24], [25], 
[34].  

Besides, Figure 7 summarizes the edge preservation 
performance of the POSAShrink technique vs. the rest of the 
shrinkage techniques with a considerably acceptable 
computational complexity.  

Table I shows the assessment parameters vs. 19 filters for 
figure. 7, where En-Lee means Enhanced Lee Filter, En-Frost 
means Enhanced Frost Filter, Non-log SWT means Non- 
logarithmic Stationary Wavelet Transform Shrinkage [27], 
Non-log DWT means Non-logarithmic DWT Shrinkage [28], 
VisuShrink (HT) means Hard-Thresholding, (ST) means 
Soft-Thresholding, and (SST) means Semi-ST [29]-[31].  

The NMV and NSD are computed and compared over six 
different homogeneous regions in the choosed SAR image, 
before and after filtering, for all filters. 

The POSAShrink has obtained the best mean preservation 
and variance reduction, as shown in Table I. Since a 
successful speckle reducing filter will not signifycantly affect 
the mean intensity within a homogeneous region, 
POSAShrink demonstrated to be the best in this sense too. 
The quantitative results of Table I show that the POSAShrink 
technique can eliminate speckle without distorting useful 
image information and without destroying the important 
image edges. 

 
(a) Original 
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(b) VisuShrink 

 

 
(c) BayesShrink 

 

 
(d) OracleShrink 

 
(e) SureShrink 

 

 
(f) Our method 

Fig. 7. (a) Original SAR image , (b,c,d,e) are results of some common 
ancient method, (f) result of our method. 

 
Since we are interested in isolating the speckle noise in the 

image, the most appropriate wavelet function is one, which 
its shape looks like the speckle pattern. For this purpose, we 
computed the average of x and y cross sections of several 
speckle samples in the logarithmically transformed data. 
According to this study, the 2D Gaussian function has been 
found to be the best model fitted to the speckle pattern 
cross-section [35]-[39]. 
 

VII. CONCLUSION  
Direct smoothing of wavelet coefficient causes artificial 

structure, blurred and smoothed in image. By using SOM 
neural de-blurring algorithm, final image becomes more 
acceptable. Proportional to applying DWT, 15% 
improvement in edge prevention is received by new 
approach. 

Although the SOM-based de-blurring 1) did not use the 
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traditional Gaussian neighborhood function as a property for 
the algorithm, 2) the learning-rate factor is constant along 
iterations, and 3) the width of the Kernel is constant along 
iterations too, the results are better than the results of such 
well-known methods as de-blurring. The drawback of this 
approach is complexity and time consuming. In one computer, 
our method long-time is 5 times as of DWT. 

Further improvements to de-noising algorithm may be 
achieved using knowledge-based information such as image 
texture or PDF of radar cross section (RCS). Integrating these 
different kinds of information may be performed using 
Neural Networks. Finally, the natural extension of this work 
is in medical applications, as well as in micro arrays 
de-noising. 

Table I shows the assessment parameters vs. 19 filters for 
Figure 5(a), where En-Lee means Enhanced Lee Filter, 
En-Frost means Enhanced Frost Filter, Non-log SWT means 
Non-logarithmic Stationary Wavelet Transform Shrinkage 
and Non-log DWT means Non-logarithmic DWT Shrinkage. 

We compute and compare the NMV and NSD over six 
different homogeneous regions in our SAR image, before and 
after filtering, for all filters. The Smooth Shrink and 
de-blurring has obtained the best mean preservation and 
variance reduction, as shown in Table I. Since a successful 
speckle reducing filter will not significantly affect the mean 
intensity within a homogeneous region, Smooth Shrink and 
de-blurring demonstrated to be the best in this sense too. The 
quantitative results of Table I show that the Smooth Shrink 
technique can eliminate speckle without distorting useful 
image information and without destroying the important 
image edges. In fact, the Smooth Shrink outperformed the 
conventional and non conventional speckle reducing filters in 
terms of edge preservation measured by Pratt’s figure of 
merit [34] [39], as shown in Table I. 

 
TABLE I: ASSESSMENT PARAMETER AND FILTERS FOR FIGURE 5(A). 

Filter 
Assessment Parameter 

MSD NSD ENL DR FOM 

SAR image - 43.996 11.093 2.558e 0.302 

Kuan 542.73 40.836 16.962 3.267e 0.421 

Median 614.74 42.5373 16.746 2.567e 0.400 

Wiener 564.83 40.374 16.525 3.234e 0.442 

DS 564.83 40.009 17.837 8.594e 0.457 

EDS 564.83 40.009 17.424 8.986e 0.457 

VisuShrink 855.30 32.868 39.088 7.861e 0.451 

SureShrink 798.44 32.981 38.984 7.735e 0.452 

OracleShrink 743.95 32.999 37.909 7.265e 0.452 

BayesShrink 716.63 32.897 38.302 2.400e 0.452 

Orcale Thr 732.23 33.312 36.846 6.735e 0.457 

TNN 724.08 36.823 36.098 1.053e 0.458 

SWT 300.28 43.827 11.228 1.578e 0.457 

DWT 341.39 39.416 16.485 1.031e 0.458 

DS 867.12 32.688 39.088 3.267e 0.459 

Our method 871.31 31.701 39.900 3.294e 0.459 

 
A Bayesian estimator was used for estimating the 

de-noised wavelet coefficients. This estimator uses a priori 
knowledge on probability distribution of the signal and noise 
wavelet coefficients. This estimator performs like a feature 
detector, preserving the features that are clearly 
distinguishable in the speckled data such as lines and edges.   

The whole algorithm is computationally expensive. 
Particularly, parameter estimation of the signal and noise 
distributions is the most time consuming part of the algorithm. 
More efficient parameter estimation algorithms may reduce 
the computational cost of this part. Further improvements to 
this algorithm may be achieved using knowledge-based 
information such as image texture or PDF of radar cross 
section (RCS). Integrating these different kinds of 
information may be performed using Neural Networks. 
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