

Abstract—Statechart is a visual language for software

requirement specification that has been widely used in recent
years. In essence, it extends the conventional language of
state-transition diagrams with three elements that
accommodates the notions of hierarchy, concurrency, and
communication. Additionally, it allows multilevel concurrency,
creation of chain-reaction effects, and the use of high- and
low-level events. It is compact, expressive, compositional, and
modular. This paper presents a tutorial of Statechart and
discusses its merits and shortcomings.

Index Terms—Statechart, requirement specification.

I. INTRODUCTION
A software requirement specification is the first detailed

documentation of the required behavior of a software system.
Errors introduced during the requirements analysis phase are
difficult and expensive to correct if they are allowed to be
propagated into the design phase. Such errors may cost up to
200 times more to correct than those introduced later in the
life cycle [2] and can have major impacts on the system.

A requirement specification is a behavioral specification of
the system’s activities; it describes the system’s modes
(states) of operation and events that cause the system to
change modes. The specification often includes a set of
assertions that must be satisfied. These assertions are
invariant properties of the software system, and thus should
also be included in the requirement specification.

The requirement specification is particularly critical for
complex embedded software. Embedded software is part of a
large system and has a primary purpose of providing at least
partial control of the system or process in which it is
embedded. Most such software is real-time and reactive, i.e.,
required to interact with and respond to its environment in a
timely fashion during execution. It is very difficult to specify
and validate the requirements that describe reactive behavior
clearly and at the same time both formally and rigorously.

The requirement specification must be unambiguous and
translatable into mathematical notation, but it need not itself
including arcane mathematical symbols that are unfamiliar to
the application experts and software developer. The
specification should be simple and clear, and it should
contain only the information needed by the developer and
analysts. The language for software requirement
specification should be easy to use and result in more

Manuscript received November 28, 2011; revised December 20, 2011..
W. Zhang and T. Beaubouef are with Southeastern Louisiana University,

Hammond, LA 70402, USA (e-mail: wzhang(tbeaubouef)@selu.edu).
H. Ye is with The University of Newcastle, Callaghan, NSW 2308,

Australia. (e-mail: Huilin.Ye@newcastle.edu.au).

readable and revisable specification.
One approach is the classical formalism of finite state

machines and state transition diagrams. A finite state
machine (FSM) is a model of a system with discrete inputs
and outputs. The system can be in any one of a finite number
of internal states or configurations. The state of the system
summarizes the information concerning past input that is
needed to determine the behavior of the system on
subsequent input. One state, denoted by q0, is the initial state.
The system consists of a finite set of states and transitions
from state to state that occur on input symbols. For each input
symbol there is exactly one transition out of each state or
there are more than one transitions out of a state. A directed
graph, called a transition diagram is associated with a FSM.
The vertices of the graph correspond to the states. If there is a
transition from state q0 to state p on input a, then there is an
arrow labeled a from state q to state p. Fig. 1(a) shows a state
transition diagram with four states and eight transitions. A
Mealy machine is also a finite state machine, except it gives
an output in response to input. Fig. 1(b) shows a Mealy
machine, which takes input 0 or 1 and gives output n.

Harel [3] indicates that people cannot use conventional
FSM and transition diagrams in designing complex systems
for several reasons:

1. State transition diagrams are “flat” without notion of
depth, hierarchy, or modularity.

2. State transition diagrams are uneconomical for
transitions. An event that causes the very same transition from
a large number of states must be attached to each state
separately.

3. The number of states grows exponentially in state
diagrams.

4. State transition diagrams are inherently sequential and
are not well suited for concurrency.

Harel [3, 4] constitutes an attempt to revive the classical
formalism of finite state machines and state transition
diagrams and make them fitting for use in large and complex
applications. Statechart: a visual language for software
requirement specification is proposed to overcome these
drawbacks of state diagrams while preserving and even
enhancing the visual appeal of conventional state diagrams.

Statechart extends the conventional language of state
transition diagrams with essentially three elements that
accommodate the notion of hierarchy, concurrency, and
communication. Statechart transforms the state transition
diagram into a highly structured and economical description
language. When coupled with the capabilities of
computerized graphics, Statechart enables people to view the
description at different levels of detail and makes very large
process-control requirements specification manageable and
comprehensible.

Statechart: A Visual Language for Software Requirement
Specification

W. Zhang, T. Beaubouef, and H. Ye

International Journal of Machine Learning and Computing, Vol. 2, No. 1, February 2012

52

 Fig.1(a) FSM Fig. 1(b) Mealy Machine

The syntax and semantics of Statechart use low level

functional formalism. The semantics appears to be novel in
its treatment of shared variables, chain-reactions and
simultaneous multiple transitions. In recent years,
Statecharts have been used as UML (Universal Markup
Language) state machine diagrams [1] and state machine
notations for control abstraction [19].

This paper presents the features of Statechart. Notations
used in this paper are graphics, symbols, and plain English.
This paper is organized as follows: Sections 2 and 3 introduce
the basic and additional features of Statechart. Section 4
discusses how to represent concurrency in Statechart. Some
drawbacks will be discussed and some related approaches
will be briefly introduced in Section 5.

II. BASIC FEATURES OF STATECHART
Statechart is a finite state machine augmented with

schemes for expressing hierarchy, parallelism, and
communication. Rectangles are used to denote states at any
level. A simple finite state machine is composed of states
connected by transitions. An arrow labeled with an event,
and optionally with a parenthesized condition, denotes the
transition. A small arrow marks default or start states. In Fig.
2(a), there are three states: A, B, and C. Event c that occurs in
state A, transfers the system from state A to state C if and
only if (iff) condition p holds at the instant of occurrence.
State A is the default state; that means the system enters state
A when the state machine is entered unless otherwise
specified.

Fig. 2(a) Three States &One Event Fig.2(b) Super State D

A. Composition of a Superstate
In a Statechart, states may be grouped into a superstate.

The concept of a superstate has its origin in higraph [4],
which combines the notions of Euler circles, Venn diagrams,
and hypergraphs. A Statechart may contain states at any level,
and encapsulation is used to express the hierarchical relation.

In Fig. 2(a), since event b takes the system to state B from
either state A or state C, states A and C can be clustered into a
new superstate D, and the two b arrows can be replaced by

one as shown in Fig. 2(b). The semantics of D is the
exclusive-or (XOR) of states A and C, i.e., being in state D is
equivalent to being in either state A or state C, but not both.
Superstate D is an abstraction of states A and C. Such
groupings reduce the number of transitions needed to be
drawn on a Statechart. The superstate D and outgoing arrow b
capture a common property of states A and C, viz., a transition
from either of its substates A or C via arrow b to state B.

A superstate can be entered in two ways. First, the
transition to the superstate may end at the border of the
superstate as exemplified by arrow a in Fig. 2(b). In that case,
the default state A is entered, i.e., it is equivalent to having
arrow a drawn from state B to state A. Second, the transition
may be made to a particular state inside a superstate, such as
arrow d in Fig. 2(b) that leads from state B to state C.

Grouping states into a superstate indeed reduces the
number of transitions and makes the specification more
readable. Furthermore, an economical representation of
arrows with common sources, targets, or events is allowed in
Statechart as shown in Figures 3(a)-(d). In Fig. 3(d), arrow a
splits into two arrows where one leads to state B and the other
leads to state C. This is a contradiction to the desired
determinism of the system and should not be used.

 Fig. 3(a) Transition 1 Fig. 3(b) Transition 2

 Fig. 3(c) Transition 3 Fig. 3(d) Transition 4

Clearly, more subtle contradictions can occur as a result of

the deep character of Statechart and should be carefully
avoided. For example, Fig. 4(a) shows an arrow a
contradiction from state A. Arrow a leads the transition from
state A to state E as well as from superstate B to state F. Fig.
4(a) also contains a default state contradiction upon entering
state B via arrow d. There are two default states in superstate
B. One is state E and another is state D contained within state
C. Arrow c is under-specified, since state C contains no
default state.

Fig. 4(a) Shows an arrow a contradiction from state A.

International Journal of Machine Learning and Computing, Vol. 2, No. 1, February 2012

53

In Fig. 4(b), condition (¬ in A) is added to arrow a which is
from the border of superstate B to state F. If the current state
is A, arrow a leads the transition from state A to state E;
otherwise it will lead the transition from state B to state F. In
Fig. 4(b), state D is the default state of superstate C. Arrow d
will lead the transition from state F to state E, and arrow c
will lead the transition from state F to state D all by default
arrows.

 Fig. 4(b) Condition (¬ in A) is added to arrow a

B. History Entry
One of the most interesting and frequent ways of entering a

group of states is by the entering history. Statechart has the
ability to “remember” a previous visit to a state. Circled H is
used to denote the history entrance.

The simplest kind of this “enter-by-history” is entering the
state most recently visited. In Fig. 5(a), the H-entry with
arrow a means entering the most recently visited or entering
default state D if it is the first time. Fig. 5(b) shows two
entrance arrows to superstate A. In this case, the default state
D is entered when the entrance is via arrow a. If state A is
entered via arrow f, the state entered is one of three states:
state B, state C, or state D. It depends on what state the
system happened to be in when it was most recently in state
A.

An H-entry generally means that the history is applied only
on the level in which it appears. In Fig. 5(a), history entry
chooses only between superstates G and F. The system
chooses superstate G and enters state B if it was in state A or
state B when it most recently left K. The system chooses F
and enters state C if it was in state C, state D, or state E on the
last visit. The choice of entering state B and state C is by the
default arrows in G and F.

If the H-entry wants to override the default all the way
down to the lowest level of states, an asterisk is attached to
the H-entry. Fig. 5(b) shows that the system will enter the
most recently visited state from among states A-E overriding
both defaults.

 Fig. 5(a) H-entry between G and F Fig. 5(b) H-entry override default

Fig. 5(c) Additional H-entry

To achieve effects in between one-level and all levels,
additional H-entries are needed. In Fig. 5(c), the system will
enter state B if its last visit to K was to G or that one of state C,
state D, or state E was last visited. The default arrow to state
C is overridden by history through the H-entry in F.

Sometimes, H-entry should be interpreted with reservation.
The history is to be forgotten if a specific event occurs. To
deal with this more complex historical criterion, the special
actions clear-history(state) and clear-history(state*) will be
used. These actions cause the forgetting of the most recently
visited state on the current level, or of all levels of state. In
Figure 5(a), clear-history(K) will forget the most recently
visited states F or G. In Fig. 5(b), clear-history(K*) will
forget the most recently visited states from among A-E. Once
forgotten, H-entry does not apply and defaults are employed.

C. Composition of a Parallel State
One of the most important innovations in Statechart is

parallel state, which is also referenced as orthogonal state or
product state. A parallel state contains two or more parallel
components (AND components) separated by dashed lines.

In Fig. 6(a), parallel state H consists of two parallel
components, state A and state D. The semantics of H is the
product (AND) of states A and D, i.e., being in state H entails
being in both state A and state D. Each of the parallel
components state A and state D within H is entered whenever
the parallel state H is entered. In Fig. 6(a), when parallel state
H is entered from the outside via arrow f, the substates B of A
and substates F of D are entered by the default arrows. When
any transition is taken out of the parallel state H, all states H,
A, and D are exited.

Fig. 6(a) Parallel State H

International Journal of Machine Learning and Computing, Vol. 2, No. 1, February 2012

54

Fig. 6(b) AND-free “flat” Statechart

The parallel components state A and D can be superstates

or be parallel states themselves. In Fig. 6(a), parallel
components state A and state D are superstates themselves.
Parallel state in statechart illustrates a certain kind of
synchronization. In Fig. 6(a), if event a then occurs, the
transition from state B to state C and from state F to G will
take place simultaneously.

The use of a parallel state greatly reduces the size of the
specification. Fig. 6(b) is the conventional AND-free
equivalent “flat” version of Fig. 6(a). The usual product of
conventional state transition diagram is a disjoint product.
Fig. 6(b) contains six states, the product of the two substates
in A and three substates in D. Clearly, two components with
one thousand states each would result in one million states in
the product. This is the root of blow-up in number of states.
Parallel state in Statechart introduces some dependence
between components, i.e., in Fig. 6(a), the special condition
“in(G)” attached to arrow f causes state A to depend on state
D and indeed to “know” something about a substate of D. If
the parallel construct is used often, and on many levels, a
state explosion problem can be overcome in a reasonable
way.

Fig. 6(c) Interface of Parallel State H

A parallel state can be entered in four ways. First, the
transition to the parallel state may end at the border of the
parallel state as exemplified by arrow a in Fig. 6(c). Fig. 6(c)
adds a possible interface description of the parallel state H of
Fig. 6(a). Internal transitions of Fig. 6(a) have been omitted
for simplicity. In this case, as mentioned before, state B and
state F are entered by default. Second, the transition may be
made to particular states inside the parallel components, such
as split arrow b in Fig. 6(c) that leads transition from state J to
state B and state E. Third, the transition may be made to one
particular state, such as arrow c in Fig. 6(c) that leads to
transition from state K to state C by arrow c and state F by
default. Fourth, the transition may be made to one particular
state and an H-entry such as split arrow d in Fig. 6(c) that

leads transition from state L to state C and the most recently
visited state in state D.

A parallel state may be exited in three ways. First, the
transition exits parallel state from the border of parallel state
as exemplified by arrow e in Fig. 6(c). In this case, the
parallel state H and all parallel components state A and state
D are exited unconditionally. Second, an “exiting
independently” transition exits parallel state from an inner
state such as arrow f in Fig. 6(c) that leaves state H, state A,
and state D and enters state K. Third, an “exiting dependently”
transition exits parallel state from a certain combination of
states as exemplified by arrow h in Fig. 6(c). In that case, the
event h that occurred in state B and state G causes
transferring from parallel state H to state K. An alternative to
the third case is to replace one of the outgoing branches of the
merging arrows by a condition as showed in arrow g from
state F in Fig. 6(c). In this case, transition exits parallel state
H to state M only from state F and state B.

The use of parallel state reduces the state explosion
problem in the conventional state machine. The parallel state
components can be carried out on any level of states and is
therefore more convenient than allowing only single level
sets of communicating in FSM. The use of a parallel state
enables Statechart to describe independent and concurrent
state components and eliminates the need for multiple control
activities within a single activity.

D. Conditional Connectives
A condition defines what must be true before the transition

can be taken. When transitions out of a particular state into
two or more different states are taken based on the same event
but different conditions, conditional connectives are used.
Circle C is used for abbreviating the conditional connective.

In Fig. 7(a), when event a occurs, the transition out of state
A enters state B, state C, or state D depending on conditions P,
Q, or R. In Fig. 7(b), a conditional connective, ©, is used to
simplify the multiple transition entrances. The transition
from the source state A to the connective © is taken at the
occurrence of a event. The appropriate destination state, state
B, state C, or state D is determined based on the guarding
conditions that are defined on the transition from the
connective © to the destination states.

Fig. 7(a) Condition 1 Fig. 7(b) Condition 2 Fig. 7(c) Condition 3

To maintain the completeness and consistency of a
specification, the guarding conditions from the connective to
the destination states must be mutually exclusive. When
event a occurs and condition P is true, Fig. 7(c) shows a
contradiction. Since both state C and state D are substates of
superstate Y, they cannot be in state C and state D
simultaneously.

If all the destination states share some guarding conditions,
those conditions may be placed on the transition from source
state to connective ©. In Fig. 7(d), all the destination states

International Journal of Machine Learning and Computing, Vol. 2, No. 1, February 2012

55

share the guarding condition S. Condition S is placed on the
transition from state A to connective © as shown in Fig. 7(e).

Sometimes a state change is not desired. In this case, a
transition leads from the conditional connective back to the
source state. For example, when event a occurs, the transition
from state A to the connective © is taken in Fig. 7(b). If none
of the guarding conditions P, Q, and R is true, a transition
leads from © back to state A.

 Fig. 7(d) Share Condition S Fig. 7(e) Connective Fig. 7(c) Simple form

If the actual conditions are too complex, details from the

chart can be omitted. A simple incomplete form of Fig. 7(f)
can be used. The full details of conditions and explicitly
specifying the circumstance for changing a state and for
remaining in a state can be supplied separately.

III. ADDITIONAL FEATURES OF STATECHART
This section contains a number of the more advanced

features of Statechart. For most of them, there is neither final
formal syntax nor satisfactory formal semantics. These
features represent significant potential strengthening of
Statechart as a tool for specifying real systems. Basic
approaches of these features will be discussed here.

A. Selective Connective
Sometimes a state to be entered is determined as a simple

one-to-one by the selection of a generic event. The event is
actually the selection of one of the clearly defined options.
The user will have to specify the event selection as being the
disjunction of the lower-level events and associate each of
them with an appropriate state. All those options can be
specified as states in a Statechart.

 Fig. 8(a) Four Keys Fig. 8(b) Use Selection

Fig. 8(a) shows the system with four keys marked as A, B,

C, and D pertaining to the objects stored, their code names,
quantities and physical placements. The system allows the
user to select an option by pressing the appropriate key. The
system then processes the selected option, possibly
repeatedly if no other key is pressed.

Circled S is used to denote the selective connective. In Fig.
8(b), the selection arrow to circled S replaces all four arrows
in Fig. 8(a). The unified H-entry simplifies all repeated
events. In Fig. 8(b), pressing f in any of the substates A, B, C,
or D causes exit (but not exit from the encapsulating
superstate Y) and immediately entrance to the most recently
visited substate. This f arrow replaces four f arrows, one for
each substate in Fig. 8(a). By using selective connective and
H-entry, Fig. 8(b) simplifies the selections in Fig. 8(a).

B. Timeout and Time Bound
To limit the system’s delay in a state and put a time

constraint on the state is an important property of a real-time
system requirements specification. Statechart uses implicit
timers to respond to time restrictions. Formally, this is done
using the event expression timeout(event, number). This
expression represents that timeout event occurs precisely
when the specified number of time units have elapsed from
the occurrence of the specified event.

In Fig. 9(a), the system will exit from state A to state B
when 120ms have elapsed from the occurrence of event f.

Fig. 9(a) Timeout Fig. 9(b) Time Bound

Sometimes the need to limit the system’s lingering in a
state occurs repeatedly in the specification of real systems. A
graphical notation is needed to show this property of a state.
Statechart uses a squiggle to indicate that a state comes with a
time bound.

In Fig. 9(b), squiggle shows that state A comes with a time
bound. “1< 2 sec” is an indication of a bound itself. In
general, the syntax of the bound specification attached to a
squiggle is < t1 < < t2 , providing lower and upper bounds on
the time in a state. Either one of < ti can be omitted. Events do
not apply in the state until the lower bound is reached. A
generic event timeout stands for the event expression
timeout(entered A, bound) where state A is the source of the
transition and the bound is its specified bound.

In Fig. 9(b), the lower bound is 1 second. Thus the event f
cannot cause a transition leaving state A until one second has
elapsed from the occurrence of event f. The system will exit
from state A to state B after two seconds have elapsed from
the entering of state A.

C. Unclustering
The conventional notation for hierarchical description has

the advantage of keeping the state transition diagram small,
yet the parts of interest large. When the system under
description is large, Statechart adopts the conventional
notation.

In Fig. 10, part of the Statechart can be not within but
outside of its natural neighborhood. Fig. 10 shows that
Statechart is unclustered into several layers.

When the system under specification is large, it is a
necessary option to remain uncluttered. Taking unclustering
to the extreme yields a tree structure, thus undermining the
basic area-dominated graphical philosophy of Statechart.

International Journal of Machine Learning and Computing, Vol. 2, No. 1, February 2012

56

Fig.10. Unclustering

D. State Arrays
In many cases, different states have identical internal

structure. Some of the most common ones are best viewed as
a single state with a parameter. To choose a notation that
economizes by parameterizing the states, state array is used
to view the common ones as a single state with an index in
Statechart. Individual state array element is referenced by the
array name and an index value, i.e., A[3] refers to the third
element in state array A.

There are two semantic approaches to state array. One is a
“parameterized-and” relationship between the element state
of state array. In this case, state array is semantically
equivalent to identical parallel states uniquely identified by
an index. Each element state of state array is entered or exited
when the state array is entered or exited. For example, the
requirement specification for each of thirty aircraft in
TCAS[13] has identical internal structure. Instead of using
thirty different states, Fig. 11(a) shows a state array
other-aircraft with 30 elements. The aircraft collision
avoidance system (CAS) will enter or exit each aircraft
simultaneously.

 Fig. 11(a) State Array Fig. 11(b) State Update 1minite

Fig. 11 (c) State Array Notation of Fig. 11(b)

Another approach is a “paramerized-or” relationship

between the element states of a state array. In that case, the
semantics of state array is the exclusive-or of element states,
i.e., the system can only be in one element state at a time.
Consider the state update, 1min [2] as shown in Fig. 11(b). In
this state, the condition tests the current time T, and the

unspecified event a denotes T crossing a minute borderline.
States 1-9 are all updated by event d. Fig. 11(c) shows the
state array notation of Fig. 11(b). Each time event d occurs,
the state updates to the next element state.

E. Transition Buses [12]
By using superstate and parallel state, Statechart has the

ability to reduce a large number of states to a conceptually
manageable number. Transition buses are introduced to
reduce clutter in Statechart.

In Fig. 12(a), states A, B, C, and D are fully interconnected,
i.e., there is a transition from each state to every other one. In
Fig. 12(b), states A, B, C, and D are near fully connected, i.e.,
there is a transition from state A to every other state and there
is a transition from states B, C, and D to every other one
except state A. Showing each single transition explicitly in
these two charts is confusing and makes the Statechart hard to
read.

Fig.12(a) Connected Fig.12(b) Near Full Fig.12(c) Bus 1 Fig.12(d) Bus 2

In this case, the transition bus can be constructed to
provide the same information. During constructing, a
transition must be defined for each source-state and
destination-state pair on the transition bus. Source-state is a
state with a transition to the bus line and a destination-state is
a state with a transition from the bus.

Fig. 12(c) shows a transition bus that is equivalent to the
transition of Fig. 12(a). Since all the states are fully
interconnected in Fig. 12(a), the states, A-D are both source
and destination states. Fig. 12(d) is the transition bus for Fig.
12(b). Since there are no transitions from states B, C, and D
to state A, there is no transition from the bus to state A in Fig.
12(d).

F. Overlapping State
Superstate and parallel state provide exclusive-or (XOR)

and parallel (AND) interrelationship between the states in
Statechart. Sometimes OR interrelationship between the
states may be needed in Statechart.

Fig. 13 Overlap States

Fig. 13 shows that substate C could be in state A, or in state

D, or in both state A and state D. In this case, state A and
state D are actually related by OR not XOR relationship. The
OR interrelationship is needed. The reason to have the OR
interrelationship might be due to conceptual similarities

International Journal of Machine Learning and Computing, Vol. 2, No. 1, February 2012

57

between the involved states, or merely the desire to
economize when describing joint exits such as the two
transitions arrow a and arrow b shown in Fig. 13. In these
cases, overlapping states are used to turn XOR’s to OR’s.

 Fig. 14(a) Superstate A Fig. 14(b) State B has X

Consider a superstate A with substates C and D that stay

alone under some circumstances. State A joins in parallel
with state B under other circumstances.

Fig. 14(a) shows one way of describing this case. In Fig.
14(a), state A appears twice. Once for the standalone state A
and another for state A parallel with state B. If state A
contains many substates and has complex internal transitions,
obviously this representation is not a desirable one.

Fig. 14(b) shows another way of describing it. State B
contains a special extra new state X that indicates that it is not
really a B state at all. This solution is rather artificial, and is
difficult to manipulate.

Fig. 15(a) Overlapping Fig.15(b) Add Half Circle

Overlapping states can be constructed to solve this
problem as shown in Fig. 15(a). When following the
semantics of superstate and parallel state, all the transitions
appearing in Fig. 15(a) are unambiguous. Arrow b is clearly
an entrance to the product of state A1 and state B. By default,
the system will enter states C and E. Arrow a enters state A2
alone and gets into state C by default. Arrow e leaves state D
and state A2 regardless of whether it is matched with a state
from state B or not. Arrow f exits from state D and state A2
only when the Statechart is also in state B. Arrow h leaves
state A2 alone and arrow g leaves both state A1 and state B.

By using the elementary notation of transition arrows,
transitions to substates of overlapping state will be
ambiguous. For example, it is not clear what arrow c entering
state D is supposed to mean. For example, arrow c could enter
state D alone or it could enter states D and E. Refine the
arrows crossing state borderlines by adding half circles as
arrow a and arrow b shown in Fig. 15(b). The half circle
crossing a state borderline means that transition bypasses this
state. In Fig. 15(b), arrow a bypasses parallel state A1 and
enters state D only. Arrow b bypasses state A2 and will enter
states D and E.

Overlapping states can be used economically to describe a
variety of synchronization primitives and to reflect many
natural situations in complex systems. In other words, too
much overlapping states may cause incomprehensibility that
outweighs economy of description.

IV. CONCURRENCE
Statechart is generally used to represent the control part of

the system. This reaction part is responsible for making the
time-dependent decisions that influence the entire behavior
of a system. The problem with concurrence stems from the
events and conditions that are generated within the Statechart
itself. In this section, configuration, chain reaction, and
semantics of step transition in Statechart will be discussed.

A. Configuration
Any two states in Statechart can be related in one of three

ways: exclusive, parallel, or hierarchy. A set of states s is
consistent if and only if (iff) all states in this set hold the
properties of XOR and AND interrelationship.

In Figure 16, the sets {A, B, D, F, H, I} and {A, B, D, G, H,
I} are both consistent because they both hold the properties of
XOR and AND. The set {A, B, C, F, J} is not consistent
because state B and state C are both sub-states of superstate
A. The system cannot be in state B and state C
simultaneously.

Fig. 16 State Configuration

A state configuration is a maximal set of states that the
system can be in simultaneously. In other words, state
configuration is a set of mutual parallel states, i.e., if the
system is in state B, it must be in one of the substates of
superstate D and one of substates of superstate H in Figure
16. The set {A, B, D, E, H, I} is maximum and consistent,
and it is a state configuration.

The initial state configuration C0 is defined to be the start
configuration of Statechart. It is the configuration at the time
when the Statechart is first initiated by an outside event. In
Fig. 16, the set {A, B, D, F, H, J} is the initial state
configuration.

A system configuration C is a set of all possible state
configurations of a Statechart. In Fig. 17, C={(G, A, H, B, I,
C), (G, D, H, B, I, C), (G, A, H, E, I, C), (G, D, H, E, I, C), (G,
A, H, B, I, F), (G, D, H, B, I, F), (G, A, H, E, I, F), (G, D, H, E,
I, F)} is system configuration.

International Journal of Machine Learning and Computing, Vol. 2, No. 1, February 2012

58

Fig. 17 System Configuration

B. Special Events and Conditions
Besides the features described in Sections 2 and 3,

Statechart also includes compound events and conditions,
and shared variables that can be assigned to and tested.

 If e and f are events, so are e∧f and e∨f. Similar to events,
if P and Q are conditions then P∧Q and P∨Q are conditions
too. Assignments include c:=true, c:=false, where c is a
condition, and v:= s for a variable v and an appropriate
algebraic expression s. For expressions t and s, t = s and
t < s are conditions.

In addition, there are several special kinds of events and
conditions:

• event en(s) occurs upon entering state s;
• event ex(s) occurs upon exiting state s;
• in(s) is the corresponding condition for en(s) and

ex(s);
• event ch(v) occurs when v changes value where v is a

variable;
• event tr(c) occurs when condition c changes from

false to true;
• event fs(c) occurs when condition c changes from true

to false;
• condition ny(e) stands for that event e has not-yet

occurred;
• condition cr(c) stands for the current value of

condition c;
• condition cr(v) refers to the current value of a variable

or expression v.
Conditions ny(e), cr(c), and cr(v) refer only to what is

happening inside the currently evaluated chain reaction that
will be discussed later.

C. Action and Chain-reaction
In section 2, the reaction part is expressed only by the

system changing its internal state configuration to incoming
or sensed events and conditions. All the transitions do not
contain any outputs. Parallel components can synchronize
only through common events and can affect each other only
through in(s) special condition. The real subtlety of the way
Statechart models concurrence is in their output events.
Statechart can be viewed as an extension of Mealy machines,
such that it has the ability to generate events and change the
values of conditions. These output events denoted by /s are
called actions to be attached optionally to the labels of
transitions. The enriched transition labeling is the form e(p)/s
where e is the event triggering the transition, p, the condition

that guides the transition, and s, the action to be carried out
upon the transition.

However in contrast to conventional Mealy machines, an
action appearing along a transition in a Statechart is not
merely sent to the “outside world” as an output. The action
typically will affect the behavior of the Statechart itself in
parallel components. This is achieved by a simple broadcast
mechanism just as the occurrence of an external event that
causes transitions in all parallel components.

In Fig. 16, the initial configuration is {A, B, D, F, H, J}.
When event m occurs and a transition labeled m/e is taken,
the transition leads from state J to state I. In H, the action e is
immediately activated and is regarded as an internal event.
The e event further triggers two transitions labeled e in A and
D. These transitions will lead from state F to state G and from
state B to state C. This is a chain reaction of length 2. The
next state configuration should be {A, C, D, G, H, I}. If now
an external event n occurs, the transition labeled n/f in H is
taken. The action f is immediately activated and f event
causes transition labeled f/g in A to be taken. The event g is
activated, and it further triggers transition g in D. The new
state configuration is {A,B,D,E,H,J} now by virtue of a
chain reaction of length 3.

D. Step
In Statechart, the system reaction at some instant is

composed of the set of transitions taken at that instant and the
set of events generated when these transitions are taken.
Informally, the behavior of a superstate is the execution of its
substates. A parallel state behaves either as one of its AND
components or according to the transitions between the states.
In Statechart, this kind dynamic behavior is based on the
notation of step.

A step is a set of consistent transitions that are structurally
relevant to a given state configuration. A step is initiated
when an external event arrives at the Statechart boarder. That
initial event will cause a cascade of subsequent internal
events. These internal events are results of taking the steps’
transitions and executing the actions associated with these
transitions. A step is completed when no more internal events
are generated or there are no more transitions triggered by the
events that were generated. In Statechart, it is assumed that a
step is completed before another external event arrives.

Let T denote a step. When step T is taken, all the states
must remain consistent. All the transitions participating in a
step T are taken simultaneously. In Statechart, a step can be
further defined as a sequence of micro steps.

A micro step is a set of internal transitions. Micro steps
capture the internal order in which the simultaneous
transitions and actions of a single step are carried out. To
protect chain reactions from incoming external events
(coming from outside of the state machine), micro steps
should be performed before any new steps. A micro state
configuration is defined as the abstract system status between
micro steps.

Given a system configuration C, the system reaction at
some instance is composed of a sequence of micro steps. The
first micro step is defined as a set of transitions that occur at
the current state configuration. In Fig. 16, if the system is in
state configuration {A, C, D,G,H,I} and an external event f
occurs, then the event f will be triggered and transition

International Journal of Machine Learning and Computing, Vol. 2, No. 1, February 2012

59

labeled f/g is taken. The action g is immediately activated.
Special condition ny(f) is updated to reflect that event f has
been executed in the present micro step. The first micro step
in this example results in micro state configuration
{A,B,D,G,H,I}. In Fig. 16, the second micro-step will
execute the transition labeled g and then reach the stable and
consistent configuration {A,B,D,E,H,I}. A sequence of
micro steps terminates. A step is accomplished, and the next
state configuration is {A, B, D, E, H, I}.

E. Non-termination
Statechart employs a broadcasting mechanism to handle

concurrence in the system. One part generates an event by an
action and all other parts sense it and act in response if so
specified. Upon sensing such an event, another component
might generate a new event, causing yet other events to be
generated. This chain reaction could keep going. The events
generated by actions may cause non-termination problems.
Cycles, like that of Fig. 18, have to be dealt with, presumably
rendering them undefined.

Fig. 18 Non-termination

In Fig. 18, the initial configuration is {H,A,C,B,E}. If

event a occurs, transition labeled a/b will be taken and action
b is generated immediately. The system is in {H,A,D,B,E}.
State E senses action b and transition labeled b/c in state B is
taken. Action c is generated and the system is in
{H,A,D,B,F}. State D then senses action c and transition
labeled c/d in state A is taken. Action d is generated and the
system is in {H,A,C,B,F}. State F senses action d. Transition
labeled d/a in state B is taken and action a is generated. The
system is back in {H,A,C,B,E}. State C senses action a and
the transition labeled a/b will be taken. The cycle will start
again and never terminate.

V. DISCUSSION AND RELATED WORK
Heral [3, 4] has accomplished his attempts to overcome the

drawbacks of FSM such as flat, sequential, uneconomical
transitions and states by using the Statechart. Statechart can
be used to represent a large and complex state machine by
adding the features of depth, parallel, and
broadcast-communication.

However there are several drawbacks of the original
Statechart. The order of the transitions taken place is
important. The Statechart shows structure non-determinism
caused by the freedom of selecting subsets in micro-steps and
the uncertainty of selecting concurrent events. One of the
most important properties of any real-time system is the time

constraint that should be clearly indicated in the requirement
specification. Although Statechart provides timeout feature
and time bound, these features are not well defined and are
not sufficient to represent the critical time requirements.

Recently several approaches to requirement specification
for process-control are proposed and based on the Statechart.
The Irvine Safety Research Group [13] borrows the notions
of superstate, parallel state, broadcast communication, state
arrays, and conditional connectives from Statechart. The
group enhances the Statechart by adding interface
descriptions and directed communication between state
machines in its RSML(Requirements State Machine
Language.) RSML has some unique syntactic and semantic
features that are developed to enhance readability,
reviewability, analyzability, and the ability to handle
complex systems. Furthermore [7] defines the formal
semantics of RSML and describes an automated approach to
analyze an RSML specification for completeness and
consistency.

Real Time Logic (RTL) [9] is a first order predicate logic
invented for reasoning about time properties of real-time
systems. Modechart [12] uses the concept of mode from the
work of Parners [7] and borrows from Statechart the very
appearing compact representation of large state machines.
The main contribution of Modechart is in providing a
semantics that explicitly deals with the absolute timing of
events and avoids some of the potential semantic anomalies
of Statechart. The translation of a Modechart specification
into RTL will result in a hierarchy organization of the RTL
assertions.

STATEMATE uses Statechart, Activity Charts, and
Structure Charts for the specification analysis and
documentation of large and complex reactive systems. It
enables a user to prepare, analyze, and debug diagrammatic
descriptions of system under development from three
interrelated points of view, capturing structure, functionality,
and behavior. In addition to the use of Statechart, the main
novelty of STATEMATE is that it “understands” the entire
descriptions perfectly. STATEMATE is able to analyze them
for crucial dynamic properties, to carry out rigorous
executions and simulations of the described system.
STATEMATE will create running code automatically.

Besides Statechart based requirement specification, other
notable approaches are used. Petri nets [15, 17] are used for
visually specifying parallel/distributed software. They are
graphical and precise, and they are heavily event-driven
allowing maximum concurrence. Duration calculus is a
real-time interval logic, where predicates define duration of
states. Papelis and Casavant [17] proposed a specification
which is a set of formulas in duration calculus. SCR
(Software Cost Reduction) was introduced more than a
decade ago [6, 7] and has been extended recently [14, 18, 19].
It is a state-based approach using an assortment of tabular
notation to define state transitions and output variables. SCR
requirements are intuitive, easy to write and change, and
scalable to large systems.

REFERENCES
[1] Ambler, Scott W., The Agile Scaling Model (ASM): Adapting Agile

Methods for Complex Environments” , IBM, December 2009.

International Journal of Machine Learning and Computing, Vol. 2, No. 1, February 2012

60

[2] Boehn，B.W., “Software Engineering Economics,” Englewood Cliffs,
NJ, Prentice-Hall, 1981

[3] Harel, D., “Statecharts: a visual formalism for complex systems,”
Science of Computer Programming, vol. 8 1987

[4] Harel, D., A Pnueli, J.P. Schmidt, and R.Sherman, “On the formal
semantics of Statecharts (Extended Abstract),” Proceedings of the
Second Symposium, Logic in Computer science, Ithaca, N.Y. 1987

[5] Harel, D., H. Lachover, A Naamad, A Pnueli, M. Politi, R. Sherman, A
Shtull-Trauring, and M. Trakhtenbrot, “STATEMATE: a working
environment for the development of complex reactive systems,” IEEE
Transactions on Software Engineering, vol. 16, No. 4, April 1990

[6] Heninger, K., “Specifying software requirements for complex systems:
new techniques and their application,” IEEE Transactions on Software
Engineering, SE-6(1), January 1980

[7] Heninger, K., D.Parnas, J. Bhore, and J. Kallander , “Software
requirements for the A-7e air craft,” technical Report 9586, NRL,
Washington D.C. December 1983

[8] Heimdahl, M.P.E. and N. Leveson, “Completeness and consistency in
Hierarchical state-based requirements,” IEEE Transactions on
Software Engineering, vol. 22, No. 6, June 1996

[9] Jahanian, F. and A. Mok, “Safety analysis of timing properties in real
time systems,” IEEE Transactions on Software Engineering, vol.
SE-12, September 1986

[10] Jahanian, F. R., Lee, and A. Mok, “Semantics of Modechart in Real
Time Logic,” Proceedings of the 21st Hawaii International Conference
on system Science, January 1988

[11] Jahanian, F., A. Mok, and D. Stuart, “Formal specification of real-time
systems,” Department of Computer Science, TR-88-25, University of
Texas, June 1988

[12] Jahanian, F. and A. Mok, “Modechart: A specification language for
real-time systems,” IEEE Transactions on Software Engineering, vol.
20, N0. 12, December 1994

[13] Leveson, N.G., M.P.E. Heimdahl, H.Hildreth, and J.D. Reese,
“Requirements specification for process-control systems,” IEEE
Transactions on Software Engineering, vol. 20, No. 9, September 1994

[14] Parnas, D. and J. Madey, “Functional documentation for computer
systems engineering,” Version 2, Technical Report CRL 237,
Telecommunications Research Institution of Ontatrio (TRIO),
McMaster University , Hamilton, Ont., 1991

[15] Papelis, Y.E. and T.L. Casavant, “Specification and analysis of
parallel/distributed software and systems by Petri Nets with transition
enabling function,” IEEE Transactions on Software Engineering, vol.
18, No. 3, March 1992

[16] Rawn, P. and K.M. Hansen, “Specifying and verifying requirements of
real-time systems,” ,” IEEE Transactions on Software Engineering, vol.
19, No. 1, January 1993

[17] Reising, W. ,“Petri Nets: an introduction,” Spriger Varlag, Berlin,
1985

[18] Van Schouwen, A.J., “The A-7 requirements model: reexamination for
real-time and an application for monitoring systems,” Technical Report
TR 900-276. Queen’s University Kingston, Ont., 1990

[19] Van Schouwen, A.J., D.L. Parnas, and J. Madey, “Documentation of
requirements for computer systems,” Proceedings of RE’s 93,
Requirements Symposium, San Diego, January 1993

Wendy Wenhui Zhang was born in Shanghai, China.
She got her M.S. and Ph.D. in computer science from
University of Houston, Texas, United States.
She is full professor of Computer Science & IT
Department in Southeastern Louisiana University,
Louisiana, United State. Her research interests are
spatial database, high performance computing, and
hyperspectral remote sensing.

She is a member of ACM and IEEE. She was
awarded summer research fellowships from NASA

and Naval Research Lab dring 2002-2009.

Theresa Beaubouef earned the B.S. in Computer
Science from Louisiana State University and the M.
S. and Ph.D. degrees from Tulane University in New
Orleans, Louisiana in 1992. Dr. Beaubouef has
worked as a computer scientist for the U.S. Navy and
its contractors, and as Assistant Professor at Xavier
University in New Orleans. She is currently a
professor at Southeastern Louisiana University.

Her research interests include uncertainty in
databases, data mining, spatial databases, artificial

intelligence, and computer science education. Dr. Beaubouef is also
interested in scientific computing and mathematical applications and formal
modeling of processes.

Dr Huilin Ye is an Associate Professor at School
of Electrical Engineering and Computer Science,
University of Newcastle, Australia. Her main
research interest is in the area of software
engineering, including software product line
engineering, object-oriented software development,
software reusability, and software library systems
etc. She is the leader of Software Engineering
Research Group at University of Newcastle and
currently leading an Australian Research Council

funded project in feature model based software product line engineering.
Prior to her academic career she had been a senior software engineer and
system analyst in software engineering industry for more than 10 years.

International Journal of Machine Learning and Computing, Vol. 2, No. 1, February 2012

61

