
 

 

  
Abstract—Statechart is a visual language for software 

requirement specification that has been widely used in recent 
years.  In essence, it extends the conventional language of 
state-transition diagrams with three elements that 
accommodates the notions of hierarchy, concurrency, and 
communication.  Additionally, it allows multilevel concurrency, 
creation of chain-reaction effects, and the use of high- and 
low-level events.  It is compact, expressive, compositional, and 
modular.  This paper presents a tutorial of Statechart and 
discusses its merits and shortcomings. 
 

Index Terms—Statechart, requirement specification. 
 

I. INTRODUCTION 
A software requirement specification is the first detailed 

documentation of the required behavior of a software system.  
Errors introduced during the requirements analysis phase are 
difficult and expensive to correct if they are allowed to be 
propagated into the design phase. Such errors may cost up to 
200 times more to correct than those introduced later in the 
life cycle [2] and can have major impacts on the system. 

A requirement specification is a behavioral specification of 
the system’s activities; it describes the system’s modes 
(states) of operation and events that cause the system to 
change modes. The specification often includes a set of 
assertions that must be satisfied. These assertions are 
invariant properties of the software system, and thus should 
also be included in the requirement specification. 

The requirement specification is particularly critical for 
complex embedded software. Embedded software is part of a 
large system and has a primary purpose of providing at least 
partial control of the system or process in which it is 
embedded. Most such software is real-time and reactive, i.e., 
required to interact with and respond to its environment in a 
timely fashion during execution. It is very difficult to specify 
and validate the requirements that describe reactive behavior 
clearly and at the same time both formally and rigorously. 

The requirement specification must be unambiguous and 
translatable into mathematical notation, but it need not itself 
including arcane mathematical symbols that are unfamiliar to 
the application experts and software developer.  The 
specification should be simple and clear, and it should 
contain only the information needed by the developer and 
analysts.  The language for software requirement 
specification should be easy to use and result in more 
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readable and revisable specification. 
One approach is the classical formalism of finite state 

machines and state transition diagrams.  A finite state 
machine (FSM) is a model of a system with discrete inputs 
and outputs.  The system can be in any one of a finite number 
of internal states or configurations. The state of the system 
summarizes the information concerning past input that is 
needed to determine the behavior of the system on 
subsequent input. One state, denoted by q0, is the initial state. 
The system consists of a finite set of states and transitions 
from state to state that occur on input symbols. For each input 
symbol there is exactly one transition out of each state or 
there are more than one transitions out of a state. A directed 
graph, called a transition diagram is associated with a FSM. 
The vertices of the graph correspond to the states. If there is a 
transition from state q0 to state p on input a, then there is an 
arrow labeled a from state q to state p.  Fig. 1(a) shows a state 
transition diagram with four states and eight transitions. A 
Mealy machine is also a finite state machine, except it gives 
an output in response to input. Fig. 1(b) shows a Mealy 
machine, which takes input 0 or 1 and gives output n.  

Harel [3] indicates that people cannot use conventional 
FSM and transition diagrams in designing complex systems 
for several reasons: 

1.   State transition diagrams are “flat” without notion of 
depth, hierarchy, or modularity. 

2. State transition diagrams are uneconomical for 
transitions. An event that causes the very same transition from 
a large number of states must be attached to each state 
separately. 

3. The number of states grows exponentially in state 
diagrams. 

4.   State transition diagrams are inherently sequential and 
are not well suited for concurrency.  

Harel [3, 4] constitutes an attempt to revive the classical 
formalism of finite state machines and state transition 
diagrams and make them fitting for use in large and complex 
applications. Statechart: a visual language for software 
requirement specification is proposed to overcome these 
drawbacks of state diagrams while preserving and even 
enhancing the visual appeal of conventional state diagrams. 

Statechart extends the conventional language of state 
transition diagrams with essentially three elements that 
accommodate the notion of hierarchy, concurrency, and 
communication. Statechart transforms the state transition 
diagram into a highly structured and economical description 
language.  When coupled with the capabilities of 
computerized graphics, Statechart enables people to view the 
description at different levels of detail and makes very large 
process-control requirements specification manageable and 
comprehensible. 

Statechart: A Visual Language for Software Requirement 
Specification  
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   Fig.1(a) FSM                     Fig. 1(b) Mealy Machine 
 
The syntax and semantics of Statechart use low level 

functional formalism. The semantics appears to be novel in 
its treatment of shared variables, chain-reactions and 
simultaneous multiple transitions.  In recent years, 
Statecharts have been used as UML (Universal Markup 
Language) state machine diagrams [1] and state machine 
notations for control abstraction [19]. 

This paper presents the features of Statechart.  Notations 
used in this paper are graphics, symbols, and plain English.  
This paper is organized as follows: Sections 2 and 3 introduce 
the basic and additional features of Statechart.  Section 4 
discusses how to represent concurrency in Statechart.  Some 
drawbacks will be discussed and some related approaches 
will be briefly introduced in Section 5. 

 

II.  BASIC FEATURES OF STATECHART 
Statechart is a finite state machine augmented with 

schemes for expressing hierarchy, parallelism, and 
communication.  Rectangles are used to denote states at any 
level.   A simple finite state machine is composed of states 
connected by transitions.  An arrow labeled with an event, 
and optionally with a parenthesized condition, denotes the 
transition. A small arrow marks default or start states.  In Fig. 
2(a), there are three states: A, B, and C. Event c that occurs in 
state A, transfers the system from state A to state C if and 
only if (iff) condition p holds at the instant of occurrence.  
State A is the default state; that means the system enters state 
A when the state machine is entered unless otherwise 
specified. 

 
 
Fig. 2(a) Three States &One Event      Fig.2(b)  Super State D 
 

A. Composition of a Superstate  
In a Statechart, states may be grouped into a superstate.  

The concept of a superstate has its origin in higraph [4], 
which combines the notions of Euler circles, Venn diagrams, 
and hypergraphs.  A Statechart may contain states at any level, 
and encapsulation is used to express the hierarchical relation.  

In Fig. 2(a), since event b takes the system to state B from 
either state A or state C, states A and C can be clustered into a 
new superstate D, and the two b arrows can be replaced by 

one as shown in Fig. 2(b).  The semantics of  D is the 
exclusive-or (XOR) of states A and C, i.e., being in state D is 
equivalent to being in either state A or state C, but not both.  
Superstate D is an abstraction of states A and C.  Such 
groupings reduce the number of transitions needed to be 
drawn on a Statechart. The superstate D and outgoing arrow b 
capture a common property of states A and C, viz., a transition 
from either of its substates A or C via arrow b to state B. 

A superstate can be entered in two ways. First, the 
transition to the superstate may end at the border of the 
superstate as exemplified by arrow a in Fig. 2(b).  In that case, 
the default state A is entered, i.e., it is equivalent to having 
arrow a drawn from state B to state A.  Second, the transition 
may be made to a particular state inside a superstate, such as 
arrow d in Fig. 2(b) that leads from state B to state C. 

Grouping states into a superstate indeed reduces the 
number of transitions and makes the specification more 
readable. Furthermore, an economical representation of 
arrows with common sources, targets, or events is allowed in 
Statechart as shown in Figures 3(a)-(d).  In Fig. 3(d), arrow a 
splits into two arrows where one leads to state B and the other 
leads to state C.  This is a contradiction to the desired 
determinism of the system and should not be used. 

 

 
     Fig. 3(a) Transition 1          Fig. 3(b) Transition 2 

 
     Fig. 3(c) Transition 3         Fig. 3(d) Transition  4 

 
Clearly, more subtle contradictions can occur as a result of 

the deep character of Statechart and should be carefully 
avoided.  For example, Fig. 4(a) shows an arrow a 
contradiction from state A. Arrow a leads the transition from 
state A to state E as well as from superstate B to state F. Fig. 
4(a) also contains a default state contradiction upon entering 
state B via arrow d. There are two default states in superstate 
B. One is state E and another is state D contained within state 
C.  Arrow c is under-specified, since state C contains no 
default state. 

 
Fig. 4(a) Shows an arrow a contradiction from state A. 
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In Fig. 4(b), condition (¬ in A) is added to arrow a which is 
from the border of superstate B to state F.  If the current state 
is A, arrow a leads the transition from state A to state E; 
otherwise it will lead the transition from state B to state F.  In 
Fig. 4(b), state D is the default state of superstate C.  Arrow d 
will lead the transition from state F to state E, and arrow c 
will lead the transition from state F to state D all by default 
arrows. 

 

 
           Fig. 4(b) Condition (¬ in A) is added to arrow a 

B. History Entry 
One of the most interesting and frequent ways of entering a 

group of states is by the entering history. Statechart has the 
ability to “remember” a previous visit to a state. Circled H is 
used to denote the history entrance.  

The simplest kind of this “enter-by-history” is entering the 
state most recently visited.  In Fig. 5(a), the H-entry with 
arrow a means entering the most recently visited or entering 
default state D if it is the first time. Fig. 5(b) shows two 
entrance arrows to superstate A.  In this case, the default state 
D is entered when the entrance is via arrow a.  If state A is 
entered via arrow f, the state entered is one of three states: 
state B, state C, or state D. It depends on what state the 
system happened to be in when it was most recently in state 
A. 

An H-entry generally means that the history is applied only 
on the level in which it appears. In Fig. 5(a), history entry 
chooses only between superstates G and F. The system 
chooses superstate G and enters state B if it was in state A or 
state B when it most recently left K.  The system chooses F 
and enters state C if it was in state C, state D, or state E on the 
last visit.  The choice of entering state B and state C is by the 
default arrows in G and F. 

If the H-entry wants to override the default all the way 
down to the lowest level of states, an asterisk is attached to 
the H-entry.  Fig. 5(b) shows that the system will enter the 
most recently visited state from among states A-E overriding 
both defaults. 

 
 Fig. 5(a) H-entry between  G and F      Fig. 5(b) H-entry override default      

 
Fig. 5(c) Additional H-entry 

 
 

To achieve effects in between one-level and all levels, 
additional H-entries are needed. In Fig. 5(c), the system will 
enter state B if its last visit to K was to G or that one of state C, 
state D, or state E was last visited. The default arrow to state 
C is overridden by history through the H-entry in F. 

Sometimes, H-entry should be interpreted with reservation. 
The history is to be forgotten if a specific event occurs. To 
deal with this more complex historical criterion, the special 
actions clear-history(state) and clear-history(state*) will be 
used.  These actions cause the forgetting of the most recently 
visited state on the current level, or of all levels of state. In 
Figure 5(a), clear-history(K) will forget the most recently 
visited states F or G. In Fig. 5(b), clear-history(K*) will 
forget the most recently visited states from among A-E. Once 
forgotten, H-entry does not apply and defaults are employed. 

C. Composition of a Parallel State 
One of the most important innovations in Statechart is 

parallel state, which is also referenced as orthogonal state or 
product state. A parallel state contains two or more parallel 
components (AND components) separated by dashed lines.  

In Fig. 6(a), parallel state H consists of two parallel 
components, state A and state D. The semantics of H is the 
product (AND) of states A and D, i.e., being in state H entails 
being in both state A and state D.  Each of the parallel 
components state A and state D within H is entered whenever 
the parallel state H is entered.  In Fig. 6(a), when parallel state 
H is entered from the outside via arrow f, the substates B of A 
and substates F of D are entered by the default arrows.   When 
any transition is taken out of the parallel state H, all states H, 
A, and D are exited. 

 

 
Fig. 6(a) Parallel State H 
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Fig. 6(b) AND-free “flat” Statechart 

 
The parallel components state A and D can be superstates 

or be parallel states themselves. In Fig. 6(a), parallel 
components state A and state D are superstates themselves. 
Parallel state in statechart illustrates a certain kind of 
synchronization. In Fig. 6(a), if event a then occurs, the 
transition from state B to state C and from state F to G will 
take place simultaneously. 

The use of a parallel state greatly reduces the size of the 
specification. Fig. 6(b) is the conventional AND-free 
equivalent “flat” version of Fig. 6(a). The usual product of 
conventional state transition diagram is a disjoint product. 
Fig. 6(b) contains six states, the product of the two substates 
in A and three substates in D.  Clearly, two components with 
one thousand states each would result in one million states in 
the product. This is the root of blow-up in number of states. 
Parallel state in Statechart introduces some dependence 
between components, i.e., in Fig. 6(a), the special condition 
“in(G)” attached to arrow f causes state A to depend on state 
D and indeed to “know” something about a substate of D. If 
the parallel construct is used often, and on many levels, a 
state explosion problem can be overcome in a reasonable 
way. 

 
 

Fig. 6(c) Interface of Parallel State H 
 

A parallel state can be entered in four ways. First, the 
transition to the parallel state may end at the border of the 
parallel state as exemplified by arrow a in Fig. 6(c).  Fig. 6(c) 
adds a possible interface description of the parallel state H of 
Fig. 6(a).  Internal transitions of Fig. 6(a) have been omitted 
for simplicity. In this case, as mentioned before, state B and 
state F are entered by default. Second, the transition may be 
made to particular states inside the parallel components, such 
as split arrow b in Fig. 6(c) that leads transition from state J to 
state B and state E.  Third, the transition may be made to one 
particular state, such as arrow c in Fig. 6(c) that leads to 
transition from state K to state C by arrow c and state F by 
default. Fourth, the transition may be made to one particular 
state and an H-entry such as split arrow d in Fig. 6(c) that 

leads transition from state L to state C and the most recently 
visited state in state D. 

A parallel state may be exited in three ways. First, the 
transition exits parallel state from the border of parallel state 
as exemplified by arrow e in Fig. 6(c). In this case, the 
parallel state H and all parallel components state A and state 
D are exited unconditionally. Second, an “exiting 
independently” transition exits parallel state from an inner 
state such as arrow f in Fig. 6(c) that leaves state H, state A, 
and state D and enters state K.  Third, an “exiting dependently” 
transition exits parallel state from a certain combination of 
states as exemplified by arrow h in Fig. 6(c). In that case, the 
event h that occurred in state B and state G causes 
transferring from parallel state H to state K.  An alternative to 
the third case is to replace one of the outgoing branches of the 
merging arrows by a condition as showed in arrow g from 
state F in Fig. 6(c). In this case, transition exits parallel state 
H to state M only from state F and state B. 

The use of parallel state reduces the state explosion 
problem in the conventional state machine. The parallel state 
components can be carried out on any level of states and is 
therefore more convenient than allowing only single level 
sets of communicating in FSM. The use of a parallel state 
enables Statechart to describe independent and concurrent 
state components and eliminates the need for multiple control 
activities within a single activity. 

D. Conditional Connectives 
A condition defines what must be true before the transition 

can be taken. When transitions out of a particular state into 
two or more different states are taken based on the same event 
but different conditions, conditional connectives are used. 
Circle C is used for abbreviating the conditional connective. 

In Fig. 7(a), when event a occurs, the transition out of state 
A enters state B, state C, or state D depending on conditions P, 
Q, or R.  In Fig. 7(b), a conditional connective, ©, is used to 
simplify the multiple transition entrances.  The transition 
from the source state A to the connective © is taken at the 
occurrence of a event. The appropriate destination state, state 
B, state C, or state D is determined based on the guarding 
conditions that are defined on the transition from the 
connective © to the destination states. 

 
Fig. 7(a) Condition 1   Fig. 7(b) Condition 2   Fig. 7(c) Condition 3 
 

To maintain the completeness and consistency of a 
specification, the guarding conditions from the connective to 
the destination states must be mutually exclusive.  When 
event a occurs and condition P is true, Fig. 7(c) shows a 
contradiction. Since both state C and state D are substates of 
superstate Y, they cannot be in state C and state D 
simultaneously. 

If all the destination states share some guarding conditions, 
those conditions may be placed on the transition from source 
state to connective ©. In Fig. 7(d), all the destination states 
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share the guarding condition S. Condition S is placed on the 
transition from state A to connective © as shown in Fig. 7(e). 

Sometimes a state change is not desired. In this case, a 
transition leads from the conditional connective back to the 
source state. For example, when event a occurs, the transition 
from state A to the connective © is taken in Fig. 7(b). If none 
of the guarding conditions P, Q, and R is true, a transition 
leads from © back to state A. 

 
 

 Fig. 7(d) Share Condition S     Fig. 7(e) Connective     Fig. 7(c) Simple form 

 
If the actual conditions are too complex, details from the 

chart can be omitted. A simple incomplete form of Fig. 7(f) 
can be used.  The full details of conditions and explicitly 
specifying the circumstance for changing a state and for 
remaining in a state can be supplied separately. 

 

III. ADDITIONAL FEATURES OF STATECHART 
This section contains a number of the more advanced 

features of Statechart.  For most of them, there is neither final 
formal syntax nor satisfactory formal semantics. These 
features represent significant potential strengthening of 
Statechart as a tool for specifying real systems. Basic 
approaches of these features will be discussed here.  

A. Selective Connective 
Sometimes a state to be entered is determined as a simple 

one-to-one by the selection of a generic event. The event is 
actually the selection of one of the clearly defined options. 
The user will have to specify the event selection as being the 
disjunction of the lower-level events and associate each of 
them with an appropriate state. All those options can be 
specified as states in a Statechart. 

 

 
          Fig. 8(a) Four Keys       Fig. 8(b) Use Selection 
 
 
Fig. 8(a) shows the system with four keys marked as A, B, 

C, and D pertaining to the objects stored, their code names, 
quantities and physical placements. The system allows the 
user to select an option by pressing the appropriate key. The 
system then processes the selected option, possibly 
repeatedly if no other key is pressed.  

Circled S is used to denote the selective connective. In Fig. 
8(b), the selection arrow to circled S replaces all four arrows 
in Fig. 8(a). The unified H-entry simplifies all repeated 
events.  In Fig. 8(b), pressing f in any of the substates A, B, C, 
or D causes exit (but not exit from the encapsulating 
superstate Y) and immediately entrance to the most recently 
visited substate. This f arrow replaces four f arrows, one for 
each substate in Fig. 8(a). By using selective connective and 
H-entry, Fig. 8(b) simplifies the selections in Fig. 8(a). 

B. Timeout and Time Bound 
To limit the system’s delay in a state and put a time 

constraint on the state is an important property of a real-time 
system requirements specification. Statechart uses implicit 
timers to respond to time restrictions.  Formally, this is done 
using the event expression timeout(event, number).   This 
expression represents that timeout event occurs precisely 
when the specified number of time units have elapsed from 
the occurrence of the specified event.  

In Fig. 9(a), the system will exit from state A to state B 
when 120ms have elapsed from the occurrence of event f. 

 

 
Fig. 9(a) Timeout     Fig. 9(b) Time Bound 
 

Sometimes the need to limit the system’s lingering in a 
state occurs repeatedly in the specification of real systems. A 
graphical notation is needed to show this property of a state. 
Statechart uses a squiggle to indicate that a state comes with a 
time bound.  

In Fig. 9(b), squiggle shows that state A comes with a time 
bound.  “1< 2 sec” is an indication of a bound itself. In 
general, the syntax of the bound specification attached to a 
squiggle is < t1 < < t2 , providing lower and upper bounds on 
the time in a state. Either one of < ti can be omitted. Events do 
not apply in the state until the lower bound is reached. A 
generic event timeout  stands for the event expression 
timeout(entered A, bound) where state A is the source of the 
transition and the bound is its specified bound.  

In Fig. 9(b), the lower bound is 1 second.  Thus the event f 
cannot cause a transition leaving state A until one second has 
elapsed from the occurrence of event f.  The system will exit 
from state A to state B after two seconds have elapsed from 
the entering of state A. 

C. Unclustering 
The conventional notation for hierarchical description has 

the advantage of keeping the state transition diagram small, 
yet the parts of interest large. When the system under 
description is large, Statechart adopts the conventional 
notation. 

In Fig. 10, part of the Statechart can be not within but 
outside of its natural neighborhood. Fig. 10 shows that 
Statechart is unclustered into several layers. 

When the system under specification is large, it is a 
necessary option to remain uncluttered. Taking unclustering 
to the extreme yields a tree structure, thus undermining the 
basic area-dominated graphical philosophy of Statechart. 
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Fig.10.  Unclustering  

D. State Arrays 
In many cases, different states have identical internal 

structure. Some of the most common ones are best viewed as 
a single state with a parameter. To choose a notation that 
economizes by parameterizing the states, state array is used 
to view the common ones as a single state with an index in 
Statechart. Individual state array element is referenced by the 
array name and an index value, i.e., A[3] refers to the third 
element in state array A.  

There are two semantic approaches to state array.  One is a 
“parameterized-and” relationship between the element state 
of state array. In this case, state array is semantically 
equivalent to identical parallel states uniquely identified by 
an index. Each element state of state array is entered or exited 
when the state array is entered or exited. For example, the 
requirement specification for each of thirty aircraft in 
TCAS[13] has identical internal structure. Instead of using 
thirty different states, Fig. 11(a) shows a state array 
other-aircraft with 30 elements. The aircraft collision 
avoidance system (CAS) will enter or exit each aircraft 
simultaneously. 

 

 
      Fig. 11(a) State Array        Fig. 11(b) State Update 1minite 
 

 
Fig. 11 (c) State Array Notation of Fig. 11(b) 

 
Another approach is a “paramerized-or” relationship 

between the element states of a state array. In that case, the 
semantics of state array is the exclusive-or of element states, 
i.e., the system can only be in one element state at a time.  
Consider the state update, 1min [2] as shown in Fig. 11(b). In 
this state, the condition tests the current time T, and the 

unspecified event a denotes T crossing a minute borderline. 
States 1-9 are all updated by event d. Fig. 11(c) shows the 
state array notation of Fig. 11(b).   Each time event d occurs, 
the state updates to the next element state. 

E. Transition Buses [12] 
By using superstate and parallel state, Statechart has the 

ability to reduce a large number of states to a conceptually 
manageable number.  Transition buses are introduced to 
reduce clutter in Statechart. 

In Fig. 12(a), states A, B, C, and D are fully interconnected, 
i.e., there is a transition from each state to every other one.  In 
Fig. 12(b), states A, B, C, and D are near fully connected, i.e., 
there is a transition from state A to every other state and there 
is a transition from states B, C, and D to every other one 
except state A.  Showing each single transition explicitly in 
these two charts is confusing and makes the Statechart hard to 
read. 

 
Fig.12(a) Connected   Fig.12(b) Near Full    Fig.12(c) Bus 1  Fig.12(d) Bus 2 
 

In this case, the transition bus can be constructed to 
provide the same information. During constructing, a 
transition must be defined for each source-state and 
destination-state pair on the transition bus. Source-state is a 
state with a transition to the bus line and a destination-state is 
a state with a transition from the bus. 

Fig. 12(c) shows a transition bus that is equivalent to the 
transition of Fig. 12(a). Since all the states are fully 
interconnected in Fig. 12(a), the states, A-D are both source 
and destination states. Fig. 12(d) is the transition bus for Fig. 
12(b).  Since there are no transitions from states B, C, and D 
to state A, there is no transition from the bus to state A in Fig. 
12(d). 

F. Overlapping State 
Superstate and parallel state provide exclusive-or (XOR) 

and parallel (AND) interrelationship between the states in 
Statechart.  Sometimes OR interrelationship between the 
states may be needed in Statechart. 

 
Fig. 13 Overlap States 

 
Fig. 13 shows that substate C could be in state A, or in state 

D, or in both state A and state D.  In this case, state A and 
state D are actually related by OR not XOR relationship. The 
OR interrelationship is needed. The reason to have the OR 
interrelationship might be due to conceptual similarities 
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between the involved states, or merely the desire to 
economize when describing joint exits such as the two 
transitions arrow a and arrow b shown in Fig. 13.  In these 
cases, overlapping states are used to turn XOR’s to OR’s.  

 

 
            Fig. 14(a) Superstate A                Fig. 14(b) State B has X 
 
 
Consider a superstate A with substates C and D that stay 

alone under some circumstances. State A joins in parallel 
with state B under other circumstances. 

Fig. 14(a) shows one way of describing this case.  In Fig. 
14(a), state A appears twice. Once for the standalone state A 
and another for state A parallel with state B. If state A 
contains many substates and has complex internal transitions, 
obviously this representation is not a desirable one. 

Fig. 14(b) shows another way of describing it. State B 
contains a special extra new state X that indicates that it is not 
really a B state at all. This solution is rather artificial, and is 
difficult to manipulate. 

 

 
Fig. 15(a) Overlapping    Fig.15(b) Add Half Circle 
 
 

Overlapping states can be constructed to solve this 
problem as shown in Fig. 15(a). When following the 
semantics of superstate and parallel state, all the transitions 
appearing in Fig. 15(a) are unambiguous.  Arrow b is clearly 
an entrance to the product of state A1 and state B.  By default, 
the system will enter states C and E. Arrow a enters state A2 
alone and gets into state C by default.  Arrow e leaves state D 
and state A2 regardless of whether it is matched with a state 
from state B or not.  Arrow f exits from state D and state A2 
only when the Statechart is also in state B.  Arrow h leaves 
state A2 alone and arrow g leaves both state A1 and state B.  

By using the elementary notation of transition arrows, 
transitions to substates of overlapping state will be 
ambiguous. For example, it is not clear what arrow c entering 
state D is supposed to mean. For example, arrow c could enter 
state D alone or it could enter states D and E.  Refine the 
arrows crossing state borderlines by adding half circles as 
arrow a and arrow b shown in Fig. 15(b). The half circle 
crossing a state borderline means that transition bypasses this 
state. In Fig. 15(b), arrow a bypasses parallel state A1 and 
enters state D only. Arrow b bypasses state A2 and will enter 
states D and E. 

Overlapping states can be used economically to describe a 
variety of synchronization primitives and to reflect many 
natural situations in complex systems.  In other words, too 
much overlapping states may cause incomprehensibility that 
outweighs economy of description. 

 

IV. CONCURRENCE 
Statechart is generally used to represent the control part of 

the system. This reaction part is responsible for making the 
time-dependent decisions that influence the entire behavior 
of a system. The problem with concurrence stems from the 
events and conditions that are generated within the Statechart 
itself.  In this section, configuration, chain reaction, and 
semantics of step transition in Statechart will be discussed. 

A.  Configuration 
Any two states in Statechart can be related in one of three 

ways: exclusive, parallel, or hierarchy. A set of states s is 
consistent if and only if (iff) all states in this set hold the 
properties of XOR and AND interrelationship. 

In Figure 16, the sets {A, B, D, F, H, I} and {A, B, D, G, H, 
I} are both consistent because they both hold the properties of 
XOR and AND.  The set {A, B, C, F, J} is not consistent 
because state B and state C are both sub-states of superstate 
A. The system cannot be in state B and state C 
simultaneously. 

 

 
Fig. 16 State Configuration 

 
 

A state configuration is a maximal set of states that the 
system can be in simultaneously. In other words, state 
configuration is a set of mutual parallel states, i.e., if the 
system is in state B, it must be in one of the substates of 
superstate D and one of substates of superstate H in Figure 
16. The set {A, B, D, E, H, I} is maximum and consistent, 
and it is a state configuration.  

The initial state configuration C0 is defined to be the start 
configuration of Statechart. It is the configuration at the time 
when the Statechart is first initiated by an outside event. In 
Fig. 16, the set {A, B, D, F, H, J} is the initial state 
configuration. 

A system configuration C is a set of all possible state 
configurations of a Statechart. In Fig. 17, C={(G, A, H, B, I, 
C), (G, D, H, B, I, C), (G, A, H, E, I, C), (G, D, H, E, I, C), (G, 
A, H, B, I, F), (G, D, H, B, I, F), (G, A, H, E, I, F), (G, D, H, E, 
I, F)} is system configuration. 
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Fig. 17 System Configuration 

 

B.  Special Events and Conditions 
Besides the features described in Sections 2 and 3, 

Statechart also includes compound events and conditions, 
and shared variables that can be assigned to and tested.  

 If e and f are events, so are e∧f and e∨f. Similar to events, 
if P and Q are conditions then P∧Q and P∨Q are conditions 
too. Assignments include c:=true, c:=false, where c is a 
condition, and v:= s for a variable v and an appropriate 
algebraic expression s.   For expressions t and s, t = s and 
t < s are conditions. 

In addition, there are several special kinds of events and 
conditions: 

• event en(s) occurs upon entering state s; 
• event ex(s) occurs upon exiting state s; 
• in(s) is the corresponding condition for en(s) and 

ex(s); 
• event ch(v) occurs when v changes value where v is a 

variable; 
• event tr(c) occurs when condition c changes from 

false to true; 
• event fs(c) occurs when condition c changes from true 

to false; 
• condition ny(e) stands for that event e has not-yet 

occurred; 
• condition cr(c) stands for the current value of 

condition c;  
• condition cr(v) refers to the current value of a variable 

or expression v. 
Conditions ny(e), cr(c), and cr(v) refer only to what is 

happening inside the currently evaluated chain reaction that 
will be discussed later. 

C.  Action and Chain-reaction 
In section 2, the reaction part is expressed only by the 

system changing its internal state configuration to incoming 
or sensed events and conditions. All the transitions do not 
contain any outputs. Parallel components can synchronize 
only through common events and can affect each other only 
through in(s) special condition. The real subtlety of the way 
Statechart models concurrence is in their output events.  
Statechart can be viewed as an extension of Mealy machines, 
such that it has the ability to generate events and change the 
values of conditions. These output events denoted by /s are 
called actions to be attached optionally to the labels of 
transitions.  The enriched transition labeling is the form e(p)/s 
where e is the event triggering the transition, p, the condition 

that guides the transition, and s, the action to be carried out 
upon the transition.  

However in contrast to conventional Mealy machines, an 
action appearing along a transition in a Statechart is not 
merely sent to the “outside world” as an output. The action 
typically will affect the behavior of the Statechart itself in 
parallel components. This is achieved by a simple broadcast 
mechanism just as the occurrence of an external event that 
causes transitions in all parallel components.  

In Fig. 16, the initial configuration is {A, B, D, F, H, J}. 
When event m occurs and a transition labeled m/e is taken, 
the transition leads from state J to state I. In H, the action e is 
immediately activated and is regarded as an internal event.  
The e event further triggers two transitions labeled e in A and 
D. These transitions will lead from state F to state G and from 
state B to state C.  This is a chain reaction of length 2. The 
next state configuration should be {A, C, D, G, H, I}. If now 
an external event n occurs, the transition labeled n/f  in H is 
taken. The action f is immediately activated and f event 
causes transition labeled f/g in A to be taken. The event g is 
activated, and it further triggers transition g in D. The new 
state configuration is {A,B,D,E,H,J} now by virtue of a 
chain reaction of length 3. 

D.  Step 
In Statechart, the system reaction at some instant is 

composed of the set of transitions taken at that instant and the 
set of events generated when these transitions are taken. 
Informally, the behavior of a superstate is the execution of its 
substates. A parallel state behaves either as one of its AND 
components or according to the transitions between the states. 
In Statechart, this kind dynamic behavior is based on the 
notation of step. 

A step is a set of consistent transitions that are structurally 
relevant to a given state configuration. A step is initiated 
when an external event arrives at the Statechart boarder. That 
initial event will cause a cascade of subsequent internal 
events. These internal events are results of taking the steps’ 
transitions and executing the actions associated with these 
transitions. A step is completed when no more internal events 
are generated or there are no more transitions triggered by the 
events that were generated. In Statechart, it is assumed that a 
step is completed before another external event arrives.  

Let T denote a step. When step T is taken, all the states 
must remain consistent. All the transitions participating in a 
step T are taken simultaneously. In Statechart, a step can be 
further defined as a sequence of micro steps. 

A micro step is a set of internal transitions. Micro steps 
capture the internal order in which the simultaneous 
transitions and actions of a single step are carried out. To 
protect chain reactions from incoming external events 
(coming from outside of the state machine), micro steps 
should be performed before any new steps. A micro state 
configuration is defined as the abstract system status between 
micro steps.  

Given a system configuration C, the system reaction at 
some instance is composed of a sequence of micro steps. The 
first micro step is defined as a set of transitions that occur at 
the current state configuration. In Fig. 16, if the system is in 
state configuration {A, C, D,G,H,I} and an external event f 
occurs, then the event f  will be triggered and transition 
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labeled f/g is taken. The action g is immediately activated. 
Special condition ny(f) is updated to reflect that event f has 
been executed in the present micro step.  The first micro step 
in this example results in micro state configuration 
{A,B,D,G,H,I}. In Fig. 16, the second micro-step will 
execute the transition labeled g and then reach the stable and 
consistent configuration {A,B,D,E,H,I}. A sequence of 
micro steps terminates. A step is accomplished, and the next 
state configuration is {A, B, D, E, H, I}. 

E.  Non-termination 
Statechart employs a broadcasting mechanism to handle 

concurrence in the system. One part generates an event by an 
action and all other parts sense it and act in response if so 
specified. Upon sensing such an event, another component 
might generate a new event, causing yet other events to be 
generated. This chain reaction could keep going. The events 
generated by actions may cause non-termination problems. 
Cycles, like that of Fig. 18, have to be dealt with, presumably 
rendering them undefined. 

 
Fig. 18 Non-termination 

 
In Fig. 18, the initial configuration is {H,A,C,B,E}.   If 

event a occurs, transition labeled a/b will be taken and action 
b is generated immediately. The system is in {H,A,D,B,E}. 
State E senses action b and transition labeled b/c in state B is 
taken. Action c is generated and the system is in 
{H,A,D,B,F}.  State D then senses action c and transition 
labeled c/d in state A is taken. Action d is generated and the 
system is in {H,A,C,B,F}. State F senses action d. Transition 
labeled d/a in state B is taken and action a is generated. The 
system is back in {H,A,C,B,E}. State C senses action a and 
the transition labeled a/b will be taken. The cycle will start 
again and never terminate. 

 

V. DISCUSSION AND RELATED WORK 
Heral [3, 4] has accomplished his attempts to overcome the 

drawbacks of FSM such as flat, sequential, uneconomical 
transitions and states by using the Statechart.  Statechart can 
be used to represent a large and complex state machine by 
adding the features of depth, parallel, and 
broadcast-communication. 

However there are several drawbacks of the original 
Statechart. The order of the transitions taken place is 
important. The Statechart shows structure non-determinism 
caused by the freedom of selecting subsets in micro-steps and 
the uncertainty of selecting concurrent events.  One of the 
most important properties of any real-time system is the time 

constraint that should be clearly indicated in the requirement 
specification. Although Statechart provides timeout feature 
and time bound, these features are not well defined and are 
not sufficient to represent the critical time requirements. 

Recently several approaches to requirement specification 
for process-control are proposed and based on the Statechart. 
The Irvine Safety Research Group [13] borrows the notions 
of superstate, parallel state, broadcast communication, state 
arrays, and conditional connectives from Statechart. The 
group enhances the Statechart by adding interface 
descriptions and directed communication between state 
machines in its RSML(Requirements State Machine 
Language.) RSML has some unique syntactic and semantic 
features that are developed to enhance readability, 
reviewability, analyzability, and the ability to handle 
complex systems.  Furthermore [7] defines the formal 
semantics of RSML and describes an automated approach to 
analyze an RSML specification for completeness and 
consistency. 

Real Time Logic (RTL) [9] is a first order predicate logic 
invented for reasoning about time properties of real-time 
systems. Modechart [12] uses the concept of mode from the 
work of Parners [7] and borrows from Statechart the very 
appearing compact representation of large state machines. 
The main contribution of Modechart is in providing a 
semantics that explicitly deals with the absolute timing of 
events and avoids some of the potential semantic anomalies 
of Statechart.  The translation of a Modechart specification 
into RTL will result in a hierarchy organization of the RTL 
assertions. 

STATEMATE uses Statechart, Activity Charts, and 
Structure Charts for the specification analysis and 
documentation of large and complex reactive systems. It 
enables a user to prepare, analyze, and debug diagrammatic 
descriptions of system under development from three 
interrelated points of view, capturing structure, functionality, 
and behavior. In addition to the use of Statechart, the main 
novelty of STATEMATE is that it “understands” the entire 
descriptions perfectly. STATEMATE is able to analyze them 
for crucial dynamic properties, to carry out rigorous 
executions and simulations of the described system. 
STATEMATE will create running code automatically. 

Besides Statechart based requirement specification, other 
notable approaches are used. Petri nets [15, 17] are used for 
visually specifying parallel/distributed software. They are 
graphical and precise, and they are heavily event-driven 
allowing maximum concurrence. Duration calculus is a 
real-time interval logic, where predicates define duration of 
states. Papelis and Casavant [17] proposed a specification 
which is a set of formulas in duration calculus.  SCR 
(Software Cost Reduction) was introduced more than a 
decade ago [6, 7] and has been extended recently [14, 18, 19]. 
It is a state-based approach using an assortment of tabular 
notation to define state transitions and output variables. SCR 
requirements are intuitive, easy to write and change, and 
scalable to large systems. 
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