

Abstract— A new symmetric cipher algorithm is introduced

in this article. This algorithm is based on multiple quasigroups
(QGs), constructed by special kind of mapping called a
complete mapping. All these transformations are controlled by
equations for encryption and decryption QGs. So, there is a
total storage reduction and an ability to use huge number of
QGs with large order. Moreover, this proposal is enhanced with
a new cyclic random permutation (CRP) to construct randomly
big number of QGs. Analytical and comparative study
concerned the proposal, was achieved. It proved its strength
(key length 192 bits), its speed (encryption times comparable to
standard already exists) and its immunity against most known
attacks.

Index Private Key Cryptosystems, Quasigroup, String
Transformations, Random Permutations.

I. INTRODUCTION
There is a need for simple cryptographic primitives to

implement security in an environment with end users
connected with terminals having limited storage and
processing power.

Constructing ciphers using the algebraic structures of
quasigroups based ciphers lead to particular simple yet
efficient ciphers. Quasigroups are structures very similar to
groups with the primary difference that they are in general
not associative.

On other hand, constructing large quasigroups from
smaller ones is an important problem for many applications
[3-8]. In this paper, multiple quasigroups symmetric-key
block cipher is proposed. This proposal uses special kind
QGs constructed by complete mapping [8]. This helps to
regenerate the QGs used by the sender at the receiving end,
with minimal information exchange.

II. PRELIMINARIES
In this section a brief overview of quasigroups, quasigroup

operations and quasigroup string transformations is
explained.

Definition 1. A quasigroup is a groupoid (Q,*) satisfying
these laws:

 Manuscript received September 10, 2011, revised September 22, 2011.
This paper was accepted by 4th IEEE International Conference on Computer
Science and Information Technology (IEEE ICCSIT 2011)
 H. Zorkta and T. Kabani are with Aleppo University- Syria. (email:
drzorkta@hotmail.com; tarek_kabani@hotmail.com)

 Let (Q, *) be a Quasigroup, then two operations \ and / on
Q can be defined as:

 Then the algebra (Q, *, \, /) satisfies the identities

and (Q, \), (Q, /) are quasigroups too.

Definition 2. Let (Q, *, \, /) be a Quasigroup and
M = a1, a2, a3, ..., an ∈ Q. The encryption function E is
defines as:

el,*(M) = b1b2 … bn ⇔
b1 = l * a1, b2 = b1 * a2, …, bn = bn−1 * an (5)

for each leader l ∈ Q and for every string M ∈ Q+.

The decryption function D is then defines as:

dl,*(M) = c1c2 …cn ⇔
c1 = l * b1, c2 = b1 * b2, … , cn = bn−1 * bn (6)

Theorem 1. If (Q, *) is a finite quasigroup, then el,* and dl,*
are mutually inverse permutations of Q+, i.e.,

dl,* (el,* (M)) = M = el,* (dl,* (M)) (7)

for each leader l ∈ Q and for every string M ∈ Q+.

Definition 3. Let (G, +) be a group.
Let i: G → G denote the identity map on G.
Ө: G→ G is a complete mapping if Ө is a bijection and i - Ө is
a bijection where (i – Ө)(x) = x – Ө(x).

Example 1. Let (G, +) = (Z9, +) where Z9 = (0, 1, 2, 3, 4, 5, 6,
7, 8) and + is performed modulo 9. Then Ө(x) = 5x + 4 is a
complete mapping because both Ө and i – Ө are bijections
(see Table I)

TABLE I: A COMPLETE MAPPING ON Z9

x 0 1 2 3 4 5 6 7 8

Ө(x) 3 8 4 0 5 1 6 2 7

i - Ө(x) 6 2 7 3 8 4 0 5 1

Sade [10] suggested creating a quasigroup (Q, *) from an

admissible group (Q, +) and a complete mapping Ө by,
defining

x * y = Ө(x – y) + y, for x , y ∈ Q (8)

An example shown in Table II

New Cipher Algorithm Based on Multiple Quasigroups
Haythem Zorkta, and Tarek Kabani, Member, IACSIT

(∀ u, v ∈ Q) (!∃ x, y ∈ Q): u* x = v, y * u = v (1)
x * y = x * z ⇒ y = z, y * x = z * x ⇒ y = z (2)

x * y = z ⇔ y = x \ z ⇔ x = z / y (3)

x \ (x * y) = y, x * (x \ y) = y,
(x * y) / y = x, (x / y) * y = x (4)

International Journal of Machine Learning and Computing, Vol. 1, No. 5, December 2011

454

TABLE II: QUASIGROUP USING A THETA MAPPING
* 0 1 2 3 4 5 6 7 8
0 3 8 4 0 5 1 6 2 7
1 8 4 0 5 1 6 2 7 3
2 4 0 5 1 6 2 7 3 8
3 0 5 1 6 2 7 3 8 4
4 5 1 6 2 7 3 8 4 0
5 1 6 2 7 3 8 4 0 5
6 6 2 7 3 8 4 0 5 1
7 2 7 3 8 4 0 5 1 6
8 7 3 8 4 0 5 1 6 2

III. CIPHER ALGORITHM MAIN STRUCTURE
Multiple QGs cipher Algorithm is presented in this article.

It consists of the following main components (see Fig.s1-2):
1- Chaotic Generator
2- CRP Generator
3- QG Generator

Before explaining these main parts, we need to introduce
new representations for QGs and the Inverse QGs using theta
mapping.

Fig. 1. A Proposal Encryption Algorithm.

Fig. 2. A Proposal Decryption Algorithm.

A. QG & Inverse QG New Representations in Theta
Mapping
A generation of QG using theta mapping as discussed

previously, where:

Ө(x) = ax + b. (9)

This equation is used in encryption operations. So, it's
preferred to develop an equation for the Inverse QG which
used in decryption operations.

Thus a new representation of Inverse QG is developed as
following:

f (x) = ax + b, f '(x) = a'x + b (10)

To calculate variables a, b, & a' the following definitions is
given:
Definition 4. If Theta mapping operation is:
Ө(x) = ax + b. So the inverse Theta Mapping operation is:

Proof.
Ө(x – y) + y ≡ C (mod N) ⇒
a (x – y) + b + y ≡ C (mod N) ⇒
ax + b + y (1 – a) ≡ C (mod N) ⇒
y (1 – a) + (ax + b) ≡ C (mod N).

Now, using (11) the Inverse QG variables, become:

b = ӨT(00) (12)
a + b = ӨT(10) (13)
a' + b = ӨT(01) (14)

Example 2. Let Ө(x) = 4x + 2 represent a QG (Q,*), and
N=5, the inverse QG then is (Q,/), to represent this QG
using theta mapping, form (10) we have:
f (x) = ax + b, f '(x) = a'x + b.
So, variables a, a', b can be calculated from equations (12-
14).
b = ӨT(00) ⇔ y (1 – 4) + (4×0 + 2) ≡ 0(mod 5)
⇒ y = b = 4.
a + b = ӨT(10) ⇔ y (1 – 4) + (4×0 + 2)≡ 1(mod 5)
⇒ y = a + b = 2. ⇒ a = 3.
a' + b = ӨT(01) ⇔ y (1 – 4) + (4×1 + 2)≡ 0(mod 5)
⇒ y = a' + b = 2. ⇒ a' = 3.
the Inverse QG is: f (x) = 3x + 4, f '(x) = 3'x + 4.

Definition 5. QG & Inverse QG Operations:
QG Operation:

x * y = Ө(x – y) + y mod N
= a (x – y) + b + y mod N (15)

Inverse QG. Operation:

x / y = ay + a'x + b (16)

Example 3. Let (Q,*), (Q,/) be a QG, and its inverse, as in
example 2. Let M=1102334, leader=3, to encrypt this
message M using (5, 15).
e3,*(M) = c1c2 … cn ⇔
c1 = 3 * 1 = Ө(3 – 1) + 1 mod 5 = 1.
c2 = 1 * 1 = Ө(1 – 1) + 1 mod 5 = 3.
c3 = 4. … ⇒ C = e3,*(M) = 1342123.

Now to decrypt this new message C using (6, 16).
d3,/ (C) = a1a2 …an ⇔
a1 = 3 / 1 = 3×1 + 3×3 + 4 mod 5 = 1.
a2 = 1 / 3 = 3×3 + 3×1 + 4 mod 5 = 1.
a3 = 0. … ⇒ C = d3,/ (C) = 1102334.= M.

Let (Q,*) be a quasigroup represented by theta mapping as
Ө(x) = ax + b. and let Ө'(x) = a'x + b'. as a CRP (it is not
necessary to be complete mapping).

ӨT(Cx)= y ⇔
y (1 – a) + (ax + b) ≡ C (mod N) (11)

International Journal of Machine Learning and Computing, Vol. 1, No. 5, December 2011

455

It is possible to conclude a new CRP using Ө(x) and
Ө'(x),i.e. Ө''(x)=a''x + b'' in two ways. First one using rows
permutation on Ө(x) using Ө'(x) as following:

b" = Ө(Ө'(0)) (17)
a" + b" = Ө(Ө'T(0) – 1) + 1 mod N (18)

Where:

x = Ө'T(C) ⇔ ax' + b' ≡ C (mod N) (19)

The second will use columns permutation as the following:

b" = Ө(0 – Ө' T(0)) + Ө' T(0) (20)
a" + b" = Ө(0 – Ө'T(1)) + Ө' T(1) mod N (21)

Table III illustrates general definition of rows and columns

permutation.

TABLE III: DEFINITION OF THE ROWS, COLUMNS PERMUTATION
rows, columns permutation

[a", b"]=CRPPer(a, b, a', b')
Input: Integer a, b, where these variables achieve a complete mapping.
Integer a', b' are variables achieve a theta mapping.
Output: Integer a'', b'', which used to construct a new QG represented by a
complete mapping
1. rows permutation:
 a) b" = Ө(Ө'(0)).
 b) a" + b" = Ө(Ө'T(0) – 1) + 1 mod N.
2. columns permutation:
 a) b" = Ө(0 – Ө' T(0)) + Ө' T(0).
 b) a" + b" = Ө(0 – Ө'T(1)) + Ө' T(1) mod N.

B. Chaotic Generator
Chaotic generator (CG) is used to generate random

numbers. It is a keyed generator, based upon well known 1-D
logistic map [10,11], and accepts its initial point as its secret
key (see Fig. 3)

 μ

Fig. 3. Chaotic Generator

Table IV illustrated main steps of CG algorithm.

TABLE IV: CHAOTIC GENERATOR ALGORITHM.

Chaotic Generator
Input: Double X0. Integer M, S, R, μ.
Output: Integer XN.
Repeat R time
 1) XN = LM(X0, R, μ).
 2) Multiple output with S.
 3) Adapt it according to value M.

C. Design CRP Generator using CG
Here a CRP generator is presented. This generator is

achieved using RNG (Chaotic Generator), and the pair (aKey,
bKey), these variables is a part of the algorithm key and must

achieve a complete mapping), to generate the pair (aGen,
bGen which achieve a theta mapping). That means this pair
can produce random permutation in the range [0..N–1], so Ө
is a bijection. But Ө – i is not necessarily to be a bijection.
This generator will be used to produce pairs (a, b) randomly
and use it as input to the QG generator.

Table V illustrates definition of CRP generator. While,
CRP generator diagram is shown in Fig. 4.

TABLE V: DEFINITION OF THE CRP GENERATOR

CRP Generator
Input: Integer aKey, bKey, where these variables is a part of the algorithm
key. Double X0 where x0 is a random number generated by RNG.
Output: Integer aGen, bGen, which used as an input to the QG generator
to construct a new QG represented by a complete mapping.
1. Get x0 from CG and examine the.1st bit.

1st bit = '0': go to step 2.
 '1': aGen = aKey, bGen = bKey (Mode 0).

2. examine if x0 suitable to represent a theta mapping, so if it is then go to
step 4.
3. if x0 not suitable then repeat step 2.
4. examine the.2nd bit of x0

2nd bit = '0': go to step.5
 '1': aGen = x0, bGen = rand(x0). (Mode 1).

5. examine the.3rd bit of x0.
 [aGen, bGen]=CRPPer(aKey, bKey, aPrv, bPrv).

3rd bit =

'0': calculate aGen, and bGen using rows permutation.
(Mode 2).
'1': calculate aGen, and bGen using columns permutation
(Mode 3).

 μ

Fig. 4. CRP Generator.

D. Design QG Generator
To generate a huge number of quasigroups which

represented by theta mapping, we will benefit from a CRP
generator which used as a rows permutation on the previous
generated quasigroup to construct a new one. The new
constructed quasigroup either constructed from the Key
(aKey, bKey) or from the last pair generated from this
generator (aGen, bGen).Which determined by the selected
mode (m=[0, 1] respectively).

The generated (aGen, bGen) is calculated by using a rows
permutation, see (20), (21), in this way the pair (aGen, bGen)
achieve a complete mapping so it's appropriate to represent a
quasigroup.

The generated pairs (aGen, bGen) is used to perform the
encryption operations in this proposal.

Table VI illustrates definition of QG generator. While, QG
generator diagram is shown in Fig. 5.

International Journal of Machine Learning and Computing, Vol. 1, No. 5, December 2011

456

TABLE VI: DEFINITION OF THE QG GENERATOR
QG Generator
Input: Integer aKey, bKey: where these variables is neither a part of the
algorithm key or the last generated pair from this generator, Integer
aCRP, bCRP: from the CRP generator, Bit: m0, m1 to determine the
generator modes.
Output: Integer aGen, bGen, which represent a QG
1. according to m0, we determine the permutation mode (row, column)
(Mode 0).
2. according to m1, we determine the pair (a, b) witch we will do the
permutation on them (Mode 1) (aKey, bKey) or (aPrv, bPrv).

m= '0': [aGen, bGen] = QGGen(aKey, bKey, rows)
 '1': [aGen, bGen] = QGGen(aPrv, bPrv, rows)

QG Generator
a Key

b KeybGen

aGen
Int

Int

Int

Int

Bit Int

Mode

Int

bCRP aCRP

m0 m1
Bit

Fig. 5. QG Generator.

E. Design Inverse QG Generator
As known, inverse quasigroup is used in decryption phase,

so Inverse QG generator is needed to calculate the trio (aInv,
a'Inv, bInv) which based upon pairs (aGen, bGen) produced
from QG generator.

Table VII. illustrates definition of Inverse QG generator.
While, Inverse QG generator diagram is shown in Fig. 6.

TABLE VII: DEFINITION OF THE INVERSE QG GENERATOR

Inv QG Generator
Input: Integer aGen, bGen: where these variables is the output of the QG
generator.
Output: Integer aInv, a'Inv, bInv, which represent a Inverse QG
[aInv, a'Inv, bInv] =InvQGGen(aGen, bGen)

Fig. 6. Inverse QG Generator

Finally, The proposed algorithms in encryption and

decryption phases are shown in Table VIII and IX
respectively.

TABLE VIII: PROPOSED ENCRYPTION ALGORITHM.

proposed encryption algorithm
Input: Integer aKey, bKey, leaderKey. Double x0Key where these
variables is the algorithm key. String: Message (plaintext)
Output: String: Encrypted Message (ciphertext).
do until end of the message:
Set a vector vi = (mi, …, mi+127) from the message
 [aCRP, bCRP]= CRPPer(aKey, bKey, aPrv, bPrv, x0).
 [aGen, bGen]=QGGen(aKey, bKey, aCRP, bCRP, m).
 el,*(vi) = ui = ci, ci+1, …, ci+n-1.

TABLE IX: PROPOSED DECRYPTION ALGORITHM.
proposed decryption algorithm

Input: Integer aKey, bKey, leaderKey. Double x0Key where these
variables is the algorithm key. String: Encrypted Message (ciphertext).
Output: String: Message (plaintext).

do until end of the encrypted message:
 Set a vector ui = (ci, …, ci+127) from the message
 [aCRP, bCRP]= CRPPer(aKey, bKey, aPrv, bPrv, x0).
 [aGen, bGen]=QGGen(aKey, bKey, aCRP, bCRP, m).
 [aInv, a'Inv, bInv] =InvQGGen(aKey, bKey)
 dl,*(vi) = vi = mi, mi+1, …, mi+n-1.

IV. ANALYSIS STUDY
Random behavior of CRP, QG generators is evaluated in

this paper, with measuring the strength of new proposal.
Speed comparative study between cipher algorithm in
encryption and decryption, was done with the current block
cipher standard (Rijndael). All these studies are done on 2.7
GHz CPU with 2GBytes RAM machine.

A. CRP Generator analysis study
Random behavior of CRP generator under different modes

was covered in this analysis.

• Random behavior of CRP Generator:
Most randomly results of CRP generator, is achieved
by using Chaotic Generator (CG) as an input.
Fig. 7 explains the random behavior of the generated

pairs (aCRP, bCRP), where, 2000 repetitions were
used and output values shows randomness.

7-a aCRP values.

7-b bCRP values.

Fig. 7. CRP Generator.

• Repetitive modes of CRP Generator:
CRP generator works in 4 modes, which consolidate
random output pairs rises in this generator. These
modes are selected automatically according to the
generated number from CG.
Fig. 8 displays the repetitive selected modes for 2000
CRP generator calls.

International Journal of Machine Learning and Computing, Vol. 1, No. 5, December 2011

457

Fig. 8. CRP Generator modes repetitions.

B. QG Generator Analysis Study
QG generator goal was, to get different QGs each time. It

based on CRP generator random behavior in generating these
different QGs. Fig. 9 illustrates experiment on 2000 QG
generator calls, and shows the chaotic results for the
generated QGs.

Fig. 9. QG generator results.

C. Proposed Cipher Algorithm's strength
Secrecy of the proposed cipher algorithm is depend on

group of unequal initial points (x0Key, aKey, bKey,
leaderKey, N). According to the data type used, there are 2192
possible combinations for its initial points. This is equal to
key length 192 bits. If we assume that there are computers
works with computation power from order of 1020 operation
per second, it will need Tbreak≈ 3.1 × 1050 year to predict the
secret key. Thus, Exhaustive attack seems impractical.

Number of iteration R in logistic map is related directly to
x0Key and domain M, and leaving R to be chosen randomly
from this domain will make our proposal more secure, e.g.
M=1000 will add 10 bits to length of the key.
Using different leaderKey for each generated QG, will
add K × 2N-1 bits to key length, where K is the number of
generated QGs of order N.

D. Proposed Cipher Algorithm's speed
Different File sizes [3.5 KB - 1MB] was encrypted,

decrypted with the proposed cipher algorithm.

Fig. 10. Encryption, Decryption Times vs. file sizes.

Fig. 10 shows that time is increased proportionally
according to the file size, and decryption time is less than
encryption time specially on large file sizes, that is because of
equations (15,16) which used in these operations.

E. Comparative Study
Comparative study between new proposal and the standard

Rijndael was done under the same parameters and the results
was drawn on Fig(11).

This study shows that new proposal is comparable to
Rijndael in encryption times, specially with file sizes (smaller
than 500 KB), but it exceeds Rijndael in decryption times.
Thus, we recommend to use the new representations
formulas in digital signature schemas.

11-a Proposal vs. Rijndael in Encryption phase.

11-b Proposal vs. Rijndael in Decryption phase.

Fig. 11. Proposal vs. Rijndael.

V. CONCLUSIONS
New cipher algorithm based on multiple quasigroups is

presented in this article. The main idea is to represent
quasigroups by special kind of mapping called a complete
mapping controlled by equations in all transformations of
these QGs.

New representation of the inverse QG formed by complete
mapping is introduced in this paper. These formulas make all
the cipher algorithm transformations is done in high speed.

The new Proposal has the following features:
• Key length (192 bits at least) which is comparable to the

strength of standards already in use.
• Encryption times comparable to Rijndael standard's

encryption times, specially with file sizes (smaller than
0.5 MB).

• Decryption times are better than Rijndael standard's
decryption times. Thus, we recommend to use the new
representations formulas in digital signature schemas.

REFERENCES
[1] S. Markovski, “Quasigroup string processing and applications in

cryptography”, in Proc. 1-st Inter. Conf.Mathematics and Informatics
for industry – MII, Thessaloniki 2003, pp. 278–290, 2003.

[2] Markovski S., Gligoroski D., Bakeva V.: “Quasigroup String
Processing – Part 1”, Contributions, Sec. math. Tech. Sci., MANU, XX,
1-2(1999) 13-28.

International Journal of Machine Learning and Computing, Vol. 1, No. 5, December 2011

458

[3] C.Z. Koscielny, “Generating Quasigroups for Cryptographic
Applications”, International Journal of Applied Mathematics &
Computer Science, Vol. 12, No. 4, pp. 559-569, 2002.

[4] S.K. Pal, S. Kapoor, A. Arora, R. Chaudhary, J. Khurana, “Design of
Strong Cryptography Schemes based on Latin Squares”, Proceedings
of the Pre-ICM International Convention on Mathematical Sciences,
New Delhi, 2008.

[5] S.M. Hussain, N.M. Ajlouni, “Key Based Random Permutation”,
Journal of Computer Science, Vol. 2, No. 5, pp. 419-421, 2006

[6] A. Klimov, A. Shamir, “A New Class of Invertible Mappings”, CHES,
LNCS-2523, 2002.

[7] A. Klimov, A. Shamir, “Cryptographic Applications of T-functions”,
Selected Areas in Cryptography, SAC-2003, LNCS-3006, Springer
Verlag, pp. 248-261, 2003

[8] K.A. Meyer, “A New Message Authentication Code Based on the
Non-associativity of quasigroups”, Doctoral Dissertation, Iowa State
University Ames, Iowa, 2006, [Online] Available.
http://orion.math.iastate.edu/dept/thesisarchive/PHD/KMeyerPhDSp0
6.pdf [Accessed: Feb. 24, 2008].

[9] A. Sade, “Quasigroupes Automorphes par le Groupe Cyclique”,
Canadian Journal of Mathematics, 9, pp. 321-335, 1957

[10] http://www.egwald.ca/nonlineardynamics/logisticsmapchaos.php
[11] Nagata, K. Wayne. Nonlinear Dynamics and Chaos: Mathematics 345

Lecture Notes. Vancouver: University of B.C., 2006.

Assoc. Prof. Dr. Haythem Zorkta
1970, Damascus – Syria (drzorkta@hotmail.com)
 A lecturer at Aleppo University- Syria.
 Master and PhD degree at computer networks security
from MTC- Cairo- Egypt.

He has published a lot of international and local
papers at the same field, and as a technical reviewer for
many international and local conferences, supervisor
for many Master and PhD thesis's.

Eng. Tarek Kabani
1982, Swaida-Syria (tarek_kabani@hotmail.com)
Master degree from Aleppo University (2011) at
network security.

International Journal of Machine Learning and Computing, Vol. 1, No. 5, December 2011

459

