
  

   
Abstract— A new symmetric cipher algorithm is introduced 

in this article. This algorithm is based on multiple quasigroups 
(QGs), constructed by special kind of mapping called a 
complete mapping. All these transformations are controlled by 
equations for encryption and decryption QGs. So, there is a 
total storage reduction and an ability to use huge number of 
QGs with large order. Moreover, this proposal is enhanced with 
a new cyclic random permutation (CRP) to construct randomly 
big number of QGs. Analytical and comparative study 
concerned the proposal, was achieved.  It proved its strength 
(key length 192 bits), its speed (encryption times comparable to 
standard already exists) and its immunity against most known 
attacks. 
 

Index Private Key Cryptosystems, Quasigroup, String 
Transformations, Random Permutations. 
 

I. INTRODUCTION 
There is a need for simple cryptographic primitives to 

implement security in an environment with end users 
connected with terminals having limited storage and 
processing power. 

Constructing ciphers using the algebraic structures of 
quasigroups based ciphers lead to particular simple yet 
efficient ciphers. Quasigroups are structures very similar to 
groups with the primary difference that they are in general 
not associative. 

On other hand, constructing large quasigroups from 
smaller ones is an important problem for many applications 
[3-8]. In this paper, multiple quasigroups symmetric-key 
block cipher is proposed. This proposal uses special kind 
QGs constructed by complete mapping [8]. This helps to 
regenerate the QGs used by the sender at the receiving end, 
with minimal information exchange. 

 

II. PRELIMINARIES 
In this section a brief overview of quasigroups, quasigroup 

operations and quasigroup string transformations is 
explained. 

Definition 1. A quasigroup is a groupoid (Q,*) satisfying 
these laws: 
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 Let (Q, *) be a Quasigroup, then two operations \ and / on 
Q can be defined as: 
 

 
 Then the algebra (Q, *, \, /) satisfies the identities  

 
and (Q, \), (Q, /) are quasigroups too. 

Definition 2. Let (Q, *, \, /) be a Quasigroup and  
M = a1, a2, a3, ..., an ∈ Q. The encryption function E is 
defines as: 
 

el,*( M ) = b1b2 … bn ⇔ 
b1 = l * a1, b2 = b1 * a2, …, bn = bn−1 * an (5)

 
for each leader l ∈  Q and for every string M ∈ Q+.  

The decryption function D is then defines as: 
 

dl,*( M ) = c1c2 …cn ⇔ 
c1 = l * b1, c2 = b1 * b2, … , cn = bn−1 * bn (6)

 
Theorem 1. If (Q, *) is a finite quasigroup, then el,* and dl,\* 
are mutually inverse permutations of Q+, i.e., 
 

dl,\* (el,* (M)) = M = el,* (dl,\* (M)) (7)
 
for each leader l ∈  Q and for every string M ∈ Q+.  

Definition 3. Let (G, +) be a group. 
Let i: G → G denote the identity map on G. 
Ө: G→ G is a complete mapping if Ө is a bijection and i - Ө is 
a bijection where (i – Ө)(x) = x – Ө(x). 

Example 1. Let (G, +) = (Z9, +) where Z9 = (0, 1, 2, 3, 4, 5, 6, 
7, 8) and + is performed modulo 9. Then Ө(x) = 5x + 4 is a 
complete mapping because both Ө and i – Ө are bijections 
(see Table I) 

 
TABLE I: A COMPLETE MAPPING ON Z9 

x 0 1 2 3 4 5 6 7 8

Ө(x) 3 8 4 0 5 1 6 2 7

i - Ө(x) 6 2 7 3 8 4 0 5 1

 
Sade [10] suggested creating a quasigroup (Q, *) from an 

admissible group (Q, +) and a complete mapping Ө by, 
defining  

 
x * y = Ө(x – y) + y, for x , y ∈ Q (8)

 
An example shown in Table II  
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(∀ u, v ∈ Q) (!∃ x, y ∈ Q): u* x = v, y * u = v (1) 
x * y = x * z ⇒ y = z, y * x = z * x ⇒ y = z (2) 

x * y = z ⇔ y = x \ z ⇔ x = z / y (3) 

x \ (x * y) = y, x * (x \ y) = y, 
(x * y) / y = x, (x / y) * y = x (4) 
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TABLE II: QUASIGROUP USING A THETA MAPPING 
* 0 1 2 3 4 5 6 7 8 
0 3 8 4 0 5 1 6 2 7 
1 8 4 0 5 1 6 2 7 3 
2 4 0 5 1 6 2 7 3 8 
3 0 5 1 6 2 7 3 8 4 
4 5 1 6 2 7 3 8 4 0 
5 1 6 2 7 3 8 4 0 5 
6 6 2 7 3 8 4 0 5 1 
7 2 7 3 8 4 0 5 1 6 
8 7 3 8 4 0 5 1 6 2 

 

III. CIPHER ALGORITHM MAIN STRUCTURE 
Multiple QGs cipher Algorithm is presented in this article. 

It consists of the following main components (see Fig.s1-2): 
1- Chaotic Generator 
2- CRP Generator 
3- QG Generator 

Before explaining these main parts, we need to introduce 
new representations for QGs and the Inverse QGs using theta 
mapping. 
 

 
Fig. 1. A Proposal Encryption Algorithm. 

 
 

 
Fig. 2. A Proposal Decryption Algorithm. 

 

A. QG & Inverse QG New Representations in Theta 
Mapping 
A generation of QG using theta mapping as discussed 

previously, where: 
 

Ө(x) = ax + b. (9)
 

This equation is used in encryption operations. So, it's 
preferred to develop an equation for the Inverse QG which 
used in decryption operations. 

Thus a new representation of Inverse QG is developed as 
following: 

 

f (x) = ax + b, f '(x) = a'x + b (10)
 

To calculate variables a, b, & a' the following definitions is 
given: 
Definition 4. If Theta mapping operation is: 
Ө(x) = ax + b. So the inverse Theta Mapping operation is: 
 

 
Proof. 
Ө(x – y) + y ≡ C (mod N) ⇒ 
a (x – y) + b + y ≡ C (mod N) ⇒ 
ax + b + y (1 – a) ≡ C (mod N) ⇒ 
y (1 – a) + (ax + b) ≡ C (mod N). 

Now, using (11) the Inverse QG variables, become: 
 

b = ӨT(00) (12) 
a + b = ӨT(10) (13) 
a' + b = ӨT(01) (14) 

 
Example 2. Let Ө(x) = 4x + 2 represent a QG (Q,*), and 
N=5, the inverse QG then is (Q,/), to represent this QG 
using theta mapping, form (10) we have: 
f (x) = ax + b, f '(x) = a'x + b. 
So, variables a, a', b can be calculated from equations (12-
14). 
b = ӨT(00) ⇔ y (1 – 4) + (4×0 + 2) ≡ 0( mod 5) 
⇒ y = b = 4. 
a + b = ӨT(10) ⇔ y (1 – 4) + (4×0 + 2)≡ 1(mod 5) 
⇒ y = a + b = 2. ⇒ a = 3. 
a' + b = ӨT(01) ⇔ y (1 – 4) + (4×1 + 2)≡ 0(mod 5) 
⇒ y = a' + b = 2. ⇒ a' = 3. 
the Inverse QG is: f (x) = 3x + 4, f '(x) = 3'x + 4. 
 
Definition 5. QG & Inverse QG Operations: 
QG Operation: 
 

x * y = Ө(x – y) + y mod N 
= a (x – y) + b + y mod N (15)

 
Inverse QG.  Operation:  
 

x / y = ay + a'x + b (16)
 
Example 3. Let (Q,*), (Q,/) be a QG, and its inverse, as in 
example 2. Let M=1102334, leader=3, to encrypt this 
message M using (5, 15). 
e3,*(M) =  c1c2 … cn ⇔ 
c1 = 3 * 1 = Ө(3 – 1) + 1 mod 5 = 1. 
c2 = 1 * 1 = Ө(1 – 1) + 1 mod 5 = 3. 
c3 = 4. … ⇒ C = e3,*(M) = 1342123. 

Now to decrypt this new message C using (6, 16). 
d3,/ (C) = a1a2 …an ⇔ 
a1 = 3 / 1 = 3×1 + 3×3 + 4 mod 5 = 1. 
a2 = 1 / 3 = 3×3 + 3×1 + 4 mod 5 = 1. 
a3 = 0. … ⇒ C = d3,/ (C) = 1102334.= M. 

Let (Q,*) be a quasigroup represented by theta mapping as 
Ө(x) = ax + b. and let Ө'(x) = a'x + b'. as a CRP (it is not 
necessary to be complete mapping).  

 

ӨT(Cx)= y ⇔ 
y (1 – a) + (ax + b) ≡ C (mod N) (11)
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It is possible to conclude a new CRP using Ө(x) and 
Ө'(x),i.e. Ө''(x)=a''x + b'' in two ways. First one using rows 
permutation on Ө(x) using Ө'(x) as following: 

 
b" = Ө(Ө'(0)) (17)
a" + b" = Ө(Ө'T(0) – 1) + 1 mod N (18)

 
Where: 
 

x = Ө'T(C) ⇔ ax' + b' ≡ C (mod N) (19)
 

The second will use columns permutation as the following: 
 

b" = Ө(0 – Ө' T(0)) + Ө' T(0) (20)
a" + b" = Ө(0 – Ө'T(1)) + Ө' T(1) mod N (21)

 
Table III illustrates general definition of rows and columns 

permutation. 
 

TABLE III: DEFINITION OF THE ROWS, COLUMNS PERMUTATION 
rows, columns permutation 

[a", b"]=CRPPer(a, b, a', b') 
Input: Integer a, b, where these variables achieve a complete mapping. 
Integer a', b' are variables achieve a theta mapping. 
Output: Integer a'', b'', which used to construct a new QG represented by a 
complete mapping 
1. rows permutation: 
   a) b" = Ө(Ө'(0)). 
   b) a" + b" = Ө(Ө'T(0) – 1) + 1 mod N. 
2. columns permutation: 
    a) b" = Ө(0 – Ө' T(0)) + Ө' T(0). 
    b) a" + b" = Ө(0 – Ө'T(1)) + Ө' T(1) mod N. 

 

B. Chaotic Generator 
Chaotic generator (CG) is used to generate random 

numbers. It is a keyed generator, based upon well known 1-D 
logistic map [10,11], and accepts its initial point as its secret 
key (see Fig. 3) 

 
 μ 

 
Fig. 3. Chaotic Generator 

 
Table IV illustrated main steps of CG algorithm. 

 
TABLE IV: CHAOTIC GENERATOR ALGORITHM. 

Chaotic Generator 
Input: Double X0. Integer M, S, R, μ. 
Output: Integer XN.  
Repeat R time 
    1) XN = LM(X0, R, μ). 
    2) Multiple output with S. 
    3) Adapt it according to value M. 

 

C. Design CRP Generator using CG 
Here a CRP generator is presented. This generator is 

achieved using RNG (Chaotic Generator), and the pair (aKey, 
bKey), these variables is a part of the algorithm key and must 

achieve a complete mapping), to generate the pair (aGen, 
bGen which achieve a theta mapping). That means this pair 
can produce random permutation in the range [0..N–1], so Ө 
is a bijection. But Ө – i is not necessarily to be a bijection. 
This generator will be used to produce pairs (a, b) randomly 
and use it as input to the QG generator. 

Table V illustrates definition of CRP generator. While, 
CRP generator diagram is shown in Fig. 4. 

 
TABLE V: DEFINITION OF THE CRP GENERATOR 

CRP Generator 
Input: Integer aKey, bKey, where these variables is a part of the algorithm 
key. Double X0 where x0 is a random number generated by RNG. 
Output: Integer aGen, bGen, which used as an input to the QG generator 
to construct a new QG represented by a complete mapping. 
1. Get x0 from CG and examine the.1st bit. 

1st bit =      '0': go to step 2. 
    '1': aGen = aKey, bGen = bKey (Mode 0). 

2. examine if x0 suitable to represent a theta mapping, so if it is then go to 
step 4. 
3. if x0 not suitable then repeat step 2. 
4. examine the.2nd bit of x0  

2nd bit =      '0': go to step.5 
    '1': aGen = x0, bGen = rand(x0). (Mode 1). 

5. examine the.3rd bit of x0. 
    [aGen, bGen]=CRPPer(aKey, bKey, aPrv, bPrv). 
 
3rd bit =

'0': calculate aGen, and bGen using rows permutation. 
(Mode 2).
'1': calculate aGen, and bGen using columns permutation 
(Mode 3).

 

 

 μ 

 
Fig. 4. CRP Generator. 

 

D. Design QG Generator 
To generate a huge number of quasigroups which 

represented by theta mapping, we will benefit from a CRP 
generator which used as a rows permutation on the previous 
generated quasigroup to construct a new one. The new 
constructed quasigroup either constructed from the Key 
(aKey, bKey) or from the last pair generated from this 
generator (aGen, bGen).Which determined by the selected 
mode (m=[0, 1] respectively). 

The generated (aGen, bGen) is calculated by using a rows 
permutation, see (20), (21), in this way the pair (aGen, bGen) 
achieve a complete mapping so it's appropriate to represent a 
quasigroup. 

The generated pairs (aGen, bGen) is used to perform the 
encryption operations in this proposal. 

Table VI illustrates definition of QG generator. While, QG 
generator diagram is shown in Fig. 5. 
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TABLE VI: DEFINITION OF THE QG GENERATOR 
QG Generator 
Input: Integer aKey, bKey: where these variables is neither a part of the 
algorithm key or the last generated pair from this generator, Integer 
aCRP, bCRP: from the CRP generator, Bit: m0, m1 to determine the 
generator modes. 
Output: Integer aGen, bGen, which represent a QG 
1. according to m0, we determine the permutation mode (row, column) 
(Mode 0). 
2. according to m1, we determine the pair (a, b) witch we will do the 
permutation on them (Mode 1) (aKey, bKey) or (aPrv, bPrv). 

m=     '0': [aGen, bGen] = QGGen(aKey, bKey, rows) 
    '1': [aGen, bGen] = QGGen(aPrv, bPrv, rows) 

 

QG Generator
a Key

b KeybGen

aGen
Int

Int

Int

Int

Bit Int

Mode

Int

bCRP aCRP

m0 m1
Bit

 
Fig. 5. QG Generator. 

 

E. Design Inverse QG Generator 
As known, inverse quasigroup is used in decryption phase, 

so Inverse QG generator is needed to calculate the trio (aInv, 
a'Inv, bInv) which based upon pairs (aGen, bGen) produced 
from QG generator. 

Table VII. illustrates definition of Inverse QG generator. 
While, Inverse QG generator diagram is shown in Fig. 6. 

 
TABLE VII: DEFINITION OF THE INVERSE QG GENERATOR 

Inv QG Generator 
Input: Integer aGen, bGen: where these variables is the output of the QG 
generator. 
Output: Integer aInv, a'Inv, bInv, which represent a Inverse QG
[ aInv, a'Inv, bInv] =InvQGGen(aGen, bGen) 
 

 
Fig. 6. Inverse QG Generator  

 
Finally, The proposed algorithms in encryption and 

decryption phases are shown in Table VIII and IX 
respectively.  

 
TABLE VIII: PROPOSED ENCRYPTION ALGORITHM. 

proposed encryption algorithm 
Input: Integer aKey, bKey, leaderKey. Double x0Key where these 
variables is the algorithm key. String: Message (plaintext) 
Output: String: Encrypted Message (ciphertext). 
do until end of the message: 
Set a vector vi = (mi, …, mi+127) from the message 
   [aCRP, bCRP]= CRPPer(aKey, bKey, aPrv, bPrv, x0). 
   [aGen, bGen]=QGGen(aKey, bKey, aCRP, bCRP, m). 
   el,*(vi) = ui = ci, ci+1, …, ci+n-1. 

 

TABLE IX: PROPOSED DECRYPTION ALGORITHM. 
proposed decryption algorithm 

Input: Integer aKey, bKey, leaderKey. Double x0Key where these 
variables is the algorithm key. String: Encrypted Message (ciphertext). 
Output: String: Message (plaintext). 

do until end of the encrypted message: 
   Set a vector ui = (ci, …, ci+127) from the message 
   [aCRP, bCRP]= CRPPer(aKey, bKey, aPrv, bPrv, x0). 
   [aGen, bGen]=QGGen(aKey, bKey, aCRP, bCRP, m). 
   [aInv, a'Inv, bInv] =InvQGGen(aKey, bKey) 
   dl,*(vi) = vi = mi, mi+1, …, mi+n-1. 

 

IV. ANALYSIS STUDY 
Random behavior of CRP, QG generators is evaluated in 

this paper, with measuring the strength of new proposal. 
Speed comparative study between cipher algorithm in 
encryption and decryption, was done with the current block 
cipher standard (Rijndael). All these studies are done on 2.7 
GHz  CPU with 2GBytes RAM machine. 

 

A. CRP Generator analysis study 
Random behavior of CRP generator under different modes 

was covered in this analysis. 

• Random behavior of CRP Generator: 
Most randomly results of CRP generator, is achieved 
by using Chaotic Generator (CG) as an input. 
Fig. 7 explains the random behavior of the generated 

pairs (aCRP, bCRP), where, 2000 repetitions were 
used and output values shows randomness. 

 
 

 
7-a aCRP values. 

 
 

 
7-b bCRP values. 

 
Fig. 7. CRP Generator. 

 
 

• Repetitive modes of CRP Generator: 
CRP generator works in 4 modes, which consolidate 
random output pairs rises in this generator. These 
modes are selected automatically according to the 
generated number from CG. 
Fig. 8 displays the repetitive selected modes for 2000 
CRP generator calls. 
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Fig. 8. CRP Generator modes repetitions. 

 

B. QG Generator Analysis Study 
QG generator goal was, to get different QGs each time. It 

based on CRP generator random behavior in generating these 
different QGs. Fig. 9 illustrates experiment on 2000 QG 
generator calls, and shows the chaotic results for the 
generated QGs. 

 

 
Fig. 9. QG generator results. 

 

C. Proposed Cipher Algorithm's  strength 
Secrecy of the proposed cipher algorithm is depend on 

group of unequal initial points (x0Key, aKey, bKey, 
leaderKey, N). According to the data type used, there are 2192 
possible combinations for its initial points. This is equal to 
key length 192 bits. If we assume that there are computers 
works with computation power from order of 1020 operation 
per second, it will need Tbreak≈ 3.1 × 1050 year to predict the 
secret key. Thus, Exhaustive attack seems impractical.   

Number of iteration R in logistic map is related directly to 
x0Key and domain M, and leaving R to be chosen randomly 
from this domain will make our proposal more secure, e.g. 
M=1000 will add 10 bits to length of the key. 
Using different leaderKey for each generated QG, will 
add K × 2N-1 bits to key length, where K is the number of 
generated QGs of order N. 

D. Proposed Cipher Algorithm's  speed 
Different File sizes [3.5 KB - 1MB] was encrypted, 

decrypted with the proposed cipher algorithm. 

 
Fig. 10. Encryption, Decryption Times vs. file sizes. 

Fig. 10 shows that time is increased proportionally 
according to the file size, and decryption time is less than 
encryption time specially on large file sizes, that is because of 
equations (15,16) which used in these operations. 

E. Comparative Study 
Comparative study between new proposal and the standard 

Rijndael was done under the same parameters and the results 
was drawn on Fig(11). 

This study shows that new proposal is comparable to  
Rijndael in encryption times, specially with file sizes (smaller 
than 500 KB), but it exceeds Rijndael in decryption times. 
Thus, we recommend to use the new representations 
formulas in digital signature schemas.  

 
11-a Proposal vs. Rijndael in Encryption phase. 

 
11-b Proposal vs. Rijndael in Decryption phase. 

Fig. 11. Proposal vs. Rijndael. 

V. CONCLUSIONS 
New cipher algorithm based on multiple quasigroups is 

presented in this article. The main idea is to represent 
quasigroups by special kind of mapping called a complete 
mapping controlled by equations in all transformations of 
these QGs. 

New representation of the inverse QG formed by complete 
mapping is introduced in this paper. These formulas make  all 
the cipher algorithm transformations is done in high speed. 

The new Proposal has the following features: 
• Key length (192 bits at least) which is comparable to the 

strength of standards already in use. 
• Encryption times comparable to Rijndael standard's 

encryption times, specially with file sizes (smaller than 
0.5 MB). 

• Decryption times are better than Rijndael standard's 
decryption times. Thus, we recommend to use the new 
representations formulas in digital signature schemas. 
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