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Abstract—Investigation of the single nucleotide 

polymorphism (SNP)-SNP interaction model can facilitate the 

analysis of the susceptibility to disease. The model explains the 

risk of association between the genotypes and the disease in 

case-control study. Thus, many mathematic methods are widely 

applied to identify the statistically significant model such as odds 

ratio (OR), chi-square test, and error rate. However, a huge 

number of data sets have been found to limit the statistical 

methods to identify the significant model. In this study, we 

propose a novel statistical method, complementary-logic particle 

swarm optimization (CLPSO), to increase the efficiency of 

significant model identification in case-control study. The 

complementary-logic is implemented to improve the PSO search 

ability and identify a better SNP-SNP interaction model. Six 

important breast cancer genes including 23 SNPs and simulated 

huge number of data sets were selected as the test data sets.  The 

methods of PSO and CLPSO were applied on the identification 

of SNP-SNP interactions in the two-way to five-way. In results, 

the OR evaluates the breast cancer risk of the identified 

SNP-SNP interaction model. Compared to the corresponding 

non-interaction model, if the OR value is greater than 1 that 

indicates the model is significant risk between cases and controls. 

The results showed that CLPSO is able to identify the significant 

models for specific SNP-SNP interaction of two-way to five-way 

(OR value: 1.153-1.391; confidence interval (CI): 1.05-1.79; 

p-value: 0.01-0.003). The model suggests that the genes ESR1, 

PGR, and SHBG may be an important role in the interactive 

effects to breast cancer. In addition, we compared the search 

abilities of PSO and CLPSO for identification of the significant 

model. Results revealed that CLPSO can identify better model 

with difference values between cases and controls than PSO; it 

suggests CLPSO can be used to identify a better SNP-SNP 

interaction models. 

 
Index Terms—Single nucleotide polymorphism (SNP), 

particle swarm optimization (PSO), breast cancer.  

 

I. INTRODUCTION 

SNP is an common bio-marker in genomes, and it has 

widely used in the investigation of association analysis of 

diseases [1], cancers [2], and pharmacogenomics [3]. These 
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analyses reported that SNPs have specific associations with 

the risk of certain diseases. However, most of the SNP 

analyses were focused on a single SNP. The low or marginal 

significant SNPs could be excluded, but these SNPs may have 

significant associations with disease when they are combined 

as SNP-SNP interaction model. Thus, the identification of 

appropriate interaction model is an important issue for SNP 

analysis. 

A SNP-SNP interaction model includes the SNPs and their 

corresponding genotypes (AA, Aa, and aa). Therefore, the 

possible models are rapidly increased by the number of SNPs 

and their corresponding genotypes. The huge potential 

SNP-SNP interaction model makes the statistical method 

difficultly identify the significant models. Currently, machine 

learning have applied to help statistical method on the  

identification of appropriate interaction models, such as 

particle swarm optimization (PSO) [4]-[6] and genetic 

algorithm (GA) [7], [8]. PSO and GA have the properties of 

randomized search and are an optimization technique that 

derives its working principles from simulations of the 

organism behavior. They provide a fast identification in 

high-dimension problem, e.g., biomarker selection [9]. Thus, 

they can be employed to identify an optimal SNP combination 

from the huge possible combinations. Although they had 

overcome the excessive computational time to identify the 

significant models, the search ability remains a challenge. 

Thus, an improved method is required to explore the 

SNP-SNP interaction.  

Here, we propose a complementary-logic PSO, named 

CLPSO, to identify the significant model associated with 

SNP-SNP interactions. In this study, we hypothesize that the 

interactions between polymorphisms of genes may have a 

synergistic or non-additive effect on the pathogenesis of a 

disease. This interaction may explain differences between 

cases and controls in the disease risk. Six breast cancer related 

genes (COMT, CYP19A1, ESR1, PGR, SHBG, and STS) 

including 23 SNPs were selected to simulate huge number of 

data sets. Results indicate that CLPSO can identify the 

appropriate interaction models in breast cancer from the huge 

number of simulated data sets, and the results provide the 

significant information for determining the SNP-SNP 

interaction model with maximal difference between the cases 

and controls. 

 

II.   METHODS 

A. Problem Definition 

For SNP-SNP interaction problem, a vector like X = [x1, x2, 
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x3, ..., xD] is represented as one condition and the  solution for 

each parameter xi is a real number; in this study the SNP-SNP 

interaction models are refereed as the  different SNP 

combinations with their corresponding genotypes. The object 

of SNP-SNP interaction model is a search for the vector X
*
, 

which maximizes an objective function f (X)(f : δ  R
D
 →R), 

i.e., f (X
*
) > f (X) for all X ∈ δ, where δ is a non-empty large 

finite set serving as the search space, and δ = R
D
. The 

objective function defined the difference between frequencies 

of case group and control group, which are according to 

vector X, i.e., f(X) = () is generally complicated by the 

existence of non-linear objective functions with multiple local 

optima. A local optima fl = f (Xl) in this study defined as ε > 

0 X ∈ δ: || X − Xl || < ε  f (X) ≤ fl ≤ f (X
*
), where ||.|| indicates 

any p-norm distance measure. The flexibilities of given 

constraints and vector space in problem influence the finding 

best-suited solution in PSO process. We aim at finding a set of 

SNP combinations with their genotypes for which the overall 

performance of the model will be the best under some given 

conditions. 

B. Particle Swarm Optimization 

PSO is based on a population stochastic optimization 

technique; it simulates the social behavior of organisms as 

birds in a flock or fish in a school. Each individual (named 

bird or particle) uses its own memory and common 

knowledge gained by the entire swarm to find an optimal 

position. The particles have two important properties: (1) a 

fitness value, which is determined by objective function, and 

(2) a velocity, which affects the movement of the particle. 

During the generation, each particle moves its position 

according to its own experience and the common experience 

of all particles. Finally, the particles follow the current best 

particle in the search space until a predefined number of 

iterations are reached. The flowchart of the method is shown 

in Fig. 1. 

Initialize position X, associated velocities V, 

pbest and gbest of the population, set G = 0.

w(G) = wmax × {[(wmax – wmin) × G] / Gmax} 

d = 1

    Vi
d
 = w(G) × Vi

d
 + c1 × rand1i

d
 × (pbesti

d
 – Xi

d
) 

                               + c2 × rand2i
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d
)

    Vi
d
 = min(V

d
max, max(-V

d
max, Vi

d
))

    Xi
d
 = Xi

d
 + Vi

d

d < Dmax

f (Xi) > f (pbestXi)

d = d + 1

pbestXi = Xi

f (Xi) > f (gbestX)

gbestX = Xi i < ps

G < Gmax

G = G + 1

i = i + 1

End

i = 1

Y

Y

Y
Y

Y

N N

N

N

N

 
Fig. 1. Flowchart of particle swarm optimization.  

C. Complementary-Logic Particle Swarm Optimization 

(CLPSO) 

The complementary-logic aims to avoid the particles to be 

easily trapped in a local optimum by moving their position to 

a new region in the problem space. In traditional PSO, 

particles could be trapped in a local optimum due to  the 

premature convergence of population. All particles are 

randomly generated in the problem space and updated by the 

pbest, which is the best fitness value in the particle itself has 

achieved so far, and gbest, which is the best fitness of all 

particles in the population so far. However, all particles based 

on update function can moves toward the gbest and the 

distance between gbest and the neighboring particles can be 

gradual decreased by increased generation. Here, we use 

complementary-logic to improve the PSO search ability for 

SNP-SNP interaction model, in which the  complementary 

particles are introduced to avoid premature convergence. These 

complementary particles replace 50% of  the randomly selected  

particles in the population.  The procedure of  CLPSO includes 

(1) initialization of the parameter vectors, (2) objective function, 

(3) identification of pbest and gbest, (4) particle updating, (5) 

complementary-logic adaption of particles, and (6) judgment of 

termination condition. 

D. Initialization of the Parameter Vectors 

CLPSO searches for a global optimum point in a 

D-dimensional real parameter space R
D
. It begins with a 

randomly initiated population of NP D dimensional 

real-valued parameter vectors. Each vector, also known as 

genome/chromosome, forms a candidate solution to the 

multidimensional optimization problem. We shall denote 

subsequent generations in CLPSO by G = 0, 1, ..., Gmax. Since 

the parameter vectors are likely to be changed over different 

generations, we may adopt the following notation for 

representing the i
th

 vector of the population at the current 

generation: 

 

Xi,G = [x1,i,G, x2,i,G, x3,i,G, ..., xD,i,G]          (1) 

 

For each parameter of the problem, there may be a certain 

range within which the value of the parameter should be 

restricted, often because parameters are related to physical 

components or measures that have natural bounds (for 

example if one parameter is a length or mass, it cannot be 

negative). The initial population (at G = 0) should cover this 

range as much as possible by uniformly randomizing 

individuals within the search space constrained by the 

prescribed minimum and maximum bounds: Xmin = {x1,min, 

x2,min, …, xD,min} and Xmax = {x1,max, x2,max, …, xD,max}. 

Therefore, we may initialize the j
th

 component of the i
th

 vector 

as: 

 

xj,i,0 = xj,min + randi,j[0,1](xj,max - xj,min)  (2) 

 

where randi,j[0, 1] is a uniformly distributed random number 

lying between 0 and 1 (actually 0 ≤ randi,j[0, 1] ≤ 1) and is 

instantiated independently for each component of the i
th

 

vector. In CLPSO, a chromosome in the population represents 

a solution group and can be divided into two parts: the number 

of selected SNPs, and the genotypes associated with the SNPs. 
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The chromosome encoding can thus be represented by: 
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(5) 

 

where SNPmax and SNPmin represents a limited SNPs, 

Genotypemax and Genotypemin represents the limited possible 

genotypes. For example, let Xi,0 = (2, 4, 6, 3, 1, 3), thus 

represents i
th

 X in first generation (i.e., 0) chosen SNPs (2, 4, 6) 

and genotypes (3, 1, 3), and can be described by the SNPs 

associated with the genotypes as follows: (2, 3), (4, 1) and (6, 

3).  

E. Objective Function 

In the CLPSO process, the fitness function value measures 

the quality of chromosomes. The SNP-SNP interaction study 

focuses on the particular SNP combinations to detect the 

highest fitness value, i.e., the maximum difference value 

between breast cancer cases and non-cancer cases. This 

criterion divides the fitness function into three separate steps, 

and the relevant equation can be written as: 
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The concept of the designed fitness value uses the 

intersection of set theory to evaluate the difference value 

between breast cancer cases and non-cancer cases. The 

intersection of two sets is the set that contains all elements 

found in both sets, but no other elements. For example: X = 

(SNP2,3, Genotype3,2) is used to evaluate the number of 

matching conditions in the breast cancer cases and non-cancer 

cases. Let’s suppose the number of independent matching 

SNP2 with genotype 3 and SNP3 with genotype 2 is 273 in the 

breast cancer cases, and the number of independent matching 

SNP2 with genotype 3 and SNP3 with genotype 2 is 51 in the 

non-cancer cases. According to Eq. (6), the fitness value is 

determined by subtracting 51 from 273, leaving 222, which 

represents a high risk. 

F. Identification of pbest and gbest 

In CLPSO, each particle can find the currently best position 

and velocity (pbest) and the global best position and velocity 

(gbest) when population moving. If the fitness value of a 

particle Pi in the current generation is better than the fitness 

value of pbest in the previous generation, then pbest is 

replaced by Pi. If the fitness value of a particle Pi in the 

current generation is better than gbest in the previous 

generation, gbest is also replaced by Pi. Thus, each particle 

can adjust its position based on pbest and gbest in the next 

iteration. 

G. Particle Updating 

Each particle moves its position by updating the velocity in 

the next generation via an evaluation of pbest and gbest. The 

update functions of velocity and position are formulated in 

Eqs. (7) to (9): 

 

  min
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max
minmax w
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IterationIteration
www i
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id
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In Eq. (7), wmax set to be 0.9, wmin set to be 0.4 and 

Iterationmax is the maximum generation number. In Eq. (8), r1 

and r2 are random values between (0, 1); c1 and c2 are 

acceleration coefficients equal to 2; these coefficients 

constantly influence a particle moves in a single generation. 

H. Complementary-Logic Adaption of Particles 

The complementary-logic aims to avoid the particles are 

trapped into a local optimum by adjusting particles to a new 

region in the problem space. Thus, complementary-logic can 

facilitate the ensuring global exploration. The position of a 

trapped particle is changed by the Eq. (10). 

 

     
selected

id

Complement

id -xxxx )( minmax   (10) 

where xman and xmin are the maximum and minimum SNP 

number, respectively. 

I. Judgment of Termination Condition 

The CLPSO procedure is terminated if the maximum 

number of generation is reached. When the termination 

condition is reached, gbest is the optimal solution, i.e., best 

SNP-SNP interaction model. The maximum number of 

generation is explained in the parameter settings section. 

J. Parameter Settings 

We set the population size of parameters = 50, number of 

generations = 100. The termination condition is that the 

generations met the maximum number of allowed generations. 

K. Statistical Analysis 

Odds ratio (OR) is used to evaluate the difference between 

cases and controls. It determines the combination of 

genotypes and quantitatively measures the association disease 

risk [10], and OR is defined as follows: 

FNFP

TNTP




  ratio Odds  (11) 

where TP is the number of true positives, TN is the number of 

true negatives, FN is the number of false negatives and FP is 

the number of false positives.   

International Journal of Machine Learning and Computing, Vol. 4, No. 5, October 2014

470



  

TABLE I: SNPS INVESTIGATED IN THIS STUDY AND THEIR NORMALIZED NUMBERS OF POLYMORPHISM GENOTYPING INFORMATION 

SNP No. 
Gene 

(SNP) 

Genotype 

SNP No. 
Gene  

( SNP) 

Genotype 

AA 

(Control 

/Cases) 

Aa 

(Control 

/Cases) 

aa 

(Control 

/Cases) 

AA 

(Control 

/Cases) 

Aa 

(Control 

/Cases) 

aa 

(Control 

/Cases) 

1 
COMT 

 (rs6269) 

1769 

1694 

2390 

2389 

841 

917 
13 

ESR1 

(rs9478249) 

1773 

1890 

2430 

2381 

797 

729 

2 
COMT  

(rs4680) 

1377 

1308 

2417 

2440 

1206 

1252 
14 

ESR1 

(rs1514348) 

1830 

1717 

2415 

2435 

755 

851 

3 
CYP19A1 

(rs10046) 

1430 

1434 

2497 

2411 

1073 

1155 
15 ESR1 (rs532010) 

1891 

1848 

2422 

2377 

687 

775 

4 
ESR1 

(rs3020314) 

2343 

2147 

2164 

2280 

493 

573 
16 

PGR  

(rs566351) 

2014 

2062 

2326 

2280 

660 

658 

5 
ESR1 

(rs2234693) 

1450 

1446 

2524 

2480 

1026 

1074 
17 

PGR  

(rs660149) 

2591 

2708 

2042 

1927 

367 

365 

6 
ESR1 

(rs1543404) 

1467 

1468 

2441 

2439 

1092 

1093 
18 

PGR 

(rs11571171) 

2338 

2419 

2163 

2082 

499 

499 

7 
ESR1 

(rs3798577) 

1406 

1413 

2542 

2494 

1052 

1093 
19 

PGR  

(rs500760) 

2994 

2888 

1767 

1866 

239 

246 

8 
ESR1 

(rs2747652) 

1372 

1377 

2447 

2479 

1181 

1144 
20 

SHBG 

(rs858518) 

1597 

1693 

2490 

2412 

913 

895 

9 
ESR1 

(rs2077647) 

1347 

1383 

2589 

2449 

1064 

1168 
21 

SHBG 

(rs272428) 

1523 

1609 

2442 

2438 

1035 

953 

10 
ESR1 

(rs2175898) 

1353 

1350 

2457 

2507 

1190 

1143 
22 

SHBG 

(rs858524) 

1725 

1613 

2393 

2459 

882 

928 

11 
ESR1 

(rs9340799) 

2107 

2016 

2302 

2360 

591 

624 
23 

STS  

(rs2017591) 

1760 

1823 

2437 

2258 

803 

919 

12 
ESR1 

(rs1709182) 

1988 

1932 

2341 

2326 

671 

742 
     

 
TABLE II: ESTIMATION OF THE BEST INTERACTION MODEL WITH COMBINATION OF SNPS AND GENOTYPES ON THE OCCURRENCE OF BREAST CANCER  

DETERMINED BY PSO AND CLPSO 

  Combined SNP  Cases 

No. 

Controls 

No. 

Difference Odds  95% CI p-value 

  SNP genotypes  Ratio   

2-SNP    
      

 PSO 4,17 2-1 1210 1084 126 1.153 1.05-1.27 0.003 

   other 3790 3916 
    

 IPSO 4,17 2-1 1210 1084 126 1.153 1.05-1.27 0.003 

   other 3790 3916 
    

3-SNP    
      

 PSO 2,11,19 2-2-2 441 401 40 1.109 0.96-1.28 0.150 

   other 4559 4599 
    

 IPSO 4,17,18 2-1-1 602 509 93 1.208 1.07-1.37 0.003 

   other 4398 4491 
    

4-SNP    
      

 PSO 4,8,21,23 2-3-2-3 48 33 15 1.459 0.94-2.28 0.096 

   other 4952 4967 
    

 IPSO 4,17,18,22 2-1-1-2 298 238 60 1.268 1.06-1.51 0.008 

   other 4702 4762 
    

5-SNP    
      

 PSO 4,5,7,17,18 2-2-2-1-1 146 130 16 1.127 0.89-1.43 0.329 

   other 4854 4870 
    

 IPSO 4,11,17,18,22 2-2-1-1-2 149 108 41 1.391 1.08-1.79 0.010 

   other 4851 4892 
    

 

III. RESULT AND DISCUSSION 

A. Data Set 

We selected six important breast cancer genes (COMT, 

CYP19A1, ESR1, PGR, SHBG, and STS) as the test data sets, 

including 23 SNPs. The SNPs and genotype destitutions are 

shown in Table I. The SNP frequencies were obtained from 

the reference [11]. These frequencies were used to simulate a 

huge data set to test PSO and CLPSO. The sample size is 

5000, and the SNP genotypes are randomly generated 

according to the above frequencies. The simulated data for 

SNPa is based on its percentage which is obtained by 

multiplication of the percentage with the amount of the 

complete data set. For example, 50%×5000=2500 for AA, 

30%×5000=1500 for Aa and 20%×5000=1000 for aa. Thus, 

the data for SNPa has generated to sample 5000 

(2500+1500+1000=5000). All original data are generated by 

the same number in this manner. The simulation procedure is 

shown in the Fig. 2. 

Pseudo-code for randomly generated data 

01: begin 

02:  Set size = 5000 

03:  Set number of genotype = 3 

04:  Calculate amount of three genotypes 

05:  while (all SNPs are not normalized) 

06: Calculate amount of each genotype 

07:    Calculate numbers of each normalized genotype 

08: for n = 1 to number of genotype 

09:   Randomly create numbers of each normalized 

        genotype  

10:    next n  

11: end 

Fig. 2. Pseudo-code for randomly generated data. 
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B.  Analysis of Breast Cancer Susceptibility from 23 SNPS   

in Six Genes 

The odds ratio and its 95% CI for all SNPs of six genes 

(COMT, CYP19A1, ESR1, PGR, SHBG, and STS) show that 

13 SNPs , including COMT-rs6269, ESR1-rs3020314, 

ESR1-rs2175898, ESR1-rs1709182, ESR1-rs9478249, 

ESR1-rs1514348, ESR1-rs532010, PGR-rs660149, 

PGR-rs500760, SHBG-rs858518, SHBG-rs272428, 

SHBG-rs858524, and STS-rs2017591, display the 

statistically significant OR (p < 0.05) for breast cancer; the 

OR values range between1.268 to 0.846.  

C.  Analysis of SNP-SNP Interaction Model with 

Difference between the Cases And Controls 

Table II shows the results of SNP-SNP interaction models 

by 2 to 5-way. The left side in Table II represents the two to 

five SNP combinations. In these combinations, the 2-way 

model with SNP combinations and corresponding genotype 

indicates the rs3020314-Aa associated with rs660149-AA. 

The difference column indicates the difference between the 

cases and controls. For example, the 3-way model of CLPSO 

shows a difference value of 93 between cases and controls 

(602 vs. 509). Thus, the other models of PSO and CLPSO are 

explained as above mention. In CLPSO, the difference values 

between cases and controls are reduced from 126 to 41 in the 

two-way to five-way SNP-SNP interaction models. In PSO, 

the difference values between cases and controls are reduced 

from 126 to 15 in the two-way to five-way SNP-SNP 

interaction models. The larger difference value between cases 

and controls represents the better model. 

D.  Estimation of the Best Interaction Model Generated by 

PSO and CLPSO Using or and 95% CI in Breast Cancer  

Table II shows the best interaction model in the 2-way to 

5-way SNP-SNP interaction models. These results reveal that 

the total number of cases exceeds the total number of controls; 

it means that all models are a risk association in breast cancer. 

The right side in Table II shows the evaluated effects using 

odds ratio, 95% CI, and p-value. In PSO, the OR values in 

2-way to 5-way SNP-SNP interaction models show the range 

of 1.109 to 1.459, and the 95% CI of OR is in the range of 0.89 

to 2.28. Only the 2-way SNP-SNP interaction model shows 

the statistically significant (p-value < 0.05). However, in 

CLPSO, the OR values in 2-way to 5-way SNP-SNP 

interaction models show the range of 1.153 to 1.391 and the 

95% CI of OR is in the range of 1.05 to 1.79. All of the 

SNP-SNP interaction models (2-way to 5-way) show 

significant OR values (p-value < 0.050).  

E. Comparison of PSO and CLPSO for the Interaction 

Model of Breast Cancer 

The results represent the SNP-SNP interaction model 

identified by CLPSO has a better p-value than the model 

identified by PSO. PSO seems to provide a better OR value in 

the four-way SNP-SNP interaction model, however, the 

p-value shows the model does not statistically significant for 

breast cancer. The computational complexity of CLPSO is 

evaluated by objective function computation. Let n generation 

is implemented in a test, the computational complexity of 

PSO is O(n) which is the big-O in complexity analysis. The 

complementary-logic only adds an updated function, i.e., 

equation 10. Thus, the computational complexity between 

PSO and CLPSO is the same, but CLPSO is superior to PSO 

in terms of identifying the best SNP-SNP interaction model. 

  

IV. CONCLUSION 

In this study, a novel method, CLPSO, is proposed to 

identify the statistically significant SNP-SNP interaction 

models between related genes of breast cancer. These models 

can be used to analyze disease susceptibility and provide the 

information of SNPs located in the genes and their associated 

pathways. We used the huge number of simulated data to test 

the methods of PSO and CLPSO, the results indicate CLPSO 

can robust to search the statistically significant models with 

the difference value between SNPs of genes amongst the huge 

number of SNPs involved in real data sets.  
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