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Abstract—For analyzing performance of non-homogeneous 

hybrid lines, a new technique of dealing with nonhomogeneous 

lines is proposed to transform a non-homogeneous production 

line into a homogeneous line, which is based on decomposition 

method. The technique extends the applicability of 

decomposition method to nonhomogeneous lines. The technique 

is discussed by numerical experiments comparing with 
aggregation method, what’s more, the advantages and 

disadvantages are specified. The technique complements and 

develops the system analysis techniques of hybrid production 

lines.       

Index Terms—Hybrid system, system performance, 

Non-homogeneousness, decomposition method. 

 

I. INTRODUCTION 

It is generally known that a production system is a hybrid 

system [1]. An amount of work has been devoted to the 

modeling and analysis of transfer and production lines using 

analytical methods since the early 1950’s because of their 

economic importance and academic interest. A 

comprehensive survey presented by Dallery and Gershwin [2] 

provides extensive and elaborate reviews up to 1992. Li J. et 

al. [3] offers a supplementary review up to 2007. Readers can 

also refer to some books [4] on how to model and analyze 

transfer lines. The two-machine lines are the basis of 

researching longer production lines. For the models of two 

machines, such as discrete model, synchronous model, 

asynchronous model, continuous model, homogeneous 

model, non-homogeneous model, etc, the approximate 

solutions have been obtained by some scholars [5]. Now 

further works have been devoted to the analysis of longer 

production lines [6]. However, it is very difficult (is not 

hopeless) to obtain exact analytical solutions of production 

lines with more than three machines. The major reason is that 

the system states increase exponentially with the increase of 

machines. The curse of dimensionality makes such problems 

intractable even if more powerful computers are available. It 

appears that “it is difficult to program, ill-behaved, and not 

extendable to larger problems” [7]. So far to value and 

analyze the longer production lines, three main approximate 

techniques have been proposed: decomposition method [7], 

aggregation method [8] and simulation method. The 

simulation method is comparatively accurate, however, it is  
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time-consuming. The aggregation method can be utilized 

directly to analyze homogeneous production line as well as 

non-homogeneous production line without any 

transformation. Nevertheless, compared with decomposition 

method, the aggregation method sometimes has a larger 

analysis error on some models of production line. A 

production line for which the processing times or production 

rates at all machines are equal will be called a homogeneous 

line.  

The idea of decomposition method is to decompose the 

original production line into a set of two-machine lines, and 

the behavior of the two-machine lines closely approximates 

that of the original production line. Many scholars do a great 

deal of work to increase the efficiency of the technique, such 

as Dallery Y. and Bihan H. L. [9], Colledani M. and Tolio T. 

[10], etc. The technique seem to find a balance between 

complexity and reliability, for example, more simplified and 

high convergent algorithms such as ADDX,BDDX, etc, are 

offered and developed [11]-[12]. Moreover, the method has 

been developed and widely utilized to study production lines 

with complex construction, e.g. parallel lines [13], 

assembly/disassembly lines [14], closed loop system [15], etc. 

In order to use this decomposition technique for analyzing 

non-homogeneous lines, Gershwin [16] has proposed a 

transformation of a non-homogeneous line into a 

homogeneous line. The transformation is as follows. Each 

machine but one (the fastest one) is replaced by a set of two 

machines separated by a buffer of capacity 0. Downstream 

machine captures the unreliability behavior of the original 

machine, while the upstream machine represents the 

processing time. The resulting line is homogeneous and can 

be analyzed using the decomposition method. Some 

numerical experiments have been done for testing the 

transformation technique by Gershwin [6].    

The purpose of the paper is to present a new transformation 

technique. The new transformation technique is tested by 

numerical experiments based on the decomposition method. 

The advantages and disadvantages, including the applied 

circumstance of the transformation are presented by 

comparing it with aggregation method of Meerkov [17].   

 

 
Fig. 1. Production line. 

 

II. PROBLEM STATEMENTS 

Fig. 1 is a non-homogeneous production line which 
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consists of N machines  , 1,2,3, ,iM i N  and 1N   buffers 

 , 1,2,3, , 1iB i N  . Parts flow from outside of the system 

to the first machine
1M , then to the buffer 

 , 1,2,3, , 1iB i N  , machine  , 2,3, ,iM i N , finally out 

of the system. The machines are all unreliable. 

Let  , 1,2,3, ,iS i N denote the production rate of the 

machine  , 1,2,3, ,iM i N  and they are different from one 

another. Then  1/ , 1,2,3, ,i iT S i N  represent the 

processing time of each machine. Assume that the up and 

down times of the machine  , 1,2,3, ,iM i N are 

independent and exponentially distributed with means 1/ ip  

and 1/ ir  {1,2, , }i N   respectively. , {1,2, , 1}iC i N   is the 

buffer size of buffer , {1,2, , 1}iB i N   . Let 

( ) {0,1}, {1,2, , }i t i N     denote the state of the machine 

 , 1,2,3, ,iM i N  and be a continuous-time Markov process 

respectively. ( ) 1, {1,2, , }i t i N    indicates the 

machine  , 1,2,3, ,iM i N  is operational and 

( ) 0, {1,2, , }i t i N     indicates the machine is down. Then the 

system state of the line can be represented by 

1 1 1[ , , , , , ]N Nn n     where , 1,2, , 1in i N   denote the buffer 

level of , {1,2, , 1}iB i N   . For  , 1,2,3, ,iM i N , 

iiiiii pCtnttntprob   ])(,1)(,0)(|0)1([ 1  and

iii rttprob  ]0)(|1)1([   exist at time t . 

Assume that there are always parts available at the input of 

the system and spaces available at the output of the system. 

Meanwhile, assume that the failures are all dependent. 

“Blockage” occurs if the machine  , 1,2,3, , 1iM i N  is 

operational and the buffer level , {1,2, , }in i N   of the next 

downstream buffer , {1,2, , 1}iB i N   reaches its 

capacity , {1,2, , 1}iC i N   .  “Starvation” occurs if the 

machine  , 2,3, ,iM i N  is operational and the buffer 

level , {1,2, , }in i N   of the adjacent upstream buffer 

, {1,2, , 1}iB i N    is zero. When there are not blockage and 

“starvation”, 
1[ 1] [ ] [ 1] [ 1], {1,2, , }i i i in t n t t t i N          . The 

average production rate of  , 2,3, ,iM i N is 

1[ 1, 0, ]i i i i i iE S prob n n C     .  

Due to the line is a conserve system, the system throughput 

E of the line in a long run is as follows: 
  

, {1,2, , }iE E i N                                  (1) 

 

The system average surplus 
iQ of the buffer 

 , 1,2,3, , 1iB i N  is as follows: 

  

[ ], {1,2,..., 1}i iQ n prob i N


                (2)

  

The system throughput E and average buffer level 
iQ are 

the main system performance parameters of production lines.  

III. A NEW TRANSFORMATION METHOD 

A.  Traditional Transformation Technique   

For analyzing non-homogeneous lines, it needs to 

transform non-homogeneous lines into homogeneous lines to 

utilize the decomposition method. In 1987, Gershwin [16] 

proposed a transformation technique which was widely used 

by scholars later. In the method, each machine but one (the 

fastest one) is replaced by a set of two machines separated by 

a buffer of capacity 0, meanwhile, downstream machine 

captures the unreliability behavior of the original machine, 

while the upstream machine represents the processing time. 

The non-homogeneous lines is shown in Fig. 1, let 

1 2min( , , , )NT T T T  . For the machine
iM which is not the 

fastest machine in the system, the transformation proposed by 

Gershwin is as follows. 
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where 1

ip and 1

ir is respectively the failure rate and repair rate 

of upstream machine of the two-machine transformation line, 
2

ip and 2

ir  is respectively the failure rate and repair rate of 

downstream machine of the two-machine transformation 

line.  

The resulting line utilizes the decomposition method to 

calculate performance parameters. The idea of the 

decomposition method is to decompose the line with 

N machines into 1N   two-machine lines ( ), {1,2, , 1}L i i N    

which consist of an upstream machine  )(iM u  , a downstream 

machine )(iM d  and the buffer , {1,2, , 1}iB i N   . 

Pseudo-machine )(iM u models the line upstream of 

, {1,2, , 1}iB i N   , and )(iM d models the line downstream 

from , {1,2, , 1}iB i N   . The parameters of the 

pseudo-machines are chosen and updated repeatedly by an 

iterative algorithm such that the behaviors of the 

two-machine lines are nearly as same as that of the original 

line on the whole. Then get the performance parameters of 

the convergent system by this way. See Fig. 2 for an 

illustration of a three-machine, two-buffer line.   

 
Fig. 2. Illustration of decomposition method. 
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In Fig. 2, the line L is decomposed to two pseudo-lines 
(1)L  and (2)L . Each machine of the two-machine lines is 

characterized by its failure and repair rate. The process of the 

decomposition algorithm is as follows.  

Step 1: Initialization:
1 1 3 3(1) , (1) , (2) , (2)u u d dp p r r p p r r    , 

2 2(1) , (1)d dp p r r  . (
ip and

ir are the failure rate and repair rate 

of the machines of the resulting  line.) 

Step 2: Calculate failure rate (2)up  and repair rate 

(2)ur of (2)uM so that the behaviors of the two-machine 

lines are nearly the same as the original line.  

Step 3: Then, calculate the parameters of (1)dM by the 

parameters of (1)uM , (2)dM , (2)uM . Go to step 2 until 

convergence of the unknown parameters. 

B. A New Transformation Techniques 

The paper presents following a new transformation 

technique based on the transformation proposed by 

Gershwin.  
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Let 
1 2min( , , , )NT T T T  .

ip ,
ir are the parameters of 

original line. In the transformation of (4), downstream 

machine captures the unreliability behavior of the original 

machine, while the upstream machine represents the 

processing time. This is as same as the method proposed by 

Gershwin. However, the parameters of the downstream 

machine are the same as the original machine in (4). That is to 

say, we do not consider the adjustment of failure rate due to 

enhancing the production rate of original machine which is 

not the fastest machine. Meanwhile, the very small failure 

rate of the upstream machine is adopted rather than the very 

large repair rate in (4). This is because 11 )1( i
i

i r
T

T
p   

deduced from (3). Then, if the repair rate 1

ir  is larger, the 

larger failure rate 1

ip is obtained. We think the bad influence 

incurred by enlarging failure rate cannot be eliminated 

completely by simply enlarging repair rate of machines.  So 

we consider the very small failure rate of machines in (4).  

 

IV. NUMERICAL RESULTS AND DISCUSSION  

For the convenience of comparing the new transformation 

techniques with the traditional transformation technique 

proposed by Gershwin [16] and aggregation method of 

Meerkov [17], the data of the literature [6] are utilized. Note 

that in order to match the scale of enlarging failure rate in (3), 

let 12 100 ii pp   in (4). The production lines 1L  to 4L  are 

examined and their parameters as well as numerical results 

are   presented in Table I to Table IV. 

 

Line 1L consisting of four machines and three buffers 

exhibits low non-homogeneousness and highly unbalanced 

buffer capacity; Line 2L consisting of six unreliable 

machines and five buffers exhibits unbalanced repair rate and 

failure rate.  Line 3L exhibits a stronger 

non-homogeneousness than line 2L , and buffer capacities of 

3L are big enough. Line 4L  exhibits a high 

non-homogeneousness. 
 

TABLE I: PRODUCTION LINE L1 

  
1M

 2M
 3M

 4M
 

iT
 

A 1.0 0.95 1.05 1.0 

B 1.0 0.95 1.0 1.05 

ip
  0.04 0.02 0.03 0.02 

ir   0.08 0.04 0.06 0.04 

iC
 

 20 0 20  

 

NUMERICAL RESULTS 

  1Q  2Q  3Q
 E  

A  

Simulation 15.3 0 4.7 0.426 

Gershwin’s 18.6 0 2.0 0.487 

New 
technique 

14.8461 0 5.0513 0.4217 

Meerkov’s 
   

0.338 

B  

Simulation 14.8 0 5.9 0.434 

Gershwin’s 17.6 0 3.9 0.505 

New 

technique 
14.8357 0 5.5911 0.4233 

Meerkov’s 
   

0.342 

 

TABLE II: PRODUCTION LINE L2 

 1M

 
2M

 

3M

 

4M
 

5M

 

6M

 

iT
 

0.356 0.28 0.28 0.28 0.28 0.347 

ip/1
 

9.24 45 45 45 45 9.24 

1/ ir  0.76 5 5 5 5 0.76 

iC
 

4 2 2 2 4  

 

NUMERICAL RESULTS 

 
1Q

 
2Q

 

3Q

 
4Q

 
5Q

 

E  

Simulation 1.4 0.9 0.88 0.88 2.26 2.116 

Gershwin’s 1.04 0.38 0.27 0.14 0.09 2.166 

New 

technique 
2.437 1.144 1.023 0.904 0.786 1.919 

Meerkov’s 
     

2.014 

 

TABLE III: PRODUCTION LINE L3 

 1M

 

2M

 

3M

 

4M

 

5M

 

6M

 

iT
 

0.35 0.25 0.3 0.32 0.3 0.31 

ip/1
 

30 14 35 40 36 14 

1/ ir  4 6.5 10 8.5 12 3.5 

iC
 

100 100 150 250 250  

 

NUMERICAL RESULTS 

 1Q  2Q  3Q
 4Q

 5Q
 E  

Simulation 55 54 61 89 52 2.3 

Gershwin’s 3.7 8.3 8.3 35.2 7.9 2.47 

New 
technique 

63.54 46.9 57.80 80.92 58.53 2.14 

Meerkov’s 
     

2.33 
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TABLE IV: PRODUCTION LINE L4 

 1M  2M
 3M

 4M  

 iT
 

1.5 1 0.8 1.6 

ip/1
 

100 140 190 250 

ir/1
 

12 18 35 12.5 

iC
 

20 20 15  

 

NUMERICAL RESULTS 

 1Q  2Q  3Q
 

E 

Simulation 6.1 11.5 11.8 0.556 

Gershwin’s 0.2 0.1 12.9 0.595 

New 
technique 

11.7503 9.1432 5.7024 0.3931 

Meerkov’s 
   

0.536 

 

The following conclusion can be drawn from the 

numerical results of Table I to Table IV. Note that these 

numerical examples are only a few among those we tested.  

 For lines with low non-homogeneous characteristics, it 

can be seen that compared with simulation results 

respectively in Table I, the better results or results with less 

error on the throughput E  and the system average surplus 
iQ  

are obtained by the new  method. Line L1 is a typical line for 

which the new method works well. However, with the 

increasing non-homogeneousness of lines, e.g., 2L  and 4L , 

Gershwin’s method has smaller analysis errors on the 

throughput E , whereas has larger analysis errors on the 

surplus 
iQ on the whole.  

This is because if a very large repair rate 
1

ir is considered, 

a large failure rate would be obtained due to 1 1( 1)i
i i

T
p r

T
   

(please refer to (3)). Whereas, as mentioned in former section, 

we think the bad influence incurred by enlarging failure rates 

cannot be eliminated completely by simply enlarging repair 

rates of machines from the system viewpoint of lines. That is 

to say, the enlarged failure rates of machines result in 

stronger impact on the system performance than the 

equal-scale enlarged repair rates, especially for the lines with 

low non-homogeneousness. So for the lines with low 

non-homogeneousness 1L , the numerical results with smaller 

error are obtained by the new method in which the small 

failure rate is considered.  

However, with the increasing non-homogeneousness of 

lines, the treatment that the large repair rate is considered is 

better able to reflect the increasing of blockage and starvation 

incurred by increasing non-homogeneousness than the 

treatment that the small failure rate is considered because of 

1 1( 1)i
i i

T
p r

T
  . So Gershwin’s method has smaller analysis 

errors on the throughput E  for lines with high 

non-homogeneousness. Nevertheless, the enlarged failure 

rates of machines have a strong impact on the surplus of 

buffers. So for lines with high non-homogeneousness, the 

surplus 
iQ obtained by Gershwin’s method on the whole has 

larger error than results obtained by the new method due to 

enlarged failure rates. Note that the decomposition method 

and Gershwin’ method, including the new transformation 

technique offered in the paper, are all approximation analysis 

techniques after all, so that the system performances are only 

estimated approximately.  In addition, For line 3L , although 

the line has high non-homogeneousness, the numerical 

results exhibit the similar features of lines with low 

non-homogeneousness. This is because the capacities of 

buffers in the line 3L  are very large so that the blockage of 

the system is few and the system exhibits the similar 

characteristics of low non-homogeneous system. 

Furthermore, it can be drawn from the numerical results of 

Table I to Table IV, Meerkov’s method is suitable to analyze 

the highly unbalanced lines which is with high 

non-homogeneousness and has smaller analysis error on the 

throughput of the line.  

 

V. CONCLUSION 

A new technique has been proposed to analyze the 

performance of hybrid production lines. The technique was 

devised to facilitate the analysis of non-homogeneous lines. 

The comparison analysis between the technique and the 

Meerkov’s aggregation technique was done by numerical 

experiments. It can be drawn that the new technique has 

advantages to analyzing the lines with non-homogeneousness 

or high occurrence probability of blockage and starvation. 

The new technique develops the system analysis methods of 

production lines with unreliable machines. 
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