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Abstract—This study proposes a symbiotic particle swarm 

optimization (SPSO) for the specific neural fuzzy controller 

(NFC). The specific NFC model using compensatory fuzzy 

operators of neural fuzzy networks makes fuzzy logic systems 

more adaptive and effective. The proposed SPSO adopts a 

multiple swarm scheme that uses each particle represents a 

single fuzzy rule and each particle in each swarm evolves 

separately to avoid falling in a local optimal solution. 

Furthermore, the SPSO embeds the symbiotic evolution scheme 

in a specific particle swarm optimization (PSO) to accelerate the 

search and increase global search capacity. 

 
Index Terms—Water bath temperature system, neural fuzzy 

networks, symbiotic evolution, particle swarm optimization. 

 

I. INTRODUCTION 

Neural fuzzy controllers (NFC) [1], [2] have been 

demonstrated to solving many engineering problems. They 

combine the capability of neural networks to learn from 

processes and the capability of fuzzy reasoning under 

linguistic information pertaining to numerical variables. On 

the other hand, recent development in genetic algorithms 

(GAs) has provided a method for neural fuzzy network design. 

Genetic fuzzy systems (GFSs) [3], [4] hybridize the 

approximate reasoning of fuzzy systems with the learning 

capability of genetic algorithms. Furthermore, a new 

optimization algorithm, called particle swarm optimization 

(PSO), appears to be better than the genetic algorithm. It is an 

evolutionary computation technique that was developed by 

Kennedy and Eberhart in 1995 [5]. The underlying motivation 

for the development of PSO algorithm is the social behavior 

of animals, such as bird flocking, fish schooling and swarm 

theory. PSO has been successfully applied to many 

optimization problems, such as control problems [6], [7].  

This study proposes a symbiotic particle swarm 

optimization (SPSO) for the specific neural fuzzy controller 

(NFC). The specific NFC is based on our previous research [8] 

with adaptive compensatory fuzzy reasoning to dynamically 

adjust fuzzy operators. The proposed SPSO embeds the 

symbiotic evolution scheme in a particle swarm optimization 

(PSO) to accelerate the search and increase global search 

capacity. Unlike the GAs in a population as a full solution to a 

problem, symbiotic evolution [9] assumes that each 

individual in a population represents only a partial solution to 

a problem. Complex solutions combine several individuals in 
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the population. The SPSO in which each particle represents a 

single fuzzy rule differs from original symbiotic evolution [8] 

to adopt a multiple swarm scheme. A fuzzy system with 

R-rules is constructed by selecting and combining R particles 

from each swarm, and allowing the rule itself to evolve. 

 

II. STRUCTURE OF NEURAL FUZZY CONTROLLER 

In this section, the structure of the specific NFC is 

introduced. Compensatory operators in the specific NFC 

model are used to optimize fuzzy logic reasoning and to select 

optimal fuzzy operators. Therefore, an effective NFC should 

not only adaptively adjust its fuzzy membership functions, it 

should also dynamically optimize adaptive fuzzy operators.  
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Fig. 1.  Structure of the specific NFC model. 

 

Fig. 1 shows the structure of the specific NFC model. The 

NFC realizes a fuzzy rule in the following form: 
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where 
i

x  is the input variable; 'y  is the input variable; 
ij

A  is 

the linguistic term of the precondition part; [0,1] 
j

  is the 

compensatory degree, 
j

w
0

 and 
ij

w  are the corresponding 

weight of feedback in the consequent part. 
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III. A SYMBIOTIC PARTICLE SWARM OPTIMIZATION FOR THE 

NFC MODEL 

This section describes the proposed SPSO for the specific 

NFC model. The SPSO method comprises of three major 

components – create initial swarms, evaluate fitness value and 

update each particle. First, the initial swarms are created 

randomly before the evolution process begins. Second, the 

fitness value is evaluated for each particle by symbiotic 

evolution strategy to allow the rule itself to evolve in each 

swarm. Third, the each particle is updated using local best, 

global best and cooperative best in SPSO.  

A. Create Initial Swarms 

1) Coding step 

The foremost step in SPSO is the coding of a fuzzy rule into 

a particle. Fig. 2 shows an example of the coding of 

parameters of a fuzzy rule into a particle where i and j 

represent the ith input variable and the jth rule, respectively. 

In this study, a Gaussian membership function is adopted with 

variables that represent the mean and deviation of the 

membership function. Fig. 2 represents a fuzzy rule given by 

Eq. (1), where 
ij

m  and 
ij

  are the mean and variance of a 

Gaussian membership function, respectively; 
j

  is the 

compensatory factor, and 
ij

w  is the corresponding parameter 

of the consequent part associated with the jth rule node. In this 

study, a real number represents the position of each particle. 
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Fig. 2. Coding a fuzzy rule into a particle. 

 

2) Initial swarms 

Before the SPSO method is applied, every position 
kj

x
,

 

must be created randomly in the range [0, 1] in each swarm, 

where j=1, 2, …, R represents the jth swarm and k=1, 2, …, ps 

represents the kth particle. 

B. Evaluate Fitness Value 

This subsection presents a novel method of symbiotic 

evolution. As described above, in the symbiotic evolution, the 

fitness value of a rule (a particle) is computed as the sum of 

the fitness values of all the feasible combinations of that rule 

with all other randomly selected rules, and then dividing this 

sum by the total number of combinations. Fig. 3 shows the 

structure of the particle in the symbiotic evolution. In this 

figure, the best parameters of fuzzy system are reserved (i.e., 

the best particle) by the cooperative best (Cbest). The 

stepwise assignment of the fitness value is as follows. 

Step 0: Divide the rules into swarms of size ps. 

Step 1: Randomly select R fuzzy rules (particles) from each 

of the above swarms, and compose the fuzzy system using 

these R rules. 

Step 2: Calculate fitness value of the composed fuzzy 

system. In this study, the fitness value is given by the follow 

formula; 
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where
d

y represents the dth model output; 
d

y  represents the 

desired output, and D represents the number of input data. 

Step 3: Divide the fitness value by R and accumulate the 

divided fitness value to the fitness record of the R selected 

rules with their recorded fitness values initially set to zero. 

Step 4: Repeat the above steps until each rule (particle) in 

each swarm has been selected a sufficient number of times, 

and record the number of fuzzy systems to which each particle 

has contributed. 

Step 5: Divide the accumulated fitness of each particle by 

the number of times it has been selected. 
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Fig. 3. Structure of particle in the proposed SPSO method. 

C. Update Each Particle 

Step 1: Update local best Lj,k, global best Gj, and 

cooperative best Cj 

The local best position Lj,k is the best previous position that 

yielded the best fitness value of the jth swarm of the kth 

particle, the global best position Gj is generated by the whole 

local best position and the cooperative best position Cj is 

created by parameters of the best composed fuzzy system. In 

step 1, the first step updates the local best position. Compare 

the fitness value of each current particle with that of its local 

best position. If the fitness value of the current particle 

exceeds those of its local best position, then the local best 

position is replaced with the position of the current particle. 

The second step updates the global best position. Compare the 

fitness value of all particles in their local best positions with 

that of the particle in the global best position. If fitness value 

of the particle in the local best position is better than those of 

the particles in the global best position, then the global best 

position is replaced with the current local best position. 
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The third step updates the cooperative best position. 

Compare the fitness values of all composed fuzzy systems and 

the best fuzzy system. If the fitness value of one of all 

composed fuzzy systems exceeds those of the best fuzzy 

system, then the best fuzzy system is replaced with the 

composed fuzzy system in which the corresponding rule is the 

cooperative best (Cbest). 

Step 2: Generate new swarms using Lj,k, Gj and Cj 

The step updates velocity and position of each particle to 

generate the new swarms using Eqs. (4) and (5). 
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where   is the coefficient of inertia, 1 is the cognitive study, 

2 is the society study, 3 is the group study, and ()Rand  is 

generated from a uniform distribution in the range [0, 1]. 

 

IV. CONTROL OF WATER BATH TEMPERATURE SYSTEM 

The goal of this section is to elucidate the control of the 

temperature of a water bath system according to, 
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where y(t) is the output temperature of the system in ℃; u(t) is 

the heat flowing into the system; 
0

Y  is room temperature; C is 

the equivalent thermal capacity of the system, and TR is the 

equivalent thermal resistance between the borders of the 

system and the surroundings. 

TR and C are assumed to be essentially constant, and the 

system in Eq. (6) is rewritten in discrete-time form to some 

reasonable approximation. The system 
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is obtained, where   and   are some constant values of TR 

and C. The system parameters used in this example are 
40015.1  e , 367973.8  e  and 

0
Y =25.0 ℃, which were 

obtained from a real water bath plant considered elsewhere 

[10]. The input u(k) is limited to 0, and 5V represent voltage 

unit. The sampling period is Ts=30. 

A sequence of random input signals urd(k) limited to 0 and 

5V is injected directly into the simulated system described in 

Eq.(7), using the online training scheme for the NFC-SPSO 

controller. The 120 training patterns are selected based on the 

input-outputs characteristics to cover the entire reference 

output. The temperature of the water is initially 25℃, and 

rises progressively when random input signals are injected.  

In this simulation, the initial parameters before learning are 

given in Table I and five fuzzy rules are set to construct the 

NFC model. This dissertation compares the NFC-SPSO 

controller to the NFC-CPSO controller [11], the NFC-LPSO 

controller [12] and the NFC-PSO controller [5]. In the PSO, 

LPSO and CPSO, the cognitive coefficient 
1
  was set to 2, 

the society coefficient 
2

  was set to 2, and the population size 

was set to 200. The coefficient   of PSO was set to 0.4, the 

maximal and minimal weights of LPSO are set to 0.9 and 0.4 

[12], respectively, and the constriction factor of CPSO is set 

to 0.729 [11]. Each of these controllers is applied to the water 

bath temperature control system. The performance measures 

include the set-points regulation, the influence of impulse 

noise, and a large parameter variation in the system, and the 

tracking capability of the controllers. Fig. 4 plots the learning 

curves of the best performance of the NFC-SPSO controller, 

the NFC-CPSO controller, the NFC-LPSO controller and the 

NFC-PSO controller for the fitness value, after the learning 

process of 10000 generations. 
 

TABLE I: INITIAL PARAMETERS BEFORE LEARNING 

Parameter Value 

Population Size 50 

Maximum Number of Generation 10000 

1
 ,

2
  1 

3
  2 

ω 0.4 

Coding Type Real Number 

 

 

Fig. 4. Learning curves of best performance of the NFC-SPSO controller, the 

NFC-CPSO controller, the NFC-LPSO controller and the NFC-PSO 

controller. 

 

In the simulations, the tracking capability of the 

NFC-SPSO controller with respect to ramp-reference signals 

is studied. Define  
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Fig. 5(a) presents the tracking performance of the 

NFC-SPSO controller. Fig. 5(b) presents the corresponding 

errors of the NFC-SPSO controller, the NFC-CPSO controller, 

the NFC-LPSO controller, and the NFC-PSO controller. To 

test their regulation performance, a performance index, the 

sum of absolute error (SAE), is defined by 

 
k

ref
kykySAE )()(                       (9) 

where )(ky
ref

 and )(ky  are the reference output and the 

actual output of the simulated system, respectively. The SAE 
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values of the NFC-SPSO controller, the NFC-CPSO 

controller, the NFC-LPSO controller, and the NFC-PSO 

controller are 45.18, 54.38, 68.41, and 76.33. The proposed 

NFC-SPSO controller has a much better SAE value of the 

tracking capability than the other controllers. 

 
(a) 

 
(b) 

Fig. 5. (a) Tracking of NFC-SPSO controller when a change occurs in the 

water bath system. (b) Error curves of NFC-SPSO controller, NFC-CPSO 

controller, the NFC-LPSO controller, and NFC-PSO controller. 

 

V. CONCLUSIONS 

This study proposed a symbiotic particle swarm 

optimization (SPSO) for the specific NFC. The major novelty 

of the proposed SPSO learning algorithm uses a multiple 

swarm scheme to allow that each individual in each swarm 

evolves separately using a specific particle swarm 

optimization for constructing the NFC-SPSO method. 

Simulations demonstrate that the proposed NFC-SPSO 

method can obtain a better performance than other existing 

methods under some circumstances and has good 

generalization capability and robustness. 
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