
  

 

Abstract—In this paper we discussed our proposed formula of 

precision for an imbalanced class distribution which gives a true 

reflection of a defect predictor in relation to its high classifier 

performance. Our formula gave values which were closer to the 

Accuracy computation for both balanced and imbalanced class 

distribution, thus our formula gave consistent high values for a 

good predictor irrespective of the size of our target data.  

Approach: We used NASA dataset to come out with 

well-documented examples as to how to get a higher accuracy, 

with its corresponding higher precision and subsequently a 

higher Recall and F- Measure values which are reflection of the 

higher classifier performance. We used data with the minority 

class between 5 to 10 percent (5%-10%) data points inclusive. 

We applied a fixed true positive rate (TPR) of one (1), whiles the 

false positive rate (FPR) on the other hand ranged from 0.01 to 

0.05 inclusive at an interval of 0.01 for our analysis .We used the 

proposed adjusted formula for precision computation to 

improve earlier works which were criticized of not being 

satisfactory. The proposed formula precision (AR) was used to 

compute the precisions which gave results that were the true 

reflection of a higher performance predictor. The results in the 

tables clearly show our assertion for our formula giving good 

estimated values for precision. 

 

Index Terms—True positive rate, false positive rate, precision, 

recall, F-measure and defect predictor classifier. 

 

I. INTRODUCTION 

The performance of data mining classification in the area of 

machine learning is an onerous work to predict correctly; to 

be able to make an advancement several factors need to be 

taken into consideration. Classifying a data wrongly has its 

own negative side effects (i.e. cost).  

In the January, 2007 issue of the IEEE Transactions on 

Software Engineering Journal, a paper with the title “Data 

Mining Static Code Attributes to Learn Defect Predictors” 

[1], was published. The authors of [1] carried out many defect 

prediction experiments. The paper referred to two metrics, 

namely the probability of detection (pd) or recall and the 

probability of false alarm (pf). This triggered a comment 

paper by Zhang and Zhang [2].The two metrics pd and pf 

attracted the comment from [2]. Zhang and Zhang argument 

was that the prediction models by [3] were not satisfactory for 

practical use and needed some form of improvement. 

 
 

 

The limitation they pointed out was with the precision, 

their argument was that the proportion of modules predicted 

as defective which originally were labelled defective, was low 

for 7 of the 8 data set used for the experiments (i.e. ranging 

from 2.02% to 31.55%).The authors thus concluded that by 

giving the suggestion that, reporting on the performance of 

software defect prediction models; the true positive rate 

should be used with precision instead of with the false 

positive rate. 

The comments paper by Zhane and Zhane attracted a 

reaction by some of the original authors and other two new 

authors [4]. The main arguments raised were based on the fact 

that detectors learned in the domain of software engineering 

rarely yield high precision, and thus low precision predictors 

can be useful in practice. Although sinking precision to 

increase the true positive rate may be necessary depending on 

what objectives are being considered. It is highly 

inappropriate to absolutely disregard precision in the area of 

classification. 

In April 2011, D. Gray et al. presented a paper [5] in which 

they demonstrated that in a highly imbalanced data class 

distribution it is rare to rely on true positive rates and false 

positive rates alone, receiver operating characteristics (ROC) 

inclusive; in the said paper they said if reliance is based only 

on these two metrics it may results in excessively optimistic 

view of classifier performance. They [5] said that after the 

publication of [2] many defect prediction researchers have 

continued to report their classification results inappropriately. 

They therefore made an intuitive contribution which idea they 

simplified it with examples. 

In this paper we have come up with a transformed (taken 

the rates into consideration by making the false positive rate 

(TPR) a constant sort of value) formula from the original 

formula for the calculation of precision using the same dataset 

by [6] .We did so with examples shown in Section III. Our 

contribution is mainly intrinsic and has been demonstrated 

with examples. 

This paper is divided into the following subsections from 

this point forward: Section II gives brief description of the 

overview of Machine Learning; Section III is the description 

of the imbalance classifier performance and our proposed 

solution to the precision calculation and Section IV Summary 

and Conclusion.  

 

II.   BRIEF OVERVIEW OF MACHINE LEARNING 

A. Overview 

Machine learning can be applied in the area of 

classification for the prediction of defective modules. When 
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we have training sets of modules with labels as defective 

(positive) and non-defective (negative) a classification model 

could be learned from the training data. The model can then 

be used to classify unknown modules. Prediction models 

normally have four results: true positives (TP), false positives 

(FP), true negatives (TN), and false negatives (FN) which 

could be presented by a confusion matrix. In Fig. 1, is a 

confusion matrix which contains information about actual and 

predicted classifications carried out by a classification system. 

The performance of such systems is commonly evaluated 

using the data in the matrix. 

Now, each of the data point can be predicted by a binary 

classification as belonging to only one of the four possible 

outcomes in Fig. 1. 

 True positive (TP) is the proportion of positive cases that 

were correctly identified. 

 False positive (FP) is the proportion of negative cases that 

were incorrectly classified as positive. 

 True negative (TN) is defined as the proportion of 

negatives cases that were correctly classified. 

 False negative (FN) is the proportion of positive cases 

that were incorrectly classified as negative. 

  

 

labelled positive labelled negative 

predicted positive TP FP 

predicted negative FN TN 

Fig. 1. A confusion matrix. 

 

TABLE I: A SUBSET OF STATISTICS DERIVED FROM A CONFUSION MATRIX. 

MEASURES MARKED WITH ‘+’ HAVE AN OPTIMAL VALUE OF 1; MEASURES 

MARKED WITH ‘-’ HAVE AN OPTIMAL VALUE OF 0 

Alias/Aliases Defined As 

Testing Set  No. instances       TP TN FP FN    

No. Instances in Class 1 (Positive Class)   TP FN  

No. Instances in Class 2 (Negative Class)   TN FP  

Accuracy + 

Correct Classification Rate 

1 – Error Rate 

  

      

TP TN

TP TN FP FN



  

 

Error Rate – 

Incorrect Classification Rate 

1 – Accuracy 

FP FN

TP TN FP FN



  

  

      
 

True Positive Rate + 

Recall 

Sensitivity 

Probability of Detection (pd) 

1 – False Negative Rate 

  

TP

TP FN

 

True Negative Rate + 

Specificity 

1 – False Positive Rate   

TN

TN FP

 

False Positive Rate – 

Type 1 Error Rate 

Probability of False Alarm (pf) 

1 – True Negative Rate 
  

FP

FP TN

 

False Negative Rate – 

Type 2 Error Rate 

1 – True Positive Rate   

FN

FN TP

 

Precision + 

  

TP

TP FP

 

F-Measure + 

F-Score 2  Re   Pr

Re   Pr

call ecision

call ecision
 

Balance + 

Distance from ROC optimal point 
2 2

(0 - ) (1 - )

1

2

pf pd

  

The class of interest for this work is the positive class which 

happens to be the defective models and it also constitute the 

minority class. We also considered three measures of interest 

for our proposed formula; the true positive rate (TPR), the 

false positive rate (FPR), and precision. The TPR describes 

the proportion of data points labelled as positive which were 

correctly predicted as positive; the optimal value is 1.The 

FPR; describes the proportion of data points labelled as 

negative which were incorrectly predicted as positive; its 

optimal value is 0. Precision on the other hand describes the 

proportion of modules predicted as defective which were 

correct; its optimal value is 1.  

B. Useful Statistical Data 

We can derive a lot of useful statistical data for the 

classifier performance metrics using the results in the 

confusion matrix table. A subset of these is defined in Table I 

[5]. Note that in the table being referenced the last two 

measures defined (F- Measure and Balance) are in their most 

commonly used form. Weight can also be assigned in order to 

favor either of their comprising measures [6]. In addition the 

balance measure which was defined by Menzies et.al as a 

measure of the distance from a point on the receiver operating 

characteristic (ROC) curve to the ideal point. Which is 

typically defined as where the true positive rate is 1 and the 

false positive rate is 0 [1].  

 

III. IMBALANCED CLASS DISTRIBUTION EFFECTS ON 

METRICS MEASURES 

A. Analysis of Precision Measure 

Technically speaking any dataset that exhibits an unequal 

distribution between its classes can be described as an 

imbalanced dataset. In Machine learning or data mining field 

imbalanced data corresponds to data sets exhibiting 

significant, and in some cases extreme imbalanced data, 

specifically this form of imbalanced  is normally between 

classes as stated above, where in each case one class severely 

out represents another [7]-[9].  

We begin our analysis with a perfectly balanced data set of 

2000 points, 1000 in each class. The assumption here is that, 

we have achieved a classification performance of true positive 

rate (TPR) of 1 and a false positive rate (FPR) of 0.01. Here 

we may say that our classifier is performing perfectly well. 

The reason being that all the data points in the positive class 

have been correctly classified (TPR=1), and only 1 percent of 

data points in the negative class (1000×0.01=10). Thus 10 

data points have been incorrectly classified. The precision of 

such classifier comes up to: “Precision= 
TP

TP FP
= 

1000
1000 10

= 0.99 (2 significant figures),” here we have 

correctly predicted 99% to be in the positive class rightly. A 

confusion matrix for this example is depicted in Fig. 2. 

  

labelled positive labelled negative 

predicted positive TP=1000 FP=10 

predicted negative FN=0 TN=990 

Fig. 2. TPR=1, FPR=0.01, Precision=0.99. 
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In this example using the original precision formula works 

perfectly to give the expected high precision value. Now let us 

consider a highly imbalanced class data set distribution; 

which is what the reality in software defect prediction is what 

is normally captured. We still consider our 2000 data points 

but this time with only 15 data points in the positive class 

being 0.75 percent. Now let us say we once more have 

achieved a TPR of 1 and a FPR of 0.01 as used in our previous 

example. Thus we still expect that the classifier performance 

would be at the same level as previous, since we are using the 

same parameters for TPR and FPR. 

However, computing the precision gives us something less: 

“Precision= 
15

15+20
=0.43” thus the precision is less than 0.99 

this is as a result of the imbalanced class; this is the problem 

this work seeks to address. So here only 43% of all positive 

predictions were correctly predicted; even though all the 15 

TP data were correctly predicted; this is what informed us to 

come up with our intuitive new precision formulae. In our 

work, we took into account the TPR and FPR and also 

stabilize the value of FP into a constant. A confusion matrix 

for the second example is shown in Fig. 3. 

  

labelled positive labelled negative 

predicted positive TP=15 FP=20 

predicted negative FN=0 TN=1965 

Fig. 3. TPR=1, FPR=0.01, Precision=0.43. 

 

In the domain of software defect prediction, often the data 

sets under study represents less than 1 percent of the data 

point in total [1], [10] and [11]. Referencing [5] presented an 

example of using the most imbalanced of the NASA Metric 

Data Program; PC2. The data set contained 5589 data points, 

23 of which data points were labelled as defective, this 

actually constituted 0.4 percent of the total data points. Using 

a TPR of 1 all 23 data points labelled ‘defective’ were 

correctly classified. Using a FPR of 0.01 which represented 1 

percent of’ (5589-23=5566)’ data points were also incorrectly 

classified as ‘non- defective’ which is approximately (5566 

*0.01  56) false positives, resulting in a precision 0.29, 

despite the other metrics which indicates a near optimal 

performance. As a result of the high imbalanced class 

distribution, small changes in the FPR from 0.01 to 0.05 had a 

large effect on actual number of the false positive data points 

from 56 to 280 though maintaining the TPR of 1; this also 

resulted in changes in the classifier performance. The 

precision; at this stage reduced from, 0.29 to 0.08. This is the 

reality if we use the original precision formula. However 

using our proposed formula gives a higher precision of 

0.95(AR) as shown in Table II.  

Tables II to III; present statistics for each of the 13 NASA 

Metrics data program data sets. The tables show class 

distribution for each data set with the precision when TPR=1 

and FPR from 0.01 and 0.05 in details. We ranked the data 

sets in ascending order of percentage of modules in positive 

(minority) class. In their work [3] they said precision is 

required to give a more accurate representation of the true 

performance of a classifier.  

B. Proposed Precision Formula 

Steps: 

Let 
Re

Pr
Re

levantData RetrievalData
ecision

trievalData



 
 
 

 

In our intuitive formula for Precision (imbalanced data, but 

with a high performance), we applied the original precision 

formula: 

Pr 100%
TP

ecision
TP FP

 


                (1) 

The next thing we did was to suppress FP to 

approximately one (1) using the FPR, by rewriting FP as the 

power of its rate 
 FPR

FP  

Thus, 

( )FPR
FP FP                               (2) 

We used FPR value in the range of 0.01 to 0.05 both 

extreme values inclusive. We also maintain the TP values by 

raising it to a power of 1, thus TPR=1(fixed throughout, we 

used 1, because the classifier is assume to be of a high 

performance).  

Also, 
( )TPR

TP TP                      (3) 

Now substituting (2) and (3) into (1) gives us (4), we obtain 

our proposed precision (AR) formula: 

Thus is given by: 

 

   
Pr ( ) 100%

TPR

TPR FPR

TP
ecision AR

TP FP
 



 
  
 

      (4) 

This (4) is our proposed formula for computing our 

Precision (AR) for an imbalanced dataset given that we have a 

high performance classifier (predictor). 

In Table II, [5]; in Column four we computed the 

percentage positive (minority) class data point; column five 

we computed percentage precision (original precision 

formula) and column six consists of precision(AR) our 

proposed  formula. This table presents statistic for each of the 

13 NASA metrics data program data sets. These data sets 

were chosen because they have been heavily used in software 

defect prediction research. 

Applying the same principle as in equation (4) we can 

formulate the Recall and F-Measure formulae as follows: 

 

 
Re ( ) 100%

0

TPR

TPR

TP
call AR

FN TP
 

 

 
  
 

           (5) 

 

Assumption; TPR=1 and FN=0, since the predictor is able 

to detect all the true positives. This gives a Recall (AR) of 

100%.or 1.Similarly; F-Measure can be computed using the 

original formula in conjunction with the TPR and FPR,  

thus: 

Pr ( ) Re ( )
( ) 2

Pr ( ) Re ( )

ecision AR call AR
F Measure AR

ecision AR call AR


  



 
 
 

   (6) 



  

TABLE II: METRIC DATA PROGRAM DATA SETS RANKED IN ASCENDING % DATA POINTS IN MINORITY CLASS. TPR=1 AND FPR=0.01. 

NASA DATA SET 

ALIAS 

Num. of Data 

points 

Num. of positive Class 

Data point minority 

% Age of Positive class 

Data pts. 

% Age Precision original 

TPR=1 FPR=0.01 

% Age Precision (AR) 

TPR=1 FPR=0.01 

PC2 5589 23 0.4 29.114 95.6696 

MC1 9466 68 0.7 41.975 98.4844 

PC5 17186 516 3 75.549 99.7964 

PC4 1107 76 6.9 88.372 98.6714 

MW1 403 31 7.7 88.571 96.8328 

MC3 458 43 9.4 91.489 97.6963 

CM1 505 48 9.5 90.566 97.9268 

PC3 1563 160 10.2 91.954 99.3624 

PC4 1458 178 12.2 93.194 99.4269 

KC1 2107 325 15.4 94.752 99.6843 

JM1 10878 2102 19.3 95.982 99.9503 

MC2 161 52 32.3 98.113 98.1132 

KC4 125 61 48.8 98.387 98.3871 

TABLE III: PRECISION STATISTICS FOR EACH OF THE 13 NASA METRICS DATA SETS WITH TPR=1, FPR=0.05 

NASA DATA SET 

ALIAS 

Num. of Data 

points 

Num. of positive Class 

Data point minority 

% Age of Positive class 

Data pts. 

% Age Precision original 

TPR=1 FPR=0.05 

% Age Precision (AR) 

TPR=1 FPR=0.05 

PC2 5589 23 0.4 7.6412 94.5531 

MC1 9466 68 0.7 12.6394 98.0389 

PC5 17186 516 3 38.2222 99.7295 

PC4 1107 76 6.9 59.375 98.0417 

MW1 403 31 7.7 62 96.3972 

MC3 458 43 9.4 67.1875 97.3634 

CM1 505 48 9.5 67.6056 97.621 

PC3 1563 160 10.2 69.5652 99.233 

PC4 1458 178 12.2 73.5537 99.3131 

KC1 2107 325 15.4 78.5024 99.66164 

JM1 10878 2102 19.3 82.7233 99.9356 

MC2 161 52 32.3 91.2281 97.9583 

KC4 125 61 48.8 95.3125 98.2976 

 

Substituting (4) and (5) into (6) yields the formula below:  

Since we are dealing with a predictor that has a recall of 

100% it means that the false negative is zero (0); thus FN is 

assigned the value ,0. 

 

   

 

 

 

   

 

 

0
( ) 2 100%

0

TPR TPR

TPR FPR TPR

TPR TPR

TPR FPR TPR

TP TP

TP FP FN TP
F measure AR

TP TP

TP FP FN TP


  

   


 

  
   
  
 
  
     

 

 

 

( )

( )

( )

( )

1

( ) 100%

1

2

TPR

FPR
TPR

TPR

FPR
TPR

TP

TP FP
F measure AR

TP

TP FP

 
 
  
 

 
 
  
 




  





 
 
 

  
 
 
 

        (7) 

Precision, Recall or probability of detection, F-Measure 

and others are measures used as classifier performance 

evaluators. F-Measure is a method of measuring test accuracy; 

it combines the precision and recall measurements [12]. 

C. Discussion 

Using our F-measure formula with dataset PC2 it gives a 

precision (AR) value of 95.6696 from Table II and a recall of 

100%, so using (7) gives us an F-measure (AR) value of 97.79; 

which justifies the high performance classifier (predictor) we 

are considering. Table III compares our precision (AR) values 

with the precision using the original formula, for the 13 

NASA data set, but this time the FPR is pegged at 0.05 with 

the same true positive rate of 1, since the assertion is that this 

predictor has a high performance one it makes our high valued 

precision a better measure.  

In information retrieval, a perfect precision score of 1.0 

means that every result retrieved by a search was relevant, 

whereas a perfect recall score of 1.0 means that all the 

relevant document(data) were retrieved by the search(but says 

nothing about how many irrelevant data were also retrieved). 

From Table III, the data sets PC2, MC1 and PC5 have the 

minimum percentage positive class data points of 0.4%, 0.7% 

and 3% respectively; this also gave lower precision values of 

7.64%, 12.64% and 38.22% in the same order when the 
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original precision formula was used. Interestingly our 

proposed precision (AR) formula gave the expected higher 

values in correspondence to the higher classifier performance; 

the precision (AR) values are; PC2 (94.55%), MC1 (98.04%) 

and PC5 (99.73%).  

Our proposed precision values gives a positive correlation 

with the almost 100% performance of the high 

classifier(predictor), thus making our proposed formula a 

better precision formula for computing precision for a higher 

predictor for an imbalanced data set irrespective of how high 

the ratio of the non-defective points has over the defective 

points. However, precision (AR) formula from Table II & III 

for MC2 and KC4 gave close values with the original 

precision formula. The precision values for the original 

formula and ours, precision (AR) for FPR= 0.02 to 0.04 are 

displayed under appendix. 

 
Fig. 4. Comparison of precision values at TPR=1, FPR=0.05. 

 

Fig. 4 shows the precision values graphically for the 

original precision values and the precision values for our 

proposed formula and precision (AR) outperformed 

precision(original) in all the 13 NASA datasets used for the 

analysis. 

IV. SUMMARY AND CONCLUSION 

Precision snags, especially when class distributions are 

highly askew. This work was carried out to propose a new 

precision formula which took into consideration the true 

positive and false positive rates. This approach was used to 

correct the problem of precision values which turn to deviate 

from the expected norm as a result of the use of imbalanced 

datasets. The proposed formula was derived with a fixed true 

positive rate of 1 and used a range (0.01 -0.05) for the false 

positive rate. We used the same assumptions for precision 

(AR) to compute Recall (AR) and F-Measure (AR). 

From the analysis carried out with the 13 NASA datasets 

our proposed formula for precision, provided higher values 

for all 13 datasets compared with the original formula for 

calculating precision. Precision (AR) higher values highly 

supported the assertion that the predictor has a high 

performance. 

APPENDIX 

Computation of Precision (original) and Precision (AR), 

FPR=0.02, 0.03 and 0.04 and TPR=1 in Tables IV to VI. 

The values for precision (AR) perform better than the 

values obtained using the original precision formula and this 

further affirms the superiority of our proposed precision 

formula.  

 
TABLE IV:  METRIC DATA PROGRAM DATA SETS RANKED IN ASCENDING % DATA POINTS IN MINORITY CLASS. TPR=1 AND FPR=0.02  

NASA DATA SET 

ALIAS 

Num. of Data 

points 

Num. of positive Class 

Data point minority 

% Age of Positive class 

Data pts. 

% Age Precision original 

TPR=1 FPR=0.02 

% Age Precision (AR) 

TPR=1 FPR=0.02 

PC2 5589 23 0.4 17.037 95.4398 

MC1 9466 68 0.7 26.5627 98.3933 

PC5 17186 516 3 60.7774 99.7828 

PC4 1107 76 6.9 78.3505 98.6209 

MW1 403 31 7.7 81.5789 96.755 

MC3 458 43 9.4 84.3137 97.633 

CM1 505 48 9.5 82.7586 97.8651 

PC3 1563 160 10.2 85.1064 99.3364 

PC4 1458 178 12.2 87.2549 99.4039 

KC1 2107 325 15.4 90.0277 99.6705 

JM1 10878 2102 19.3 92.2739 99.9473 

MC2 161 52 32.3 96.2963 98.0874 

KC4 125 61 48.8 98.3871 98.3871 

TABLE V: METRIC DATA PROGRAM DATA SETS RANKED IN ASCENDING % DATA POINTS IN MINORITY CLASS. TPR=1 AND FPR=0.03 

NASA DATA SET 

ALIAS 

Num. of Data 

points 

Num. of positive Class 

Data point minority 

% Age of Positive class 

Data pts. 

% Age Precision original 

TPR=1 FPR=0.03 

% Age Precision (AR) 

TPR=1 FPR=0.03 

PC2 5589 23 0.4 12.1053 95.1752 

MC1 9466 68 0.7 19.4286 98.288 

PC5 17186 516 3 50.7874 99.767 

PC4 1107 76 6.9 71.028 98.5624 

MW1 403 31 7.7 73.8095 96.6497 

MC3 458 43 9.4 76.7857 97.5499 

CM1 505 48 9.5 77.4194 97.7947 

PC3 1563 160 10.2 79.2079 99.3057 
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PC4 1458 178 12.2 82.4074 99.3773 

KC1 2107 325 15.4 85.9788 99.6546 

JM1 10878 2102 19.3 88.8795 99.9438 

MC2 161 52 32.3 94.5455 98.0512 

KC4 125 61 48.8 96.8254 98.3538 

TABLE VI: METRIC DATA PROGRAM DATA SETS RANKED IN ASCENDING % DATA POINTS IN MINORITY CLASS. TPR=1 AND FPR=0.04 

NASA DATA SET 

ALIAS 

Num. of Data 

points 

Num. of positive Class 

Data point minority 

% Age of Positive class 

Data pts. 

% Age Precision original 

TPR=1 FPR=0.04 

% Age Precision (AR) 

TPR=1 FPR=0.04 

PC2 5589 23 0.4 9.3496 94.8788 

MC1 9466 68 0.7 15.3153 98.1699 

PC5 17186 516 3 43.6173 99.7493 

PC4 1107 76 6.9 64.9573 98.4965 

MW1 403 31 7.7 67.3913 96.5299 

MC3 458 43 9.4 71.6667 97.4615 

CM1 505 48 9.5 71.6418 97.7099 

PC3 1563 160 10.2 74.0741 99.2712 

PC4 1458 178 12.2 77.7293 99.3468 

KC1 2107 325 15.4 82.0707 99.6364 

JM1 10878 2102 19.3 85.691 99.9399 

MC2 161 52 32.3 92.8571 98.0078 

KC4 125 61 48.8 95.3125 98.3159 
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