

Abstract—Cloud Storage provide users with abundant

storage space and make user friendly for immediate data access.

But there is a lack of analysis on optimizing cloud storage for

effective data access. With the development of storage and

technology, digital data has occupied more and more space.

According to statistics, 60% of digital data is redundant, and the

data compression can only eliminate intra-file redundancy. In

order to solve these problems, De-Duplication has been proposed.

Many organizations have set up private cloud storage with their

unused resources for resource utilization. Since private cloud

storage has limited amount of hardware resources, they need to

optimally utilize the space to hold maximum data. In this paper,

we discuss the flaws in existing methods for Data De-Duplication.

Our proposed method namely Dynamic Whole File

De-duplication (DWFD) provides dynamic space optimization in

private cloud storage backup as well as increase the throughput

and de-duplication efficiency.

Index Terms—Cloud backup, cloud computing, constant-size

chunking, data de-duplication, full-file chunking, private

storage cloud, redundancy.

I. INTRODUCTION

Cloud computing delivers flexible applications, web

services and IT infrastructure as a service over the internet

using utility pricing model. The Cloud is a cost-effective

approach to technology as there is no need to make usage

predictions, upfront capital investments or over purchase

hardware or software to meet the demands of peak periods.

Cloud computing incorporates virtualization, data and

application on-demand deployment, internet delivery of

services, and open source software. The different forms of

cloud design are Public cloud, Private cloud and Hybrid cloud.

Public clouds are run by third party service providers and

applications from different customers are likely to be mixed

together on the cloud’s servers, storage systems, and networks.

Here the computing infrastructure is hosted by the cloud

vendor at the vendor’s premises. Private clouds are built for

the exclusive use of one client. Private clouds can also be built

and managed by the organization’s own administrator. Here

the computing infrastructure is dedicated to a particular

organization and not shared with other organizations. Private

clouds are more secure when compared to public clouds.

Hybrid clouds combine both public and private cloud models

for handling planned workload spikes

Manuscript received March 19, 2014; revised May 20, 2014.

The authors are with the R.M.D Engineering College, Chennai, India

(e-mail: shyamalapmr@gmail.com, vimalkhanna93@gmail.com,

anaveenbhalaji@gmail.com).

A. Cloud Storage

Cloud storage is a service model in which data is

maintained, managed and backed up remotely and made

available to users over a network. Cloud storage [1] provides

users with storage space and make user friendly and timely

acquire data, which is foundation of all kinds of cloud

applications. There are many companies providing free online

storage. The storage cloud provides Storage-as-a-Service.

The organization providing storage cloud uses online

interface to upload or download files from a user’s desktop to

the servers on the cloud. Typical usage of these sites is to take

a backup of files and data. Storage cloud exists for all the

types of cloud. A cloud storage SLA is a service-level

agreement between a cloud storage service provider and a

client that specifies details of the service, usually in

quantifiable terms. The forms of cloud storage are private

cloud storage, public cloud storage and hybrid cloud storage

B. Advantages of Cloud Storage

Cloud storage has several advantages over traditional data

storage. For example, if we store our data on a cloud storage

system, we will be able to get that data from any location that

has internet access. There is no need to carry around a

physical storage device or use the same computer to save and

retrieve our information. With the right storage system, we

could even allow other people to access the data and turns a

personal project into collaborative effort.

C. Private Cloud Storage

Public cloud storage such as Amazon's Simple Storage

Service (S3) [2], provide a multi-tenant storage environment

that is most suitable for unstructured data. Private cloud

storage services provide a dedicated environment protected

behind an organization’s firewall. Private clouds are

appropriate for a user who need customization and more

control over their data and is shown in Fig. 1. Hybrid cloud

storage is a combination of at least one private cloud and one

public cloud infrastructure. An organization store actively

used and structured data in private cloud and unstructured and

archival data in a public cloud.

D. Private Cloud Storage Backup

Cloud storage backup [1] is a strategy for backing up data

that involves removing data offsite to a managed service

provider for protection. A major benefit of using cloud

backup is that it can make managing a backup system easier.

Data moved offsite should be de-duplicated to avoid the

redundancy and it is done by Cloud Storage Controller (CSC).

This controller provides data protection, security, advanced

virtualization features, and performance for an array of

Enhanced Dynamic Whole File De-Duplication (DWFD)

for Space Optimization in Private Cloud Storage Backup

M. Shyamala Devi, V. Vimal Khanna, and A. Naveen Bhalaji, Member, IACSIT

International Journal of Machine Learning and Computing, Vol. 4, No. 4, August 2014

376DOI: 10.7763/IJMLC.2014.V4.440

http://searchstorage.techtarget.com/sDefinition/0,,sid5_gci1230589,00.html

locally attached disk drives. The three benefits of CSC are as

follows. First, it creates a seamless and highly robust

connection to cloud storage, while requiring no changes to

applications running in the data center. Applications are able

to access the cloud using standard block and file access

protocols. Second, it accelerates the performance of

applications using cloud storage through advanced WAN

techniques including caching, de-duplication, compression,

and protocol optimization. Third, the Cloud Storage

Controller provides the same features and capabilities

expected of local storage arrays, such as thin provisioning,

automated storage tier and volume management.

Fig. 1. Private cloud storage.

E. Overview of De-Duplication

Data De-duplication identifies the duplicate data to remove

the redundancies and reduces the overall capacity of data

transferred and stored. De-duplication often called as

"intelligent compression" or "single-instance storage"[3]

which is the method of reducing storage needs by eliminating

redundant data. Only one unique instance of the data is

actually retained on storage media, such as disk or tape.

Redundant data is replaced with a pointer to the unique data

copy. For example, if an organization webmail system might

contain 50 instances of the same one megabyte (MB) file

attachment. If the webmail platform is backed up or archived,

all 50 instances are saved, requiring 50 MB storage space.

With data de-duplication, only one instance of the attachment

is actually stored. Each subsequent instance is just referenced

back to the one saved copy. In this example, a 50 MB storage

demand could be reduced to only one MB. Data de-

duplication offers three benefits. First, lower storage space

requirements will save money on disk expenditures. Second,

efficient use of disk space also allows for longer disk retention

periods and reduces the need for tape backups. Third, it also

reduces the data that must be sent across a WAN for remote

backups and replication.

F. De-Duplication Techniques

The optimization of backup storage technique is shown in

Fig. 2. The Data de-duplication [4]-[6] can operate at the

whole file, block (Chunk), and bit level.

Fig. 2. De-duplication methods.

Whole file de-duplication or Single Instance Storage (SIS)

[3] finds the hash value for the entire file which is the file

index. If the new incoming file matches with the file index,

then it is regarded as duplicate and it is made pointer to

existing file index. If the new file is having new file index,

then it is updated to the storage. Thus only single instance of

the file is saved and subsequent copies are replaced with a

pointer to the original file. Block De-duplication [6], [7]

divides the files into fixed-size block or variable-size blocks.

For Fixed-size chunking, a file is partitioned into fixed size

chunks for example each block with 8KB or 16KB. In

Variable size chunking, a file is partitioned into chunks of

different size. Both the fixed size and variable size chunking

creates unique ID for each block using a hash algorithm such

as MD5 or SHA-1 [8] or MD5 [9]. The unique ID is then

compared with a central index. If the ID exists, then that data

block has been processed and stored before. Therefore, only a

pointer to the previously stored data needs to be saved. If the

ID is new, then the block is unique. The unique ID is added to

the index and the unique chunk is stored. Block and Bit

de-duplication looks within a file and saves unique iterations

of each block or bit. This method makes block and bit

de-duplication more efficient.

The rest of the paper is organized as follows. In Section II,

we analyze the existing methods of de-duplication with its

advantages and disadvantages. In Section III, we discuss

about our proposed system and its functions. In Section IV,

we conclude our design of DWFD and prove that our scheme

greatly increases the de-duplication efficiency. We show our

implementation analysis in Section V.

II. ANALYSIS OF EXISTING METHODS

In this section, we describe the advantages and

disadvantages of each de-duplication methods

A. Advantages of Existing Methods

i) Indexes for whole file de-duplication are significantly

International Journal of Machine Learning and Computing, Vol. 4, No. 4, August 2014

377

smaller, which takes less computational time and space when

duplicates are being determined. Backup performance is less

affected by the de-duplication process.

ii) Fixed-size chunking is conceptually simple and fast

since it requires less processing power due to the smaller

index and reduced number of comparisons.

iii) In variable size chunking, the impact on the systems

performing the inspection and recovery time is less. The

efficiency of identifying the duplicate is high.

iv) Bit De-duplication done exact de-duplication and it is

more efficient since it eliminates redundancy.

B. Disadvantages of Existing Methods

i) Whole File de-duplication is not a very efficient, because

a little change within the file causes the whole file to be saved

again. For example, if 500 identical attachments are sent by a

insurance coordinator, this method will find all those 500

attachments that are exactly the same, but it would not find the

exact duplicate copies that we have saved (i.e)

Insure.Aug,Insure.Sep,Insure.Oct etc. This de-duplication

checks only the size of the file regardless of the file content.

ii) In Fixed-size chunking, when a small amount of data is

inserted into a file or deleted from a file, an entirely different

set of chunks is generated from the updated file.

iii) The indexes for both fixed and variable size chunking

are large which leads to larger index table and more number

of comparisons which leads to low throughput.

iv) Bit de-duplication takes more processing time to

identify the duplicate bit.

C. Methods of Block Level De-Duplication.

The block level de-duplication [10] divides the incoming

file into fixed size chunks or variable size chunks. Depending

on the duplicate detection of incoming chunk, the variable

size chunk de-duplication can be divided into Chunk level

de-duplication and File level de-duplication.

D. Chunk Level De-duplication – DDDFS

When a file has to be written, then every chunk of that file is

checked for duplicate with chunks of all files. This method of

detecting duplicates is Chunk level de-duplication. Data

Domain De-duplication File System [6] DDDFS is a file

system which performs chunk level de-duplication. The

architecture of DDDFS is shown in Fig. 3. It supports multiple

access protocols. Whenever a file to be stored, it is managed

by the interfaces such as Network File System (NFS),

Common Internet File System (CIFS) or Virtual Tape Library

(VTL) to a generic file service layer. File service layer

manages the file metadata using Namespace index and

forwards the file to the content store [11]. Content store

divides the file into variable sized chunks. Secure Hash

Algorithm SHA-1 or MD5 finds the hash value for each

variable size chunk, which is ChunkID. Content store

maintains the File Reference Index (FRI) which contains the

sequence of ChunkID constituting that file. Chunk store

maintains a chunk index for duplicate chunk detection [12].

Chunk index is the metadata that includes ChunkID and the

address of actual chunks in storage. Unique chunks will be

compressed and stored in the container. Container is the unit

of storage. In this chunk level de-duplication, the efficiency of

duplicate detection [13], [14] is high but the throughput of the

de-duplication is low. So this method can be used for the

applications with locality of reference between the data

streams in the cloud storage.

Fig. 3. Data domain de-duplication file system.

E. File Level De-Duplication – Extreme Binning

When a file has to be written, then every chunk of that file is

checked for duplicate with all the chunks of the similar files.

This method of detecting duplicates is File level

de-duplication. Extreme Binning [4] uses this approach by

dividing the chunk index into two tiers namely Primary index

and Bin [4]. Primary Index contains the representative

ChunkID, Whole file hash and pointer to bin. The disk

contains bin, Data chunks and the File recipes. The file

recipes contain the sequence of chunked for that file. Fig. 4

shows the structure of a backup node in extreme binning

de-duplication. When a file has to be backed up, it performs

variable size chunking and finds the representative ChunkID

and the hash value for the entire file. The Representative

ChunkID is checked in the primary index and if it is not there,

then the incoming file is new one and a new bin is created with

all ChunkID, chunksize and a pointer to the actual chunks are

added to the disk. Then Representative ChunkID, file hash

value and the pointer to bin of a newly created bin are added

to the primary index. If the representative ChunkID, file hash

of the incoming file is already present in the primary index,

then the file is a duplicate and it is not loaded into disk and the

bin is not updated. If the representative ChunkID of the

incoming file is already present in the primary index but the

hash value of the whole file does not match, then the incoming

file is considered to be nearly similar to the one that is already

on the disk. Most of the chunks of this file will be available in

the disk [15]. The corresponding bin is loaded to RAM from

the disk, and now searches for the matching chunks of the

International Journal of Machine Learning and Computing, Vol. 4, No. 4, August 2014

378

incoming file [16]. If the ChunkID is not found in the bin, then

its metadata of the chunk is added to the bin and the

corresponding chunk is written to the disk. The whole file

hash value is not modified in the primary index and the

updated bin is written back to the disk. Here every incoming

chunk is checked only against the indices of similar files [17],

this approach achieves better throughput compared to the

chunk level de-duplication. Since non-traditional backup

workload demands better de-duplication throughput, file level

de-duplication approach is more suited in this case.

Fig. 4. Backup node in extreme binning.

III. OUR CONTRIBUTION

Cloud computing is used for better utilization of available

resources [18]. The unused materials of an organization can

be used to build up a private cloud. Here we try to optimize

the private cloud storage backup in order to provide high

throughput to the users of the organization by increasing the

de-duplication efficiency.

A. Proposed System

Generally the backup of the private storage cloud belongs

to the non-traditional backup. Traditional backup contains

data streams with locality of reference. But the non-traditional

backup contains the individual files that owns by the

individual users of the organization with no locality of

reference. The storage of the private cloud should be

optimized as there is physical limitation on the storage space.

The index of Whole File De-duplication (WFD) takes less

memory space, so we try to use WFD for our private cloud

storage. But the de-duplication efficiency is low in WFD due

to lack of file type detection, we try to refine it further to

increase the throughput and de-duplication efficiency. So we

propose a new method for de-duplication namely Dynamic

Whole File De-duplication (DWFD) which is the modified

WFD that includes file type detection.

B. Dynamic Whole File De-Duplication (DWFD)

The existing WFD file index contains whole file hash

which is used for finding the duplication regardless of the file

type which leads to redundancy and it is shown in the Fig. 5.

Private storage cloud consists of personal documents of the

individual users belonging to organization. If we use WFD,

then there will be only one file index for all user files.

Fig. 5. Whole file de-duplication.

So all the incoming files of the different users merely waste

their time for checking the single file index that reduce the

throughput and de-duplication efficiency. In our Dynamic

Whole File De-duplication, the users accessing the storage are

identified by their unique user-id. Here we create separate file

index for each user and each file belonging to an individual

user is associated with the file type and is shown in Fig. 6.

With this method, it is possible to group the files of each users

of the organization

Fig. 6. Dynamic whole file de-duplication.

IV. DESIGN OF DYNAMIC WHOLE FILE DE-DUPLICATION

Before we start our design, we have the following

assumptions:

i) The users of the private cloud are provided with separate

user id. ii) The files of the individual users are collected in

International Journal of Machine Learning and Computing, Vol. 4, No. 4, August 2014

379

separate folders in the cloud backup. Our new DWFD scheme

has the following modules,

ii) Cloud Service Providing Module

iii) Cloud Storage Initiation Module

iv) Cloud Storage Controller Module

v) Cloud Backup De-duplication Module.

A. Cloud Service Providing Module

The user authentication is done in this module. If the user is

new, then the registration process is done in this module and is

shown in Fig. 7.

B. Cloud Storage Initiation Module

After the user authentication is done in the private cloud,

then he / she can start viewing, editing and saving their

personal files into their folders and is shown in Fig. 8.

Fig. 8. Cloud storage initiation module.

C. Cloud Storage Controller Module (CSCM)

This module performs the function of integrating the files

of the individual users. The file index for each user is created

in this module and it is shown in Fig. 9. For each user, the

whole file hash value is found. The file type is also updated in

the file index and the cloud storage controller Module is

shown in Fig. 10.

Fig. 10. cloud storage controller module.

D. Cloud Backup De-Duplication Module

This module performs the function of de-duplication

detection by comparing the incoming file index with the

backup node file index. It starts by checking the whole file

hash. If the match is found with the hash value along with the

file type, then the file is a duplicate one. If the file is identified

as duplicate, then it is not saved into the disk. If the match is

not found with the hash value, then the file assumed as new

file and it is updated into backup node. So here the file is

assumed to be duplicate if and only if both the hash value and

the file type matches thereby increasing the de-duplication

efficiency and it is shown in Fig. 11.

Provide Viewing, Editing and saving the file

CSC Module

Authenticated user request

Get the User request

Fig. 7. Cloud Service Providing Module

No

Yes

No

Providing
User Access

Cloud Storage
Initiation Module

Login Request from User

Get the Login
User Name

Get the Login
Password

Verify
User

Yes

New
User

New User
Registration

Fig. 10. cloud storage controller module.

Create Separate folders
for each user

Cloud Backup
De-duplication Module

Saved files From Memory

Get the User
Files

Group the files of each
user in their folders

Create the Separate file
Index for each user

Find the hash value for each
file and extract the file type

Update the hash value and
file type into file Index

Fig. 9. File Index in DWFD

International Journal of Machine Learning and Computing, Vol. 4, No. 4, August 2014

380

V. IMPLEMENTATION

We have implemented this by creating the cloud server,

cloud controller and multiple clients on WINDOWS platform.

Any number of clients can be registered to the cloud server.

The coding is done by using visual studio.Net and back end as

Microsoft SQL server. The cloud server node is executed

followed by the users’ registration. All the users can have

their individual username and password. They can upload any

type of files. The class diagram is shown in the Fig. 12. Our

proposed DYNAMIC WHOLE FILE DE-DUPLICATION

(DWFD) is compared with the whole file de-duplication. Our

analysis is showing that our proposed system will have

efficiency based on the number of files being stored in the

backup node. Our result analysis is shown in the Fig. 13 and

Fig. 14.

Fig. 12. Class diagram for DWFD.

Fig. 13. Registering the client to the cloud.

Fig. 14. Performance analysis.

VI. CONCLUSION

In this paper, we have designed our new scheme namely

Dynamic Whole File De-duplication (DWFD) that effectively

removes duplication. It is highly desirable to improve the

private cloud backup storage efficiency by reducing the

de-duplication time. Our future enhancement is to use chunk

level and file level de-duplication in the private cloud storage

by overcoming the negative factors in the existing Chunk

level de-duplication and File level de-duplication.

Fig. 11. Cloud backup de-duplication module.

No

Yes

Perform Multithreading for parallel
comparison of file index

End

File Index from Cloud Storage
Controller for Backup

Get the File Index
of all the users

Compare the file Index of Cloud Storage
Controller with the backup file index

Detection of Duplicate file

Discard the file for backup and create
the pointer with the previous file

Compare
the whole
file hash

Update the Backup
File Index

Yes

Compare
the File

type

Save the new file
into Backup Disk

International Journal of Machine Learning and Computing, Vol. 4, No. 4, August 2014

381

REFERENCES

[1] Y. Abe and G. Gibson, “pWalrus: Towards better integration of parallel

file systems into cloud storage,” in Proc. IEEE International

Conference on Cluster Computing Workshops and Posters, pp. 1 –7,

2010.

[2] L. L. You, K. T. Pollack, and D. D. E. Long, “Deep store: An archival

storage system architecture,” in Proc. Int’l Conf. Data Engineering

(ICDE ’05), pp. 804-8015, 2005.

[3] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur, “Single

instance storage in Windows 2000,” in Proc. Fourth USENIX

Windows Systems Symp., pp. 13-24, 2000.

[4] J. H. Min, D. Y. Yoon, and Y. J. Won, “Efficient De-duplication

techniques in modern backup operation,” IEEE Transactions on

Computers, vol. 60, no. 6, June 2011.

[5] J. S. Wei, H. Jiang, K. Zhou, and D. Feng, “Mad2: A scalable

high-throughput exact de-duplication approach for network backup

services,” in Proc. 2010 IEEE 26th Symposium on Mass Storage

Systems and Technologies (MSST), pp. 1-14, 2010.

[6] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in the

data domain de-duplication file system,” in Proc. the 6th USENIX

Conference on File and Storage Technologies, FAST’08, Berkeley,

CA, USA. USENIX Association, vol. 18, pp. 1–14, 2008.

[7] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillibridge, “Extreme

binning: Scalable, parallel de-duplication for chunk-based file backup”,

MASCOTS, pp. 1-9, 2009.

[8] National Institute of Standards and Technology. (Apr. 1995). Secure

hash standard. FIPS 180-1. [Online]. Available:

http://www.itl.nist.gov/fipspubs/fip180-1.htm

[9] R. Rivest. (Apr. 1992). The MD5 message-digest algorithm. IETF,

Request for Comments (RFC) 1321. [Online]. Available: http:

//www.ietf.org/rfc/rfc1321.txt

[10] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise, and

P. Camble, “Sparse indexing: Large scale, inline deduplication using

sampling and locality,” in Proc. Seventh USENIX Conf. File and

Storage Technologies (FAST ’09), 2009.

[11] C. Policroniades and I. Pratt, “Alternatives for detecting redundancy in

storage systems data,” in Proc. the Annual Conference on USENIX

Annual Technical Conference, pp. 1-15, 2004.

[12] A. Z. Broder, “On the resemblance and containment of documents,” in

Proc. the Compression and Complexity of Sequences, 1997, pp.

21–29.

[13] P. Kulkarni, F. Douglis, J. LaVoie, and J. Tracey, “Redundancy

elimination within large collections of files,” in Proc. USENIX

Ann.Technical Conf., General Track, pp. 59-72, 2004.

[14] B. Hong and D. D. E. Long, “Duplicate data elimination in a san file

system,” in Proc. 21st IEEE / 12th NASA Goddard Conf. Mass Storage

Systems and Technologies (MSST), pp. 301-314, Apr. 2004.

[15] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian, P.

Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki,

“HYDRAstor: A scalable secondary storage,” in Proc. the 7th USENIX

Conference on File and Storage Technologies (FAST), San Francisco,

CA, USA, Feb. 2009.

[16] C. Policroniades and I. Pratt, “Alternatives for detecting redundancy in

storage systems data,” in Proc. Conf. USEXNIX ’04, June 2004.

[17] D. R. Bobbarjung, S. Jagannathan, and C. Dubnicki, “Improving

duplicate elimination in storage systems,” ACM Trans. Storage, vol. 2,

no. 4, pp. 424-448, 2006.

[18] W. Zeng, Y. Zhao, K. Ou, and W. Song, “Research on cloud storage

architecture and key technologies,” in Proc. the second International

Conference on Interaction Sciences, pp. 1044-1048, 2009.

International Journal of Machine Learning and Computing, Vol. 4, No. 4, August 2014

382

M. Shyamala Devi was born in Madurai in 1984. She

has completed B.E in computer science and engineering

at P.S.N.A College of Engineering and Technology,

Dindigul, TN, India in 2005. She completed her M.E in

computer science and engineering at P.S.N.A College of

Engineering and Technology, Dindigul, TN, India in

2009. She Completed her M.B.A systems area at

Madurai Kamaraj University, Madurai, TN, India. She is

now Pursuing Ph.D in Anna University, Chennai.

She worked as a lecturer at P.S.N.A College of

Engineering and Technology, Dindigul, TN, India from 2005 to 2009. Then

she joined as an assistant professor at R.M.D Engineering College, Chennai,

TN, India from 2009 to till date. She has authored 7 engineering books titled

Theory of Computation, Principles of Compiler Design, Data Structures and

Algorithm Analysis, Graphics and Multimedia, Fundamentals of Computer

Programming, Digital Computer Fundamentals and Visual Programming, by

Shri Krishna HiTech Publishing Pvt Ltd, Chennai, TN, India. She have

presented paper in three IEEE international Conference like IACC2009 at

Thapar University, Patiala, Punjab on March 6 to 7, 2009, ICCCN 2008 at

Karur, TN, India on Dec 18 to 20, 2008 and ADCOM 2006 at NIT, Surathkal,

Karnataka, India on Dec 20 to 23, 2006. She have published three papers in

IEEEXplore titled ‘Dynamically Distributed Parallel Periodic Switching

(D2PS) for minimizing file download time in Peer-to-Peer Networks’,

‘Dynamically Distributed Parallel Permanent Connection (D2P) for

minimizing file download time in Peer-to-Peer Networks’ and ’Security

On-Demand Position Based Private Routing Protocol for Mobile Adhoc

Network’

Mrs. M. Shyamala Devi is an active life member of CSI, ISTE, ICST,

IAEST and IACSIT. She has received a funded project from CSI on March

2010 for ‘Web based speech recognition for visually challenged Users’.

V. Vimal Khanna was born in Chennai in the year

1994. He has completed his SSLC at Sri Ram

Dhayal Vivekananda Vidhyalaya Junior College,

Chennai TamilNadu, India in the year April 2009.

He completed his HSC at Vidya Vikas Higher

Secondary School, Erode, TamilNadu, India in the

year April 2011. Currently he is Third year student

pursuing B.E in computer science and engineering

at R.M.D Engineering College, Chennai,

TamilNadu, India. He is an active student member

of CSI. He is online certified professional in artificial intelligence. He is an

active student member of CSI. He is a BEC certified Professional. He is a

member of Entrepreneurial Development Cell of R.M.D Engineering college,

Chennai, TamilNadu, India

A. Naveen Bhalaji was born in vellore in the year

1994. He has completed his SSLC at Cross Matric

Higher Secondary School, TamilNadu, India in the

year April 2009. He completed his HSC at Sunbearn

Matric Higher Secondary School, TamilNadu, India

in the year april 2011. Currently he is a third year

student pursuing B.E in computer science and

engineering at R.M.D Engineering College, Chennai,

TamilNadu, India. He have done various

certification in C , C++, (A+) in networking from

NIIT, Chennai, Tamilnadu, India. He is an active student member of CSI.

