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Abstract—Time series data are sequences of values measured 

over time. One of the most recent approaches to classification of 

time series data is to find shapelets within a data set. Time series 

shapelets are time series subsequences which represent a class. 

In order to compare two time series sequences, existing work 

uses Euclidean distance measure. The problem with Euclidean 

distance is that it requires data to be standardized if scales differ. 

In this paper, we perform classification of time series data using 

time series shapelets and used Mahalanobis distance measure.  

The Mahalanobis distance is a descriptive statistic that provides 

a relative measure of a data point's distance (residual) from a 

common point. The Mahalanobis distance is used to identify and 

gauge similarity of an unknown sample set to a known one. It 

differs from Euclidean distance in that it takes into account the 

correlations of the data set and is scale-invariant. We show that 

use of Mahalanobis distance measure instead of Euclidean 

distance measure in time series dataset classification using 

shapelets leads to increase in accuracy. 
 

Index Terms—Decision trees, Mahalanobis distance measure, 

time series classification, shapelets.  

 

I. INTRODUCTION 

Since a decade there have been enormous papers on time 

series classification. One of the most promising recent 

approaches is to find shapelets within a data set [1]. The 

shapelets are time series subsequences which represent a 

particular class. Algorithms that are based on shapelets are 

interpretable, more accurate and significantly faster than 

state-of-the-art classifiers [2], [3].  

There are two types of classification algorithms: algorithms 

that consider entire data set (global features) for classification 

and algorithms that consider a portion of data (local features) 

for classification. Shapelets are local features of the time 

series data that are highly representative features of a class. In 

classification by shapelets, instead of comparing the entire 

shapes, only a small subsection of the time series (shapelets) 

from the two classes that is particularly discriminating are 

compared. Because shapelets are small in size compared to 

original data, algorithms that use shapelets for classification 

results in less time and space complexity. Shapelets have also 

been used successfully in many other applications, such as 

early classification [4], gesture recognition [5] and as a filter 

transformation for TSC [6].  
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For classification using shapelets, decision trees (binary) 

are used, where each node represents a shapelet and leaf 

nodes represent class labels. To know how well the shapelet 

classifies the data, information gain [7] is used. Apart from 

this, the other commonly used measures are such as the 

Wilcoxon signed-rank test [8], Kruskal-Wallis [9], Mood's 

Median [10] etc.  The information gain/entropy measure is the 

better choice for two reasons. First, it can be easily 

generalized to the multiclass problem. Second, early entropy 

pruning can be done to avoid unnecessary distance 

calculations performed when finding the shapelet. 

In classification of time series dataset using shapelets [1], 

Euclidean distance [11] has been used as similarity measure 

to compare two time series. There are some drawbacks of 

Euclidean distance measure. Firstly, it requires the time series 

data to be standardized, if scales differ. Secondly, it requires 

the two time series to be of same length.  Thirdly, it does not 

take correlation of data items into consideration.  To 

overcome some of the above problems, we have used 

Mahalanobis distance measure. It takes into account the 

correlations of the data set and is scale-invariant. In 

classification, the correlation amongst the data plays the key 

role. It has been found that the accuracy has improved by 

using Mahalanobis distance instead of Euclidean distance. 

To compare two time series data, a distance measure that is 

metric is used. A distance measure is said to be metric, if it 

satisfies following properties:1) d(p, q)  0   for all p and q 

and d(p, q) = 0 only if  

p = q. (Positive definiteness), 2) d(p, q) = d(q, p)   for all p 

and q. (Symmetry), 3) d(p, r)  d(p, q) + d(q, r)   for all points 

p, q, and r.(Triangle Inequality) where d(p, q) is the distance 

(dissimilarity) between points (data objects) p and q. Both the 

distance measures (Euclidean and Mahalanobis) are metric. 

Some of the other distance measures are Dynamic Time 

Warping (DTW) [12], [13], distance based on Longest 

Common Subsequence (LCSS) [14], Edit Distance with Real 

Penalty (ERP) [15], Edit Distance on Real sequence (EDR) 

[16], DISSIM [17], Sequence Weighted Alignment model 

(Swale) [18], Spatial Assembling Distance (SpADe) [19] and 

similarity search based on Threshold Queries (TQuEST) [20].       

The rest of the paper is organized as follows. In Section II, 

we review related work. We define and compare distance 

measures in Section III. We report our experimental results in 

Section IV. We conclude our paper in Section V. 

 

II. RELATED WORK 

Here, we discuss various notations used in the algorithms 

and define various terms, followed by the algorithm to find 

the shapelets and how they can be used in classification. 
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A.  Notations and Definitions 

The Table I summarizes the notations used in the paper. 

 
TABLE I: NOTATIONS AND THEIR DESCRIPTION 

Symbol           Description 

T, R               time series 

S           subsequence 

m, |T|               length of time series 

l, |S|           length of subsequence 

d            distance measure 

D           time series dataset 

A, B               class label 

I            entropy 

IWA          weighted average entropy 

sp                split strategy 

k           number of time series objects in dataset 

C           classifier 

S(k)             the kth data point in subsequence S 

 

Some of the terms used in the algorithms and their 

definitions are: 

Definition 1: Time Series: A time series T = t1,…,tm is an 

ordered set of m real-valued variables.  

Data points t1,…,tm are typically arranged by temporal 

order, spaced at equal time intervals.  

Definition 2: Subsequence:  Given a time series T of length 

m, a subsequence S of T is a sampling of length l ≤ m of 

contiguous positions from T, that is, S = tp,…,tp+l-1, for 1 ≤ p ≤ 

m – l + 1. 

Definition 3: Sliding Window: Given a time series T of 

length m, and a user-defined subsequence length of l, all 

possible subsequences can be extracted by sliding a window 

of size l across T and considering each subsequence 
l

pS  of T. 

Here the superscript l is the length of the subsequence and 

subscript p indicates the starting position of the sliding 

window in the time series. The set of all subsequences of 

length l extracted from T is defined as 
l

TS , 
l

TS ={
l

pS  of T, 

for 1 ≤ p ≤ m – l + 1}. 

Definition 4: Distance between the time series: Dist(T, R) 

is a distance function that takes two time series T and R which 

are of the same length as inputs and returns a nonnegative 

value d. It is also applicable to subsequences of same length.  

Definition 5: Distance from the time series to the 

subsequence. SubseqDist(T, S) is a distance function that 

takes time series T and subsequence S as inputs and returns a 

nonnegative value d, which is the minimum possible distance 

from T to S.  SubseqDist(T, S) = min(Dist(S, S')), for S' ϵ 
||S

TS . 

Definition 6: Entropy : A time series dataset D consists of 

two classes, A and B. Given that the probability of a object 

belonging to class A is p(A) and the probability of a object 

belonging to class B is p(B).  The entropy of D is defined as: 

 

 I(D) = -p(A)log(p(A)) - p(B)log(p(B)                (1) 

 

We use a splitting strategy which divides the whole dataset 

D into two subsets, D1 and D2. Therefore, the information 

remaining in the entire dataset after splitting is defined by the 

weighted average entropy of each subset. If the fraction of 

objects in D1 is f(D1) and the fraction of objects in D2 is f(D2), 

the total entropy of D after splitting is: 

IWA(D) = f(D1)I(D1) + f(D2)I(D2)                     (2) 

 

Definition 7: Information Gain: Given a certain split 

strategy sp, the entropy before and after splitting is I(D) and 

IWA(D), respectively. So the information gain for this splitting 

strategy is: 

 

                            Gain(sp) = I(D) - IWA(D)                         (3) 

 

The distance to a shapelet is used as the splitting rule.  

Definition 8: Optimal Split Point (OSP): A time series 

dataset D consists of two classes, A and B. For a shapelet 

candidate S, some distance threshold dth is choosen which 

splits D into D1 and D2, such that for every time series object 

T1,i in D1, SubseqDist(T1,i, S) < dth and for every time series 

object T2,i in D2, SubseqDist(T2,i, S) ≥ dth. An Optimal Split 

Point is a distance threshold that: 

  

                   Gain(S, dOSP(D, S)) ≥ Gain(S, d'th)                   (4) 

 

for any other distance threshold d'th.  

So using the shapelet, the splitting strategy contains two 

factors: the shapelet and the corresponding optimal split 

point.  

Definition 9: Shapelet : Given a time series dataset D 

which consists of two classes, A and B, shapelet(D) is a 

subsequence that, with its corresponding optimal split point, 

Gain(shapelet(D), dOSP(D, shapelet(D))) ≥ Gain(S, dOSP(D, S))  (5) for 

any other subsequence S.  

The minimum and maximum length of shapelet for each 

data set were computed using the simple cross-validation 

approach [21]. 

B.  Classification Using Shapelets  

First, let us look at the algorithm for finding shapelets, and 

then classifying the time series data using the shapelets, and at 

last testing the accuracy of classifier. 

The algorithm to find shapelet is given in Table II. 

 
TABLE II: ALGORITHM FOR FINDING SHAPELET 

BestShapelet(dataset D, MAXLEN, MINLEN) 

1. subseq_list  GenerateAllSubseq(D, MAXLEN, MINLEN) 

2. max_gain   0 

3. For each S in subseq_list 

4.     obj_hist←null 

5.  flg  CheckSubseq(D, S,obj_hist) 

6.  if flg is True 

           gain←InfoGain(obj_hist) 

   If gain > max_gain 

7.    max_gain  gain 

8.    best_shapelet  S 

9.   EndIf 

10. EndFor 

11. Return best_shapelet 

 

The dataset D has two classes i.e. class A and class B. The 

algorithm in Fig. 1 takes the dataset D, maximum and 

minimum length of the shapelet as input and returns best 

shapelet. Line 1 generates the subsequences of all possible 

lengths, and stores them in the unordered list subseq_list. In 

line 2, the maximum information gain max_gain is initialized 

to zero. From lines 3 to 8, it checks how well the subsequence 

S can separate objects into class A and class B. CheckSubseq() 
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returns True if there is a high probability of S resulting in best 

shapelet. If it returns True, then information gain is calculated. 

If the information gain is higher than max_gain, the algorithm 

updates the max_gain and the corresponding best shapelet  

best_shapelet. The subroutines GenerateAllSubseq() and 

CheckSubseq() are outlined in Table III and Table IV 

respectively. 

 
TABLE III: GENERATE ALL THE POSSIBLE SUBSEQUENCES 

GenerateAllSubseq (dataset D, MAXLEN, MINLEN) 

1.  list null 

2.  l   MAXLEN 

3.  While l ≥ MINLEN 

4.   For T in D 

5.    list   list   
l

TS  

6.   EndFor 

7.   l l - 1 

8.  EndWhile 

9.  Return list 

 

In Table III, line 1 initializes the subsequence list to null. In 

line 2, the shapelet length l is initialized to MAXLEN. From 

line 4 to 6, the algorithm slides a window of size l across all of 

the time series objects in the dataset D, extracts all of the 

possible candidates and adds them to the list. The above 

process is repeated for l values ranging from MAXLEN to 

MINLEN.  Finally, in line 9, it returns the list which is the set 

of all possible subsequences for given data set. 

The algorithm for CheckSubseq() is shown in Table IV. It 

takes  dataset D, subsequence S and objects histogram 

objects_hist as input and returns True if there is a high 

probability of S resulting in best shapelet. 

 
TABLE IV: CHECKING THE SUBSEQUENCE 

CheckSubseq(dataset D, subsequence S, objects_hist) 

1. For each T in D 

2.   dist ← SubseqDist(T, S) 

3.  insert T into objects_hist by the key dist 

4.     flag←EntropyPrune(max_gain, objects_hist, cA,  

                         cB) 

5.      If flag is True 

6.   Return False 

7. EndFor 

8. Return True 

 

From lines 2 to 6, it checks whether subsequence S will 

result in a best shapelet or not. In line 2, the distance from the 

time series T to the subsequence S is obtained by calculating 

the Euclidean distance of every subsequence of length |S| in T 

and S and choosing the minimum(Table V). In line 3, it inserts 

all of the time series objects into the object_hist according to 

the distance from the time series object to the candidate. In 

line 4, it calls EntropyPrune() which returns True if the 

sequence can be pruned, otherwise False. 

Table V shows an optimization in computing distance 

between the time series T and subsequence S. Instead of 

computing  the exact distance between every subsequence of 

T and the subsequence S, the distance calculations can be 

stopped once the partial computation exceeds the minimum 

distance known so far. This is known as early abandon [22]. 

In line 1, the min_dist is initialized to infinity. Now, for 

each subsequence Si from T of length |S|, the distance sum 

between Si and S is accumulated, one data point at a time (line 

6). Once sum is larger than or equal to the minimum distance 

known so far, the distance calculation between Si and S is 

abandoned (lines 7 to 9). If the distance calculation between Si 

and S is completed, then it means that the distance is smaller 

than the minimum distance known so far. Thus, min_dist is 

updated in line 13. The algorithm returns the distance from 

the time series T to the subsequence S in line 16.  

 
TABLE V: OPTIMIZATION IN SUBSEQUENCE DISTANCE CALCULATION BY 

EARLY ABANDON APPROACH 

SubseqDist(T, S) 

1. min_dist ←∞ 

2. stop← False 

3. For Si in 
||S

TS  

4.   sum ← 0 

5.   For k← 1 to |S| 

6.    sum← sum + (Si(k) – S(k))
2 

7.    If sum ≥ min_dist 

8.     stop← True 

9.     Break 

10.    EndIf 

11.   EndFor 

12.    If not stop 

13.    min_dist← sum 

14.    EndIf 

15 EndFor 

16 Return min_dist 

 
TABLE VI: INFORMATION GAIN OF DISTANCE HISTOGRAM OPTIMAL SPLIT 

InfoGain (distance histogram obj_hist) 

1. split_dist← OptimalSplitPoint(obj_hist) 

2. D1←null, D2 ←null 

3. For d in obj_hist 

4.   If d.dist < split_dist 

5.    D1← D1 d.objects 

6.   Else 

7.    D2←D2 d.objects 

8.   EndIf 

9. EndFor 

10. Return I(D) - IWA(D) 

 

The computation of information gain is outlined in Table 

VI. The optimal split point for the object histogram is 

computed and stored in split_dist (line 1). From line 4 to 7, it 

divides the time series objects into two subsets by comparing 

the distance  with split_dist. If the distance is less than 

split_dist, then the object is placed in D1, otherwise in D2. 

Finally, in line 10, it computes and returns the information 

gain. 

The entropy pruning is shown in Table VII. It tries to 

optimize the time complexity. The algorithm takes as the 

inputs the maximum information gain (till now), distance 

histogram and the remaining time series objects in class A and 

B, and returns TRUE if the sequence can be pruned. The 

algorithm begins by finding the two ends of the histogram. For 

simplicity, the distance values at two ends are set as 0 and 

(maximum distance+1) as shown in lines 1 and 2. To build the 

optimistic histogram of the whole dataset based on the 

existing one (lines 3 and 8), the remaining objects of one class 

are assigned to one end and those of the other class to the 

other end (lines 4 and 9) and vice versa. If in either case, the 

information gain of the optimistic histogram is higher than the 

best so far (lines 5 and 10), it is still possible that the actual 

information gain of the candidate can beat the best so far. 

Thus, we should continue to test the candidate (lines 6 and 11). 
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Otherwise, the remaining calculations with the candidate are 

pruned (line 13). 

 
TABLE VII: ENTROPY PRUNING 

EntropyPrune (max_gain, dist_hist, cA, cB) 

1.  min← 0 

2.  max←( largest distance value in dist_hist) + 1 

3.  pred_hist ← dist_hist 

4. Add to the pred_hist, cA at minend and cB at maxend 

5. If InfoGain (pred_hist) > max_gain 

6.  Return FALSE 

7. EndIf 

8. pred_hist← dist_hist 

9. Add to the pred_hist, cA at maxend and cB at minend 

10. If InfoGain (pred_hist) > max_gain 

11.   Return FALSE 

12. EndIf 

13. Return TRUE 

 

It is often the case that different candidates will have the 

same best information gain. This is particularly true for small 

datasets. Such ties can be broken by favoring the longest 

candidate, the shortest candidate or the one that achieves the 

largest margin between the two classes.  

Classifying with a shapelet and its corresponding split point 

produces a binary decision as to whether a time series belongs 

to a certain class or not. Obviously, this is not enough to deal 

with a multi-class problems. In order to make the shapelet 

classifier universal, decision trees [23] are used. In decision 

tree induction, the shapelet and the corresponding split point 

are determined at each node. Once the decision tree is 

constructed, the accuracy of decision tree is computed using 

test dataset (Table VIII).  

 
TABLE VIII: ACCURACY OF CLASSIFIER 

CalculateAccuracy ( decision tree classifier C, dataset Dt) 

1.  For each T in Dt 

2.    predicted_label← Predict(C, T) 

3     If predicted_label is the same as actual class label 

4.     count← count + 1 

5.    EndIf 

6.EndFor 

7. Return count / | Dt | 

 

The algorithm takes the decision tree classifier and test 

dataset as input and returns the accuracy of the classifier. In 

line 2, the class label for the current time series data T is 

predicted and stored in predicted_label. If the predicted label 

is same as actual class label, then it is correctly classified and 

the number of correctly classified count is increased by 1(line 

3 and 4). The above steps are repeated for all the time series 

data in test dataset Dt. In line 7, it returns the accuracy of the 

classifier. 

Table 9 shows how to predict the class label of the time 

series data object. Each non leaf node of the decision tree has 

shapelet information, the left subtree and the right subtree. 

Each leaf node of the decision tree specifies the predicted 

class label. The process starts from the root node. The 

distance between the time series object T and the shapelet in 

the root node is computed. If the distance is less than the split 

point, then left branch is taken which leads to left subtree 

(lines 6 and 7) and otherwise the right branch taken which 

leads to right subtree (lines 8 and 9). The above procedure is 

repeated in the left or right subtree. This procedure continues 

until we reach the leaf node which contains the class label 

information and that class label is returned as predicted class 

label (lines 1 and 2). 

 
TABLE IX: PREDICTING THE CLASS LABEL OF A TESTING OBJECT 

Predict (decision tree classifier C, time series object T) 

1.If C is the leaf node 

2.  Return label of C 

3.Else 

4.  S← shapelet on the root node of C 

5.  split_pt← split point on the root of C 

6.  If SubseqDist (T, S) < split_pt 

7.   Predict (left subtree of C, T) 

8.  Else 

9.   Predict (right subtree of C, T) 

10. EndIf 

11.EndIf 

 

III. PROPOSED METHOD 

The Similarity is a numerical measure of how alike two 

data objects are. It is higher when objects are more alike. It 

often falls between zero and one (inclusive). Dissimilarity is 

numerical measure of how different are two data objects. It is 

lower when objects are more alike. The minimum 

dissimilarity value is often zero.  We use 

distance/dissimilarity measure to compare two data objects. 

We show that using Mahalanobis Distance measure instead of 

Euclidean distance measure improves the accuracy of the 

algorithm.  

A. Euclidean Distance 

In mathematics, the Euclidean distance or Euclidean 

metric is the distance between two points that one would 

measure with a ruler, and is given by the Pythagorean formula. 

By using this formula as distance, Euclidean space (or even 

any inner product space) becomes a metric space. It is defined 

as, 





n

k

kk qpdist
1

2)(                          (6) 

 

where n is the number of dimensions (attributes) and pk and qk 

are, respectively, the k
th

 attributes (components) of data 

objects p and q. 

Here, standardization is necessary, if scales differ. 

B. Mahalanobis Distance 

The Mahalanobis distance is a descriptive statistic that 

provides a relative measure of a data point's distance (residual) 

from a common point. It is a unitless measure introduced by P. 

C. Mahalanobis in 1936 [24]. The Mahalanobis distance is 

used to identify and gauge similarity of an unknown sample 

set to a known one. It differs from Euclidean distance in that it 

takes into account the correlations of the data set and 

is scale-invariant. 

Given a time series x
(k)

, let the i
th

 data point be 
)(k

ix . We 

compute the(sample) covariance matrix C = (cij) of a family of 

time series x
(1)

, x
(2)

,…, x
(N)

 of lengths n by 

)
)(

)(
1

)(
(

1

1
jx

k
jxN

k ix
k

ix
N

ijc  



  where N is the 
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number of instances and where ix is the average of the i
th

 data 

point of the time series( )
1

)(1
(  

 N
k

k
ix

N
ix . 

The Mahalanobis distance measure is a special case of the 

generalized ellipsoid distance measure DM(x, y) = (x-y)
T
M(x-y) 

where M is proportional to the inverse of the covariance 

matrix i.e., M   C
-1

. Though the Mahalanobis distance 

measure is often defined by setting M to the inverse of the 

covariance matrix (M = C
-1

), it is convenient to normalize it 

when possible so that the determinant of the matrix M is one: 

M = 
1

1

))(det( cc n where n is the length of the time series. 

The Mahalanobis distance measure minimizes the sum of 

distances between time series  yx yxMD, ),(  subject to a 

regularization constraint on the determinant (det(M) = 1). In 

this sense, it is optimal. 

When the covariance is non-singular (det(C) ≠ 0) then the 

covariance is positive definite, and so is the matrix M: it 

follows that the square root of the generalized ellipsoid 

distance measure is a metric. That is, we have DM(x, y) = 0  

x = y, it is symmetric, non-negative and it satisfies the triangle 

inequality. 

),(),(),( yxMDyzMDzxMD   

C. Euclidean vs Mahalanobis 

The Mahalanobis distance takes the co-variances into 

account, which lead to elliptic decision boundaries in the 2D 

case, as opposed to the circular boundary in the Euclidean 

case. The Euclidean distance may be seen as a special case of 

the Mahalanobis distance with equal variances of the 

variables. 

The Mahananobis distance is a fine way to reduce linear 

correlation and some scaling, so if one is looking at distance 

and has enough data, it makes more sense than Euclidean. In 

statistics, sometimes the nearness or farness is measured in 

terms of the scale of the data. Often scale means standard 

deviation. For univariate data, an observation that is one 

standard deviation away from the mean is closer to the mean 

than an observation that is three standard deviations away.  

For many distributions, such as the normal distribution, this 

choice of scale also makes a statement about probability. 

Specifically, it is more likely to observe an observation that is 

about one standard deviation from the mean than it is to 

observe one that is several standard deviations away. This is 

because the probability density function is higher near the 

mean and nearly zero as you move many standard deviations 

away. 

For normally distributed data, the distance from the mean 

can be specified by computing the so-called z-score. For a 

value x, the z-score of x is the quantity z = (x-μ)/σ, where μ is 

the population mean and σ is the population standard 

deviation. This is a dimensionless quantity that you can 

interpret as the number of standard deviations that x is from 

the mean. 

The graph in Fig. 1 shows simulated bivariate normal data 

that is overlaid with prediction ellipses. The ellipses in the 

graph are the 10% (innermost), 20%, ..., and 90% (outermost) 

prediction ellipses for the bivariate normal distribution that 

generated the data. The prediction ellipses are contours of the 

bivariate normal density function. The probability density is 

high for ellipses near the origin, such as the 10% prediction 

ellipse. The density is low for ellipses are further away, such 

as the 90% prediction ellipse. 

 

 
Fig. 1. Bivariate normal data with predicted ellipses. 

 

In the graph, two observations are displayed by using red 

stars as markers. The first observation is at the coordinates 

(4,0), whereas the second is at (0,2). To see which mark is 

closer to origin, let us consider the two distance measures. 

The Euclidean distances are 4 and 2, respectively. Hence, 

according to Euclidean distance measure, the point at (0,2) is 

closer to the origin. However, for this distribution, the 

variance in the Y direction is less than the variance in the X 

direction, so in some sense the point (0,2) is more standard 

deviations away from the origin than (4,0) is. 

Notice the position of the two observations relative to the 

ellipses. The point (0,2) is located at the 90% prediction 

ellipse, whereas the point at (4,0) is located at about the 75% 

prediction ellipse. It means that the point at (4,0) is closer to 

the origin in the sense that you are more likely to observe an 

observation near (4,0) than to observe one near (0,2). The 

probability density is higher near (4,0) than it is near (0,2). 

Hence, according to Mahalanobis distance, the point at (4,0) 

is closer to origin than the point at (0,2). 

In this sense, prediction ellipses are a multivariate 

generalization of units of standard deviation. The bivariate 

probability contours to compare distances to the bivariate 

mean. A point p is closer than a point q if the contour that 

contains p is nested within the contour that contains q. 

The Mahalanobis distance has the following properties:1) 

It accounts for the fact that the variances in each direction are 

different. 2) It accounts for the covariance between variables. 

3) It reduces to the familiar Euclidean distance for 

uncorrelated variables with unit variance. 

 

IV. EXPERIMENTAL RESULTS 

The experiments are conducted on standard datasets such 

as wheat, mallet, coffee, gun, projectile points, historical 

documents, beef, car etc. [25]. On all the datasets, our 

proposed method has shown around 10 – 15% increase in 

accuracy. 

The wheat dataset consists of 775 spectrographs of wheat 

samples grown in Canada between 1998 and 2005. There are 

different types of wheat, such as Soft White Spring, Canada 

Western Red Spring, Canada Western Red Winter, etc. The 
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wheat dataset composes of all the above mentioned wheat 

types. The class label given for this problem is the year in 

which the wheat was grown. For this dataset, our method has 

shown 12% increase in the accuracy as shown in Fig. 2. 

There has been extensive study on Gun/NoGun motion 

capture time series dataset [2], [26]. This data has two classes. 

The classification algorithm should be able to identify 

whether the actor is holding gun or not. The difference 

between the two classes can be identified if we observe the 

time series data of the actor how he puts his hand down by his 

side. Our method has shown 8% increase in accuracy for 

Gun/NoGun problem as shown in Fig. 3. Hence, the proposed 

method has more accuracy than existing method. 

 
Fig. 2. Accuracy for wheat dataset using Euclidean vs Mahalanobis distance. 

 
Fig. 3. Accuracy for Gun/NoGun dataset using Euclidean vs Mahalanobis 

distance. 

 

V. CONCLUSION 

We have classified time series dataset using shapelets. The 

shapelets are time series subsequences and are highly 

representative of a class. Because one shapelet is not 

sufficient to classify the data, we have used a number of 

shapelets which clearly distinguishes one class from other.  

The shapelets are used along with distance threshold, which 

divides the data into two sets. We have used decision tree for 

classification. The non leaf nodes of the shapelet specify 

shapelet and distance threshold; and leaf nodes specify the 

class label. To classify a time series data, it is fed into decision 

tree, which moves it from root node to leaf node, which in turn 

gives the predicted class label for it. While moving from root 

to leaf node, the time series data is compared with every 

shapelet on the path using Mahalanobis distance measure. 

Mahalanobis distance measure is a good choice for 

classification as it takes the correlation of data items into 

consideration and is scale in-variant. Hence, it is obvious that 

Mahalanobis distance measure will give in more accurate 

results. We have also shown with experiments that the 

distance measure results in more accuracy than the Euclidean 

distance measure. In future, we are going to compare it with 

other distance measures. We are also going to check how the 

algorithm will perform on reduced representation of time 

series dataset. We also wish to do signature verification using 

the proposed method.  
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