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Abstract—Rough set theory and wavelet theory are totally 

different areas of research in mathematics. We briefly describe 

each theory and apply them respectively to the same problem as 

an example of application in data mining. Furthermore, we 

compare the results we obtained from these two different 

approaches of the same application. Future study along this line 

of research is also mentioned. 

 
Index Terms—Information system, rough set theory, wavelet, 

denoising.  

 

I. INTRODUCTION 

Rough set theory is a set theory for the study of information 

systems which are characterized by insufficient and 

incomplete information.  An information system can be 

regarded as a set-valued system. Some of its attribute values 

may be subsets of an attribute domain. One of our objectives 

of this study is to find rules, relationships and classifications 

of such a system and to develop applications to data mining. 

Information systems can be represented in various ways. One 

approach is to use attribute systems in which each system can 

be interpreted as an ordered pair (U, R); where U is a 

non-empty set of all finite objects under consideration and R 

is an equivalence relation on U. This approach is called the 

rough set approach. Rough Set theory originated from 

Pawlak’s seminal work [1]. It has been conceived as a tool to 

conceptualize, analyze and classify various types of data. It 

has been developed as a tool to classify objects which are only 

roughly described. The available information provides a 

partial discrimination among them although they are 

considered as different objects. In other words, objects 

considered distinct could happen to have the same or similar 

description, as far as a set of attributes is considered. The 

theory extends the classical crisp set to a rough (or 

approximate) set by defining lower and upper approximations 

for any subset of a non-empty universe. It is based on the 

concept that every object of the universe is associated with 

some information (data or knowledge). Objects characterized 

by the same information are considered indiscernible. Thus an 

elementary set can be any set of all indiscernible entities, and 

it forms the basic granule of knowledge [2]-[4]. Information 

granulation is a collection of granules, with a granule being a 

clump of objects (points) which are drawn toward an object. 
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Each object is associated with a family of clumps. An 

unstructured collection of clumps have some mathematical 

meaning in a crisp world. This has to do with the notion of 

neighborhood systems. If there is at most one clump per 

object, then the neighborhood system is defined by a binary 

relation, and is called a binary neighborhood system. If we 

assume the binary relation is an equivalence relation, the 

neighborhood system is a rough set system. If we assume a 

neighborhood system satisfies certain axioms then the 

neighborhood system defines a topological space; such 

neighborhood system is called a topological neighborhood 

system. In general, we are not able to observe individual 

objects from U. Hence, we introduce the following structures. 

The set of all objects which can be classified with certainty as 

members of X with respect to R is called the R-lower 

approximation of a set X. The set of all objects which can be 

classified as possible members of X with respect to R is called 

the R-upper approximation of a set X with respect to R. The 

set of boundary region can be classified as members of the 

R-upper approximation of X but not members of the R-lower 

approximation of X. A set X is called rough with respect to R 

if and only if the boundary region of X is nonempty. 

The approximations mentioned above can be expressed in 

terms of granules of knowledge as follows. The lower 

approximation of a set is a union of all granules which are 

entirely included in the set; the upper approximation is a 

union of all granules which have nonempty intersection with a 

set; the boundary region of a set is the difference between the 

upper and lower approximation of the set. Fig. 1 illustrates 

these concepts.  
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Fig. 1. Illustration of set, region, lower and upper approximations. 
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Research efforts to advance the classical rough set model 

have been made by generalizing the Pawlak’s approximation 

space, particularly by exploring the use of a more general 

binary relation [4]-[7], or replacing the induced partition with 

a covering [2], [3], [8], [9]. Such a generalization is usually 

called an approximation space. We were able to provide a 

clear and more general framework of lower and upper 

covering approximations [9]. We not only provide duality 

property but also obtain optimal lower and upper 

approximations of a covering of an approximation space. In 

addition, we developed several properties of the so-called 

total pure reflexive binary neighborhood systems. The 

techniques we use are essentially tools in topology. 

Incomplete information systems, reduction of redundant 

attributes in imprecise information systems, decision-making, 

data analysis, knowledge presentation, expert systems, data 

preprocessing, modeling complex system and many other 

applications can use our framework in rough set theory. The 

idea is to introduce a set of data, then use our covering 

approximation techniques to find accuracy, classification, and 

reduction attributes of a given information system to pursue 

our objectives for incomplete information systems. 

Furthermore, we use our methods to couple data and 

knowledge in data mining and database in various contexts. 

Our computational method will be based on wavelets 

which have been applied to a large variety of data. Wavelet 

analysis is considered as applied harmonic analysis and has 

proved to be a powerful technique to analyze, classify or 

process data efficiently [10]. Wavelets can be used to extract 

information from many different kinds of data. In this paper, 

we use wavelets to denoise data based on wavelet coefficients. 

We intent to handle similar problems as described above by 

using wavelet method and compare the results obtained via 

different approaches.  

In what follows, we briefly outline some basic elements and 

fundamental properties of rough set theory and mention an 

example of some practical application in the second section. 

In the third section, we give a short description of wavelet 

theory and apply a wavelet method to the same example in 

Section II. We conclude with some remarks in the last section.  

 

II. ROUGH SET THEORY 

Let U denote a nonempty set (may be finite or infinite) 

called the universe (of discourse). The power set of U, 

denoted by
U2 , is the collection of all subsets of U.  Let 

UUR  be an equivalence relation on U. The 

equivalence relation R partitions the set U into disjoint subsets. 

Let U/R denote the quotient set consisting of equivalence 

classes of R. 

A. Pawlak's Lower and Upper Approximations 

Let I be an index set, and }|{ IiUEi   be a 

partition of U. Pawlak's lower and upper approximations, 

)(X and )(X , respectively, are defined as follows: 

}.|{)(

},|{)(









XEEX

XEEX

ii

ii
               (1) 

Equivalently, )(X and )(X can also be presented as 

follows [11]: 

 

}:|{)( XEandExEUxX iii    (2) 

 

}:|{)(   XEExEUxX iii (3) 

B. Covering Lower and Upper Approximations 

Let },|{ IiCUCC ii   , be a covering of U . 

The pair ),( CU  is called a covering approximation space. A 

covering C  is called a finite covering if it is a finite family.  

Definition 1. [11] Let }{ iCC  be a covering of U . For 

any ,UX   the C -lower and C -upper approximations, 

)(XC  and )(XC , respectively, are defined as follows: 

 

}:|{)( XCandCxCCUxXC iii   

}:|{)(  XCCxCCUxXC iii (4) 

C.   Topological Neighborhood System 

To define a topology on U, there are many other ways to set 

up axioms, including the so-called Kuratowski closure axioms 

(KC-axioms) and the topological neighborhood axioms 

(TN-axioms) that can be used to define the structure of 

topology. Based on the topology the universe has, one can 

define the topological neighborhood system. 

A neighborhood system on U is a mapping 
U

UNS 22:   which is defined by assigning to each x  of 

U a nonempty collection )(xNS  of subsets of U . Such a 

nonempty collection )(xNS  and each of its members is 

called a neighborhood system at x and a neighborhood of x , 

respectively. 

A neighborhood system 
U

UNS 22:  will be called a 

topological neighborhood system, or a topology, on U if for 

each )(, xNSUx  satisfies the following topological 

neighborhood axioms: 

(TN 1) If ),(xNSN  then ).(xNx  

(TN2) If MN, are members of )(xNS , then 

).(xNSMN   

(TN 3) Superset condition: If NM  for a nonempty  

),(xNSN  then ).(xNSM   

(TN 4) If ),(xNSN  then there is a member M of     

)(xNS  such that NM  and )(yNSM  for    each 

My  (that is , M is a neighborhood of each of its points). 

D. Total Pure Reflexive Neighborhood Systems 

As it is known that a covering C  of U can be regarded as 

a special form of neighborhood system which we call a 

covering neighborhood system. We study the structure of the 

covering approximation space ),( CU  via a special kind of 
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neighborhood systems, called total pure reflexive 

neighborhood systems, which include covering neighborhood 

systems as a special case. 

A neighborhood system 
U

UNS 22:   is called a total 

pure reflexive (TPR) neighborhood system on U iff 

).(, xNSNNx   

Definition 2. Let 
U

UNS 22:   be a TPR neighborhood 

system. For each subset X of U , the lower and upper 

approximations of )(, XNSX and ),(XNS respectively, 

are defined as follows: 

 

)}(,|{)( xNSNsomeforXNUxXNS   

)}(,|{)( xNSNXNUxXNS   (5) 

 

The lower and upper approximations are mutually dual in 

the sense that 

 

UXXUNSUXNS  ),()(          (6) 

 

Theorem 1.  Let 
U

UNS 22:   be a neighborhood 

system in which each )(, xNSUx  satisfies axioms (TN 

1) and (TN 2), and let 

})(|{ XXNSUXT   

Then: 

1. The family T forms a topology on U . 

2. The upper approximation 
UUNS 22:   is a 

preclosure onU . 

3. The lower approximation 
UUNS 22:  satisfies 

a) UUNS )(  

b) .,)( UXXXNS   

c) ,)()()( YNSXNSYXNS  ., UYX   

E. Total Pure Reflexive Binary Neighborhood Systems 

We call a TPR neighborhood system 
U

UNS 22:   as a 

TPR binary neighborhood system if each )(, xNSUx is 

a singleton. It is clear that )(xNS satisfies the first two 

TN-axioms. We will use the element instead of singleton. So 
U

UNS 22:   will be replaced by
UUBN 2:  , and 

this gives 

UXXxBNUxXBN  },)(|{)(  

.},)(|{)( UXXxBNUxXBN    (7) 

Then, by Theorem 1, the collection 

})(|{ XXBNUXT  is a topology on U . It 

follows that T is an Alexandroff topology if it is shown that 

the intersection of the members of any nonempty subfamily of 

T is a member of T . 

Theorem 2. Let
UUBN 2:   be a TPR binary 

neighborhood system, and let  

})(|{ XXBNUXT   

Then: 

1. The upper approximation 
UUBN 22:  is a 

preclosure on U . 

2. The lower approximation 
UUBN 22:  satisfies 

      a) UUBS )( . 

      b) .,)( UXXXBS   

          c) ,)()()( YBSXBSYXBS   

          ., UYX   

3. The family T forms an Alexandroff topology on U . 

 

In an information system, each attribute corresponds to an 

equivalence relation. The following example is an application 

of rough set theory.  

Example 1. We consider an example from [11]. Briefly, it 

is shown in Table I which includes Solar Energy, Volcanic 

Activity and Residual 2CO as condition attributes, and 

Temperature as a decision attribute. 

 
TABLE I:  CONDITION AND DECISION ATTRIBUTES 

Fact Days Solar 

energy 
Volcanic 

activity 
Residual

2CO  Temperature 

1 20 Medium High Low High 
2 30 High High High High 
3 34 Medium Low High Low 
4 70 High High Medium High 
5 90 Medium Low High High 
6 120 Low Low Low Low 

 

Using rough set theory, some of its conclusions are [11]: 

Low solar energy certainly causes low temperature; 

Medium solar energy and high volcanic activity or high 

solar energy certainly causes high temperature. 

 

III. WAVELET BASED METHOD 

In wavelet theory, one usually deals with wavelets and 

scaling functions which are key elements [10]. The wavelet 

function is defined by building a sequence upon scaling 

functions generated by )(x . Choosing some suitable 

sequence, }   ,{ Zpap  , we obtain the following dilation 

equation,  

 

 
p

pjp

p

j

p xapxax )()2()( , .         (8) 

 

 With this scaling function, we have a nested of subspaces 

}   ,{ ZjV j  of )(2 RL which is defined as: 

 

ZjxSpanV ppjj      ,)}({ ,                   (9) 
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This means that for any function jVxf )( it can be 

expressed as:  

)()( , xxf pj

p

p .                       (10) 

 

If the basis functions of a subspace are orthogonal at the 

same level, then a given function jVxf )(  can be 

expressed as follows: 

 

)(,)( ,, xfxf pj

p

pj                   (11) 

 

where 

 





 dxxxff pjpj )()(, ,,  .              (12) 

 

If the nested sequence of the subspaces }   ,{ ZjV j  has 

the following properties then it is called a multiresolution 

analysis (MRA): 

1)  1 jj VV , 

2)  }0{



Zj

jV , 

3)  )(2 RLV
zj

j 


 , 

4)  1)2()(  nn VxfVxf , 

5)  There exists a function 0V such that 

}   ),({ Zkkx  is an orthogonal basis for 0V . 

The wavelet function is constructed in the orthogonal 

complement of each subspace jV in 1jV which is denoted 

by jW . Therefore jjj WVV 1 . Since  














jRL

j
V j

 as       ),(

 as              ,0

2
, 

we have jjj WVV 1 and j

j

WRL 




)(2
. The 

set )}2()({ , pxx j

pj  forms a basis for jW , and can 

be obtained from the following equation: 

 


p

pjp xbx )()( , , for some pb .              (13) 

The orthogonality of jW on jV means that any member 

of jV is orthogonal to the members of jW , that is, 

  kpkjpjkjpj dxxx ,,,,, )()(,  .     (14) 

In fact, scaling function and wavelet have the following 

properties: 

1)(  dxx , 

 
p

ppadxxx
2

1
)( , 

   1,...,0   ,0)( Nrdxxxr  ,                   (15)    

        

where [0, N ] is the compact support of )(x and )(x . 

Wavelet transform is defined by using wavelets. Wavelet 

coefficients can be obtained by applying wavelet transform to 

a given image. Depending on the purpose of the application, 

there are many different ways to use these coefficients. 

Denosing is a process to remove noise from a given image. 

One can remove certain small coefficients from the image to 

serve the purpose.  

More precisely, wavelet transform and wavelet coefficients 

are defined as follows. 

 

,)()(
||

1
),]([ dxxf

a

bx

a
bafW 


         (16) 

 

kjc , ).2,2]([ jj kfW 

                  (17) 

 

As an application of denoising image, we consider an 

image in Fig. 2 below which is obtained by converting the 

data in Table I. We then apply wavelet denoising method to 

obtain the image in Fig. 3. 

 
         Fig. 2. The data in Table I is converted to this image. 

 

 
Fig. 3. Denoised image of Fig. 1. 
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If we denote the image in Fig. 2 by A and Fig. 3 by B, then 

the difference between noisy and denoised image is C=A-B 

which is as follows. 

 

C = 



































1111

1113

1111

3131

1122

1322

                  (18) 

 

The smaller variations of the difference of rows between 

the original and denoised images indicate that the phenomena 

are quite normal. Consequently, this results in similar 

conclusions in Example 1. 

 

IV. CONCLUSION 

Although rough set theory and wavelet theory are 

originated from different areas of research in mathematics, the 

former is in topology and the latter is in analysis, we can use 

them to work on the same application and obtain similar 

results. As it is shown in this paper, we compare the results in 

two different approaches via rough set theory and wavelet 

method respectively, we obtain similar conclusions. It would 

be interesting to further study other applications such as 

missing data problems and many other problems in data 

mining. 
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