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Abstract—In this paper, we propose a generative model that 

describes the dynamics of flow on a network — the hidden 

Markov flow network (HMFN) model, which is inspired by the 

gravity model in traffic engineering. Each node in the network 

has a dynamic hidden state and the flow observed on links 

depends on the states of the nodes being connected. For model 

inference, a collapsed Gibbs sampling algorithm is also 

proposed. Lastly, the model is applied to synthetic data and real 

human mobility network generated by GPS data from taxis in 

Bangkok. The synthetic data example shows that the 

reconstruction accuracy of the proposed method outperforms 

compared with the k-means method and the hidden Markov 

model, which do not consider the network interaction. The 

results of human mobility data show that the HMFN model can 

be used for spatio-temporal anomaly detection and prediction 

of future flow patterns. 

 
Index Terms—Generative model, dynamics of flow network, 

bayesian inference, spatio-temporal pattern mining.  

 

I. INTRODUCTION 

In this paper, we consider the dynamics of flow on a 

network that is typical of human mobility/vehicle traffic 

patterns. According to Gonzalez et al. [1], macroscopic 

regularity exists in seemingly random mobility patterns. 

They have shown that extracting hidden patterns from a large 

collection of human mobility data is worthwhile. In particular, 

if more detailed patterns can be found, they can be useful in 

such machine learning tasks as classification, prediction, and 

anomaly detection in a network. Our purpose in the present 

research is to develop a generative model that reveals the 

statistical structure of network flow dynamics. 

Human mobility patterns are often represented as an 

origin-destination matrix (OD matrix) in which the (i,j) 

element is the number of people (or vehicles) moving from 

location i to location j. Traditionally, time dependent OD 

matrices were estimated by methods such as data assimilation 

using observed traffic counts on roads [2], [3]. Recently, 

however, because more and more GPS and communication 

devices are being equipped on vehicles, we can obtain a large, 

high-resolution dynamic OD matrix which reflects 

spatio-temporal mobility patterns. By using tools like traffic 

simulation with observed OD matrix, it would be expected 

that enough result is obtained. On the other hand, those 

approaches do not clarify the latent structure behind the OD 
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matrix. Here the term “latent structure” means non-stationary 

and unobserved factors such as concerts, football games, and 

sudden rain. It is natural to consider that these latent factors 

cause co-occurrence of mobility demand and shift of the 

statistical structure of an OD matrix. 

In this paper, we treat the flow dynamics of a given 

network. In the case of a dynamic OD matrix, nodes represent 

locations and links count the number of trips between two 

locations. We consider the situation in which the observed 

flow is sparse (most matrix elements are zero) and has a high 

spatio-temporal resolution (i.e. the matrix is high 

dimensional). 

It is difficult to understand such data by direct 

visualization. Therefore, some unsupervised learning method 

is needed; however, basic clustering methods or pattern 

extraction methods such as k-means or principal component 

analysis would be difficult to apply for the following reasons. 

Firstly, natural flow patterns are expected to be continuous 

with respect to time. To obtain robustness against sparseness, 

we should assume that the flow patterns depend on time. The 

second point is that the non-stationary events discussed 

above occur independently at a number of geographic points. 

This fact makes the problem complicated. Even if we assume 

that the latent variables of each region take only binary values 

(for example, whether an event is held or not), the number of 

possible combinations increases exponentially and the latent 

structure behind the network flow becomes intractable. One 

approach to handling this curse of dimensionality is to apply 

the traditional unsupervised learning method to node-local 

flow, i.e. using flow around the target node only. However, in 

such cases the number of combinations can potentially 

increase and a robust result would not be obtained. This 

consideration leads to the hidden Markov network flow 

(HMFN) model that we present in this paper. 

In order to deal with an essentially exponential number of 

latent structures, we assume that the observed flow on a link 

depends on the hidden states of both its beginning and 

terminating nodes. Rather than regarding the flow dynamics 

as one huge state space model of the entire network, we 

consider it as multiple locally interconnected state space 

models on the network. The reason for this assumption comes 

from the gravity model, which is often used in traffic 

engineering and trade economics [4]. The gravity model says 

that the flow on a link depends on the “mass” of its 

connecting nodes. The purpose of the gravity model is to 

detect unknown flow on a link based on entropy 

maximization [4]. Although the setting of the gravity model 

is different from that of our problem, the assumption on link 

flow is common and would be reasonable. 

The contribution of the present study is threefold. Firstly, 

we introduce HMFN model, a novel generative model that 

describes dynamic flow pattern on a network. Secondly, we 
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propose an inference method for the HMFN model. Finally, 

we apply the proposed model to real dataset and confirm that 

it describes human mobility pattern well. 

The paper is organized as follows. In Section II, we 

introduce notation and describe the HMFN model. In Section 

III, an algorithm for inference by collapsed Gibbs sampler is 

presented. In Section IV, numerical results for artificial data 

and real human mobility data from taxi probes in Bangkok 

are shown. Finally, we present a discussion and conclusion in 

Section V and VI. 

 

II. HIDDEN MARKOV FLOW NETWORK MODEL 

The HMFN model is a generative model on a given 

directed graph G = (V; E) that describes the stochastic 

dynamics on G. Each node in the set of nodes V has its own 

hidden state dynamics. For each link in the set of links E, 

observations are emitted according to the hidden state of 

nodes. Eout(i) and Ein(i) are the set of out- and in-links to node 

i, respectively. If self link e = i   i exists, we define e   

Eout(i) and e   Ein(i). The input and output of the model is 

shown in Fig. 1. The main purpose of the model is to discover 

time series of hidden states in each node when the dynamic 

network flow dataset is given. 

Before describing the model, we introduce the notation:     

  
  is observed flow on link e   E at time t (     ).   

   
 

is the observed time series on link e and     denotes all 

observations.    is a set of hidden states in node i   V. Notice 

that, in general,      is not necessarily equal to |  | when 

   .   
     is the hidden state of node i at time t.   

   is the 

time series of hidden states in node i and     denotes all 

hidden states.    is the initial distribution of the state of node i. 

b(e) and t(e) denote the beginning and terminating nodes of 

link e respectively.  

The HMFN assumes the following generative process for 

flow dynamics     : 

 For each node    : 

 Draw      |  | transition matrix Pi. Each row of Pi 

obeys Dirichlet(  ). 

 For each link e   E, repeat the following: 

 For each      ( ) and      ( ): 

   
       Gamma( ; k) 

 For t = 1…T, repeat followings: 

 For each node i   V: 

 If t = 1,   
   Categorical(  ) 

 Otherwise   
   Categorical(     

   ) 

 For each link e   E: 

   
   Poisson(  

  ( )   ( )
) 

The graphical representation of the HMFN for small 

network is represented in Fig. 2. As mentioned in the 

previous section,   
  depends on the states of b(e) and t(e) at 

time t.   
   obey a Markov chain with transition matrix Pi. 

Here      denotes the transition probability for the next state 

when the current state is z in node i   V. We assume the 

initial state distribution    of node i follows a uniform 

distribution in this study although it can be also regarded as a 

sample from a Dirichlet distribution. Notice that, although 

  
   and   

   
 (for    ) are generated independently, they 

depend on each other once we observe the flow between i and 

j. The hyperparameters of the model are  , k, and       . 
While we used the Poisson distribution and gamma 

distribution in the above formulation, the model can be well 

formulated for an arbitrary type of the emission distribution. 

In the extreme case, different types of data can be assigned to 

each link (eg. count data for link 1, normally distributed data 

for link 2, ...). In particular, we emphasize that the collapsed 

Gibbs sampler described in the following section can also be 

established if a distribution in the exponential family and its 

conjugate are used. 

Fig. 1. Input and output of the HMFN model. The model discovers hidden 
dynamics of each node by using given dynamic network flow shown as 

matrix in this diagram. 

 

Input :

Time dependent network flow (dynamic OD)

Output :

Time dependent hidden states of each node

t t+1

… …

Node a

Node b

Collapsed

Gibbs sampler

a1 a2 a2 a1
…

Time

b1 b3 b2 b2
…

…

(a) 

(b) 

Fig. 2. (a) Example of small directed network with three links. (b) Graphical representation of HMFN for the left small network. Dashed boxes show time 

slice and small black points show hyperparameters. White and gray circles represent unobserved and observed random variables respectively. 
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A. Joint Distribution of HMFN 

According to the generative process given above, we 

describe the joint distribution of all random variables in the 

HMFN model. Firstly, probabilistic density function (pdf) of 

transition matrix P = {Pi} is the product of Dirichlet 

distributions: 

 (   )  ∏ ∏  (      )                       (1) 

Since emission parameters      
       are also drawn 

independently, the pdf is the product of the gamma 

distribution: 

 (     )  ∏ ∏ ∏  (  
     |   ) 

     ( )     ( )   

 

The Markov chain of hidden state   
    in node i   V  is 

described by the following: 

 (  
      )  

 

    
∏  (  

    
   )  

    

Here        corresponds to the initial distribution. Since 

  
    are drawn independently for each node i, 

 

 (      )  ∏ (  
      )

   

  

Finally, since the pdf of link flow (referred to as the 

emission density) is independent when all hidden states z
1:T

 

and emission parameters   are given, it is written as follows: 

 

 (           )  ∏∏ (  
    

  ( )
    ( )

 

) 

   

 

   

 

 

This indicates that the flow   
  on link e at time t is drawn 

from a mixture distribution with component size |  ( )|  

   ( )  depending only on its beginning and terminating 

nodes.  As a consequence, we obtain the joint density of 

HMFN by multiplying the densities above: 

 

 (                   )
  (           ) (     ) (      ) (   )  

The HMFN is one of a Bayesian hierarchical model. As 

shown in next section, because the conditional dependencies 

have been carefully designed, the model can be solved by 

Gibbs sampler. Here we note that the number of possible 

hidden states at one time slice is ∏         which increases 

exponentially with the number of nodes in the network. 

B. Interpretation of the Model 

The HMFN model can be understood as an unsupervised 

learning method for dynamic relational data. The model has 

hidden states that obeys the Markov chain for each node. The 

hidden state   
     is a latent class of the node. A link e = 

    has states (  
    

 )  at the beginning and terminating 

nodes for each time. This tuple (  
    

 ) can be regarded as a 

latent class (or feature) of the link e. Furthermore, this 

method can be regarded as a kind of the multi-clustering 

method for the flow on network. 

C. Related Works 

By inference using HMFN, the dynamics of network flow 

is compressed into a latent vector of dimension equal to the 

number of nodes for each time slice. Ide et al. proposed an 

eigenvector-based dimensional reduction method in the 

anomaly detection context [5]. They assumed a symmetric 

matrix form and used its principal eigenvector as the feature 

vector. Time dependency was not considered explicitly. In 

our case, we emphasize that HMFN does not assume 

symmetry of the flow. The relationship between their 

approach and the HMFN model resembles to that of latent 

semantic indexing (LSI) [6] and latent Dirichlet allocation 

(LDA) [7]. While LSI is based on singular value 

decomposition, LDA is a generative approach. 

Some generative models have been defined on networks. 

The stochastic block model (SBM) [8] and its extensions [9], 

[10] are also generative models for the relational data. 

Although HMFN is also a model for the relational data, the 

purpose is completely different. While the aim of SBM is 

clustering interacting objects (nodes) into groups with similar 

flow pattern, our purpose is not. HMFN does not share the 

hidden states, that is, the meaning of    and    (   ) is 

different. It can be intuitively explained by following 

example:     {morning, afternoon, night, night with a 

football game},    {workday, weekend}. For SBM, on the 

other hand,   ’s are common for all i   V and it is typically 

represented as     {social group 1, social group 2, social 

group 3} (     V). 

Hidden random Markov field (HRMF) [11], which is used 

in image processing, can be regarded as a latent variable 

model on a network. As with the HMFN, HRMF has a latent 

variable on nodes. The difference appears in the location of 

observations and the type of interaction. In HRMF, 

observations occur at nodes and latent variables interact 

directly. On the other hand, in HMFN, flows are observed on 

links and latent variables interact indirectly through the flow 

observation. 

As a probabilistic model, the HMFN model can be 

regarded as an extension of the hidden Markov model 

(HMM). HMFN is modeled as HMMs are connected by a 

network. In fact, when the network has only one node and a 

self link, HMFN is equivalent to standard HMM. In this point 

of view, HMFN extends the topology of the network. 

Therefore, we believe that the model is general and as 

powerful as the hidden Markov model (HMM) and its 

extensions. Additionally, we point that, if the network has 

only two nodes and one link, the HMFN is equivalent to the 

factorial hidden Markov model (FHMM) [12] with two 

streams. 

 

III. INFERENCE AND PARAMETER ESTIMATION 

A. Collapsed Gibbs Sampler for HMFN 

In this section, we describe an algorithm that enables the 

inference for HMFN. The purpose is to obtain a posterior 

distribution of hidden variables. We use gamma and Dirichlet 

prior distributions, which are conjugate priors of the Poisson 

and categorical distributions, respectively. This fact makes 

the joint distribution (6) partially integrable and leads to a 

collapsed Gibbs sampler [13] for HMFN. In general, the 

autocorrelation of samples by the collapsed Gibbs sampler 

gets smaller than that of standard Gibbs sampler. 

(2) 

(3) 

(4) 

(5) 

(6)
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For the derivation of the collapsed Gibbs sampler, the 

conditional probability  (  
          

  ) should be considered. 

Here we use the notation    
  

 as the set of all hidden variables 

except for   
 . For simplicity, we assume that Pi obeys the 

symmetric Dirichlet distribution, i.e. all elements in    take 

the same scalar value     . Taking into account the 

marginalization of transition matrices P, we can calculate as 

follows: 

 

 (  
            

  )

 
(  

  
    

   

   )

 
    

  
 

       
 (  

  
      

 

   )

 ∏  (  
 |  

  
    ( )

 

)

      ( )

∏  (  
 |  

  ( )
    

 

)

     ( )

  (          
      ) 

 

where      
      is the count of transitions       in the 

Markov chain at node     except for the transition at time t, 

     

  
 

 is the normalizer defined by 

 

     

  
 

 ∑      

  
   

 

    

 

and  (          
      )  is the posterior distribution of 

emission parameters. We can integrate out   

  
    

 

 by 

posterior distribution      

  
    

 

( )  which is defined by a 

posterior distribution for given data   {  
  
|       

  
 

  
    

  
   

  . If D is the empty set, then      

  
    

 

( ) is the 

prior distribution. Integrating the emission density by the 

posterior leads the posterior predictive: 

 

 (  
    

       )  ∫ (  
   )      

  ( )
    ( )

 

( )  

 

We emphasize that      

  
    

 

( ) can be calculated 

analytically in the conjugate prior case, and the posterior 

predictive distribution (9) is also analytically integrable. In 

the Poisson distributed flow and gamma prior case, 

     

  
    

 

( ) is also the gamma distribution and the posterior 

predictive distribution is a negative binomial distribution. We 

also note that      

  
    

 

( )  only depends on the sufficient 

statistics of D. Maintaining sufficient statistics for each 

mixture component makes the calculation of (9) fast.  

Finally, we obtain the “collapsed posterior distribution of 

  
  ” as follows: 

 

 (  
          

  )  
(  

  
    

   

   )

 
    

  
 

       
 (  

  
      

 

   )

 ∏ ∫ (  
   )      

  
    ( )

 

( )

      ( )

 ∏ ∫ (  
   )      

  ( )
    

 

( )  

     ( )

 

We can sequentially sample the posterior latent variables 

    
 from (10). Algorithm 1 represents the collapsed Gibbs 

sampling procedure for HMFN. 

 

Algorithm 1 Collapsed Gibbs sampler for HMFN 

Input: Directed graph G(V; E) ; Data     on E; 

Hyper-parameters  , k and   

Output: MCMC sequence of      

   Initialize      randomly. 

   repeat 

      for t = 1 to T do 

         for all     do 

            Calculate sufficient statistics of posterior of P,  

            and   for given      and     . 

            Update   
  by sampling from (10). 

         end for 

      end for 

      yield z1:T 

   until forever 

B. Hyperparameter Optimization 

In the Gibbs sampler described in the previous section, the 

hyperparameters are fixed. In this section, we describe the 

hyperparameter optimization. We repeatedly maximize 

 (               ) after the scans of Gibbs sampling. Here 

we assume that hyperparameters k,   and   obeys given 

prior distributions.  

The posterior distribution of    is given by  (  |  
   )  

 (  
      ) (  ) where   

   
 is a snapshot of the hidden states 

of the Gibbs sampler.  (  
      ) is the product of Dirichlet 

multinominal distribution: 

 

 (  
      )  ∫  (  

      ) (     )    
 

    
∏

 (      )

 (  
        )

    
{∏

 (  
      )

 (  )
    

}  

 

where   
    is the count of the state transition from z to w in 

  
   , and   

  ∑   
   

    
. Therefore the maximization of 

    (     
   ) with respect to    is achieved by the Newton– 

Raphson method or a quasi-Newton method such as the 

BFGS method. The gradient involves the digamma function, 

therefore it is easily calculated. The posterior of k and  ,  

which are the hyperparameters of the emission distribution, 

are given by the following: 

 

 (             )   (             ) ( ) ( ) 
 

Because  (             ) can be analytically tractable, k 

and   can be also optimized numerically. 

C. Model selection 

In HMFN, sets of hidden states    are defined for each 

node    . For model selection, we have to determine the 

size of   . The combination of the sizes of the hidden sets is 

quite large, model selection by an information criterion is not 

realistic. In order to determine the size of   , it would be 

useful to adopt a nonparametric Bayesian approach. The 

model selection for HMFN is realized by using potentially 

infinite size of    for each node and determining their sizes 

by the data. The infinite HMM (iHMM) [14] is a model that 

is a nonparametric Bayesian approach for HMM. Hidden 

(7)

 

(8) 

(9) 

(10) 
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dynamics in HMFN can be extended by a method similar to 

the iHMM. In this study, we employed state sets with 

common fixed size K, i.e.        (    ). Practically this 

would be no problem because the hidden states degenerate 

and sparse results are obtained at some nodes. The value of K 

can be chose by evaluating likelihood of test data. 

 

IV. NUMERICAL RESULTS 

We show two numerical examples. We first apply HMFN 

to synthetic data in order to evaluate the performance of the 

HMFN and the collapsed Gibbs sampler. Then a second 

example shows an application to real data, specifically to taxi 

demand data in Bangkok covering four months. Although 

hyperparameters should be estimated in principle, we use 

predetermined values in this study. 

 

A. Synthetic Data Examples 

1) Dataset: Here we examine the performance of HMFN 

and the collapsed Gibbs sampler for synthetic data. We used a 

fully connected network with 12 nodes. Nodes are placed on 

a circle (Fig. 3) and the distance between two nodes is 

defined by distance on the circle, with the distance between 

two neighboring nodes normalized to 1. Hidden variables 

  
  take binary values for each node, i.e.       . Their 

transition matrix was uniformly defined as follows: 

 

   [
      
      

]               

 

The Poisson distribution was used as the emission 

distribution. Let   

  ( )   ( )
 be the mean parameter of the 

Poisson distribution when the states at the beginning and 

terminating nodes of     are   ( ) and   ( )  respectively. 

We prepare two synthetic data that have different emission 

densities as follows: 

 

   
(Problem 1)

 

[
  
     

   

  
     

   ]  [
    
  

]     ( 
 

 
)  

 

   

(Problem 2)

 

[
  
     

   

  
     

   ]  [
    
  

]     ( 
 

 
)  

 

where d is the circular distance between b(e) and t(e). The 

exponential terms in (12) and (13) are traffic resistance, 

which represents that the observed amount of flow on a link 

decreases as the distance increases. Fig. 3 shows one time 

slice of the data. We synthesized the network flow dynamics 

for T = 1000, and applied the collapsed Gibbs sampler. For 

the hyperparameters,         for the gamma prior, and 

     (    ) for the symmetric Dirichlet prior were used. 

 

  
Fig. 4 shows the likelihood convergence for a sample from 

problem 1. This figure indicates that 200 iterations are 

enough for convergence. 

2) Results: To evaluate the performance, we use the 

reconstruction accuracy and the adjusted Rand index (ARI) 

[15] of hidden variables as the measurements. For calculation 

of these measurements, the hidden variables at the final 

Gibbs step were used. 

For comparison, we also applied k-means and HMM to the 

same data. Since these methods are not defined for network 

flow, we estimate independently for each node     with 

node-local feature    
        ( )     ( ) . For the 

inference of HMM, collapsed Gibbs sampling and the same 

hyperparameters were used. For HMM and HMFN, we 

considered respectively the following two models: (1) 

       (true model), (2)        (larger model). We 

synthesized ten network flow dynamics and calculated the 

average and standard deviation of the performance measures 

for each test problem. 

Table I shows the reconstruction accuracy and ARI of the 

hidden variables for k-means, HMM, and HMFN. k-means 

has a relatively low accuracy for each problem. HMM with 

true hidden variable sizes (HMM(2)) has almost the same 

performance as HMFN for problem 1. However, the 

inference does not work well for problem 2.  

 

 

TABLE I:  COMPARISON OF THE RECONSTRUCTION ACCURACY AND THE ADJUSTED RAND INDEX 

  k-means(2) HMM(2) HMM(3) HMFN(2) HMFN(3) 

Reconstruction Accuracy (%) 
Problem 1                                                        

Problem 2                       NA*                       

Adjusted Rand Index 
Problem 1                                                             

Problem 2                                                             

*NA means that no meaningful reconstruction is obtained 
 

The reason is explained as follows. In problem 2, if the 

hidden state of the terminating node is 0, then the emission 

density of the link does not depend on the state of the 

beginning node. This makes problem 2 more noisy than 

Fig. 3. Network of the test problem (|V|=12). Gray and black points 

indicate the value of the hidden variable (0 and 1, respectively). The 

arrows indicate that the observed flow xe is greater than 0. 

Fig. 4. Likelihood convergence of HMFN for problem 1. 

(11) 

(12) 

(13) 
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problem 1. In such a case, information about the other nodes 

becomes more important for obtaining a more robust result. 

Because the HMFN takes into account the information of all 

nonconnecting links and other nodes implicitly, robust results 

can be obtained when interaction between nodes exists, as 

this example. On the other hand, the node-local approaches 

(k-means and HMM) can be regarded as a “mean field” 

approach which ignores the interaction. 

Furthermore, we would like to emphasize that in 

HMFN(3), whose size of hidden variables for each node is 

larger than that of the true model, the reconstruction accuracy 

is not worse while HMM(3) is worse than HMM(2). In 

HMFN(3), we obtained a sparse result, which indicates that 

one of the three hidden states has collapsed after the iterations. 

Note that because we are using a collapsed Gibbs sampler, 

the high reconstruction accuracy in HMFN inference 

indicates that the mixture components are also estimated 

highly accurately. 

 
Table II shows the log likelihood of the test data. “Poisson” 

means a model with no hidden variable (equivalent to 

HMFN(1)) as follows: 

 

  
         (  )                   

        (   )                                 

 

The result indicates that HMFN(2) is the best model 

among three models for both problems. Because the product 

of probabilities of HMM over nodes does not constitute a 

proper probabilistic model (the links are doubly counted), we 

did not compared the test likelihood with HMM(m). 

 

B. Application to Real Human Mobility: Taxi Data in 

Bangkok 

1) Dataset: GPS data from 9 000 taxis were collected in 

Bangkok for a long time period. It was converted into the 

origin-destination demand dataset. Here origin means the 

zone where the customer gets on the taxi and destination does 

where the customer gets off. Coordinates should be 

discretized into zones. For discretization, we used GeoHash 

(http://geohash.org/) that converts longitude/latitude into a 

hash string which corresponds to a rectangle zone. In this 

study we used the 120 zones as shown in Fig. 5. The 

resolutions of the zones were determined by hand. They are 

high resolution if the location is near by the center of the city 

or the taxi demand level is high. The size of smallest zone is  

 about 1km × 600m. These regions are treated as nodes in 

HMFN. For flow outside of the network, we define a special 

boundary node (not shown in Fig. 5). 

 

 
We counted up the customer’s trips and obtained an hourly 

dynamic OD matrix. The (i, j) element of the matrix at time t 

represents the number of trips in which a customer gets on the 

taxi at zone i and time t and gets off at zone j. We used 128 

days (3 072 hours; T = 3072) data from 3/Sep/2012. The zero 

values occupy more than 90% of the observed OD matrix. 

2) HMFN setting and learning: The Poisson distribution 

was used for the emission distribution. In order to determine 

the size of hidden states, we evaluated the test log likelihood 

as shown in Fig. 6 (last 14 days were used for test data). We 

assumed that      takes common value K for all    . The 

test likelihood saturates at K = 6 while the training likelihood 

increases monotonically. Therefore, we set the number of 

hidden states to six. 24 hidden states were used for the 

boundary node. Here we note that 100 iterations were enough 

to converge. 

3) Visualizing extracted flow pattern: By the inference, we 

obtained time series of hidden states     . In order to check if 

the result is proper, we would like to visualize the typical 

flow pattern for each node and each state. For this purpose, 

we define k-th eigenflow   ( ) of node    , which is 

defined as 

 

  ( )    [  
    

   ]         ( )     ( )  
 

By definition, the k-th eigenflow represents the expected 

value of the flow for each link around the node i when   
   . 

Intuitively, eigenflow   ( ) can be interpreted as the center 

of cluster of k-th state. Solving for a closed form of (14) is 

intractable, but we can approximate this expectation using 

Gibbs sampling.  

4) Extracted patterns: Several interesting patterns were 

found in the result. Fig. 7 shows the eigenflow of a zone 

where many nightclubs exist. The columns represent 

different hidden states (        ) and two rows show 

TABLE II: TEST DATA LOG LIKELIHOOD FOR SYNTHETIC DATA 

 Poisson HMFN(2) HMFN(3) 

Problem 1 -103362 -100350 -100632 

Problem 2 -103584 -102378 -102703 

 

Fig. 5.  120 regions (nodes) used in this study. 

 

Fig. 6. The test likelihood and the training likelihood of real human 

mobility data. 

(14) 
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out-flows and in-flows, respectively. Vertical and horizontal 

positions of each plot represent latitude and longitude, 

respectively. The width of the line indicates the size of the 

eigenflow of the corresponding link. The second column 

(state 2) and sixth column (state 6) are very characteristic. 

Actually, the state 2, which has large in-flow values, tends to 

appear around 22:00. The state 6 appears after 2:00 

(midnight) and is observed only when the state 2 is observed 

immediately before. We can guess that many people come to 

this zone around midnights, and leave there before morning. 

This pattern is observed on mainly Friday and Saturday 

nights, but sometimes appears on the other days suddenly. 

 

 

 

 
The second example is shown in Fig. 8. The fifth state is 

quite different from other states. While the total quantity of 

in-flow of the state 5 is as many as state 2 (7.36 and 8.01 

respectively), the flow of the state 5 is more distributed. This 

Fig. 7. Eigenflows of “nightclub” zone in Bangkok (geohash: w4rw0x). N in the parenthesis shows the number of times that the corresponding state is 

assigned. The number in the bottom of the plot means the total amount of eigenflow. 
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Fig. 8. Eigenflows of “church” zone in Bangkok (geohash: w4rw0h). 
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Fig. 9. Eigenflows of “north bus terminal” zone in Bangkok (geohash: w4rw84). 
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indicates that taxis travel longer distance in the state 5. The 

second point is that the state 5 is assigned only on every 

Sunday morning and Christmas. We note that there are 

churches in this place. We can guess that the state 5 would be 

caused by people coming to church for the mass. 

The last example shows “seasonal change” pattern. Fig. 9 

show the eigenflow at north bus terminal for long distance 

bus toward north of Thailand. Fig. 9 shows that the daily state 

share in this place. A peak of the state 1 is observed around 

day 116 (darkest color). This term corresponds to the new 

year vacation and observed peak would be homecoming visit. 

The state 2, which increase after the new year, corresponds to 

a pattern in which people leave the bus terminal for their 

home. This kind of special patterns during the new year 

vacation are observed in many zones. This fact indicates that 

the traffic pattern is quite different during new year vacation.  

In other places, a lot of interesting patterns are extracted. 

They are classified into following: 

 event patterns (eg. at stadiums, event halls, night clubs, 

festivals,...) 

 periodic patterns (eg. commuting, a weekend market, the 

mass at church,...) 

 seasonal patterns (eg. new year vacation) 

We have shown that several kinds of patterns are extracted 

without other features. These results indicate that the 

proposed model explains the real human mobility pattern 

well and that applications such as event detection and 

prediction are possible. 

 
 

V. DISCUSSION 

One of the direct applications of the HMFN model is to 

detect the novelty/anomaly of flow pattern in the network. As 

shown in Fig. 10, the distribution of latent state changes when 

a novel event occurs. This kind of novelties can be detected 

by statistical method that monitors the probability of 

observed patterns. HMFN model can capture the interactions 

of nodes so that it is expected to work for complex flow 

patterns. The development of such application is future work. 

The proposed collapsed Gibbs sampler converges fast in 

our examples, but other approach for the inference would be 

considered. While variational Bayesian inference is one of 

them, we would like to point the possibility of distributed 

learning when the network structure is sparse. The 

probabilistic dependency of the HMFN is local, therefore we 

can adopt the learning algorithm for each divided network 

(boundary should be adjusted appropriately). Model selection 

for HMFN would be difficult task, we have pointed out that 

the nonparametric Bayesian extension by a method similar to 

infinite HMM [14] can defeat this problem. 

 

VI. CONCLUSION 

In this paper we have proposed the HMFN model, a 

generative stochastic model that describes the dynamics of 

flow on a network. HMFN is based on simple assumptions 

for hidden states of the nodes and observed flow on the links. 

We have also proposed a collapsed Gibbs sampler that 

enables inference of the model. The numerical result shows 

that the proposed inference algorithm converges quickly. 

The synthetic data example have revealed that node-local 

classification approaches (k-means and HMM) fail if strong 

interaction between nodes exists. On the other hand, the 

proposed method enables robust learning. We have applied 

the model for the taxi demand data in Bangkok that reflects 

real human mobility. The results for the real data indicate that 

our model explains the real human mobility patterns well and 

that its application to, for example, anomaly/novelty 

detection or flow pattern prediction is possible. 

As pointed out in [7], the advantage of generative 

probabilistic models is their modularity and extensibility. In 

HMFN case, many kinds of extensions including 

nonparametric Bayesian extension, Markov chain of order m, 

and flow of natural language (communication in SNS), can 

be considered; here we have shown only the simplest 

formulation. 
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