


Abstract—Detecting various anomalies or unusual incidents

in computer network traffic is one of the great challenges for

both researchers and network administrators. If they had an

efficient method that could detect network traffic anomalies

quickly and accurately, they would be able to prevent security

problems or network congestion caused by such anomalies.

Therefore, we conducted a series of experiments to examine

which and how interval-based network traffic features affect

anomaly detection by using three famous machine learning

algorithms: the naïve Bayes, k-nearest neighbor, and support

vector machine. Our findings would help researchers and

network administrators to select effective interval-based

features for each particular type of anomaly, and to choose a

proper machine learning algorithm for their own network

system.

Index Terms—Network traffic, anomaly detection, naïve

Bayes, nearest neighbor, support vector machine.

I. INTRODUCTION

One of the crucial responsibilities of administrators is

discovering various anomalies and unusual incidents in

computer network system. Forms or causes of anomalies can

vary considerably, which produce a variety of network

problems such as network congestion or even security

problems. Examples of network anomalies and unusual

incidents are denial of service attacks (DoS), viruses or

worms spreading, outages, misconfigurations, and flash

crowds. If network administrators had an automatic

mechanism that expeditiously detected unknown anomalies

or unusual incidents, they would avoid serious consequences

caused by such anomalies. Thus, an automatic mechanism

detecting unknown anomalies in computer network traffic

would be attractive.

According to several studies [1]­[3], we can categorize

detection methods into two major groups: signature-based

methods and statistical-based methods.

The signature-based methods, such as Snort [4], Suricata,

or Bro [5], monitor and compare packets with predetermined

attack patterns known as signatures. It is a simple and

efficient method to examine network traffic. Although the

false positive rate of this technique can also be low,

comparing network packets or flows with a large set of

signatures is a time consuming task and has limited

predictive capabilities. In addition, the signature-based

methods cannot detect novel anomalies that are not defined


Manuscript received June 15, 2013; revised December 25, 2013. This

work was supported by the Faculty Members Development Scholarship
Program of Bangkok University, Thailand.

Kriangkrai Limthong is with the Department of Informatics, Graduate

University of Advanced Studies (Sokendai), Japan (e-mail:
kriangkrai.l@bu.ac.th).

in signatures. It means that administrators have to update the

system signatures frequently.

The statistical-based methods, however, can learn

behavior of network traffic and possibly detect novel

anomalies and unusual incidents. Many researchers have

studied on particular techniques, such as the statistical

profiling using histograms [6], parametric statistical

modeling [7], non-parametric statistical modeling [8], rule-

based system [9], clustering-based technique [10], and

spectral technique [11]. All these techniques are

straightforward, but selecting appropriate parameters and

threshold, especially when behavior of network traffic

changes, is quite difficult.

The machine learning technique is one of the methods

which has high capabilities to automatically recognize

complex patterns, and make intelligent decisions on the

basis of data [12]. There are two fundamental groups of

machine learning algorithms: unsupervised algorithms and

supervised algorithms [13].

The unsupervised algorithms are a machine learning

technique thats take a set of unlabeled data as input and

attempt to cluster data. We could detect anomalies on the

basis of the assumption that major groups are normal traffic

and minor groups are anomalous traffic [14]. Unfortunately,

many cases are not true according to this assumption, such

as distributed denial of service attacks (DDoS), viruses or

worms spreading, and flash crowds. From these examples,

the amount of anomalous traffic is normally larger than

those of normal traffic for a certain period. In other cases,

outages and misconfigurations for example, although no

anomalous packet occurs, an unexpected reduction of

network traffic indicates an unusual incident as well.

In contrast to unsupervised algorithms, the supervised

algorithms can cover and detect a wide range of network

anomalies [15]. The basic assumption of anomaly detection

using supervised algorithms is that anomalous traffic is

statistically different from normal traffic. Many studies have

applied several algorithms based upon this assumption, such

as the Bayesian network [16], k-nearest neighbor [17], and

support vector machine algorithm [18]. Nevertheless, the

performance of these algorithms has not been compared.

Many previous studies using machine learning method

utilized packet-based or connection-based features, which

have a scalability problem when the number of packets or

flows increases. However, the interval-based features can

possibly solve this problem. For example, suppose we have

network traffic including 10 packets for 10 seconds, assume

that the processing time for 1 packet is 1 unit then the

processing time of packet-based features for this case is 10

units. When the number of packets increases to 1,000

packets for the same 10 seconds, the processing time will

Performance of Interval-Based Features in Anomaly

Detection by Using Machine Learning Approach

Kriangkrai Limthong

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

292DOI: 10.7763/IJMLC.2014.V4.427

also rise to 1,000 units. However, assume that the

processing time for the interval-based features is 1 unit per 1

second, the processing time of interval-based feature in both

cases are equally 10 units.

Another problem of the packet-based or connection-based

features is that they cannot detect some incidents such as

outages or misconfigurations. Although using packet-based

features can distinguish between normal and anomalous

packets, it hardly detects an unexpected incident that does

not contain anomalous packet. While the interval-based

features have been shown that it could discover unusual

incidents which do not have anomalous packets [19]. The

question remains what interval-based features are suitable

for each particular type of anomaly. Therefore, in this study,

we examined several interval-based features to find an

answer for this question.

In our study, we examined which and how interval-based

network traffic features affect the performance of anomaly

detection by using three machine learning algorithms. The

key contributions of this work comprise the following three

comparisons:

1) Comparison of nine interval-based features relating

to each particular type of anomaly.

2) Comparison of detection performance for five major

types of anomalies selected from a testbed dataset.

3) Comparison of three well-known machine learning

algorithms, namely naïve Bayes, k-nearest neighbor,

and support vector machine.

We explain materials and methods of our experiments in

Section II. Next, we show results of each experiment in

Section III. Finally, we discuss the results and draw

conclusions in Section IV.

Fig. 1. Procedure for our experiments.

TABLE I: INTERVAL-BASED FEATURES

f# Feature Description

f1 Packet Number of packets

f2 Byte Sum of packet size

f3 Flow Number of flows

f4 SrcAddr Number of source addresses

f5 DstAddr Number of destination addresses

f6 SrcPort Number of source ports

f7 DstPort Number of destination ports

f8 ∆Addr |SrcAddr – DstAddr|

f9 ∆Port |SrcPort – DstPort|

II. MATERIALS AND METHODS

The diagram in Fig. 1 illustrates the procedure for our

experiments. First, the feature extraction step will be

explained in subsection II-A. Second, we describe all three

learning algorithms applied to the classification step in

subsections II-B to II-D. Next, we define metrics used for

the performance evaluation step in subsection II-E. Finally,

we explain how to collect and prepare training data and test

data in subsection II-F.

A. Feature Extraction

We focused on nine interval-based features of network

traffic listed in Table I. The interval-based features are

characteristics of network traffic that occur in a particular

time interval, such as the number of packets, the number of

IP addresses, and the number of ports . In Table I, the first

column (f#) denotes the abbreviation of each feature, the

second column lists the feature name, and the last column

describes detail of each feature. Please note that we

conducted experiments by using individual features rather

than combined features.

The key function of the feature extraction step is

extracting interval-based features from network traffic. We

separated one-day network traffic data into many piece of

time interval. Every single time interval had an index

number for distinction. The number of time intervals or

index numbers in one-day data depended on the interval

value. For example, if we define the interval value as 1

second, the number of time intervals for one day will be

86,400, so the index numbers are from 0 to 86,399. If we

change the interval value to 60 seconds, the number of time

intervals for one day will be 1,440. In this case, the index

numbers are from 0 to 1,439 and so forth. For our

experiments, we altered the interval value between 1 and 60

seconds.

Another key point in the feature extraction step is that we

plotted the data point of each time interval on each

individual feature space. For example, we measured the

Packet feature (f1) at the time interval holding index number

0, and then we plotted that data point on the feature space

number 0. Similarly, we plotted the Packet feature (f1) data

point of the time interval holding index number 1 on the

feature space number 1 and so on until the last index number.

Obviously, decision making relied on individual time

intervals or individual feature spaces.

B. Naïve Bayes Classification

The naïve Bayes algorithm is based on Bayesian theorem

[20], which can simplify in Bayes' formula as

)(

)()|(
)|(

xp

Pxp
xP


  , (1)

so we can express Eq. (1) in plain English by saying that

evidence

priorlikelihood
posterior


 . (2)

P(ω|x) is the posterior probability of category ω given

that feature value x has been measured; p(x|ω) is the

likelihood function of category ω with respect to feature

value x; P(ω) is the prior probability of category ω; and the

evidence or p(x) can be merely viewed as a scale factor that

guarantees the posterior probabilities sum to one.

In our study, however, we applied the technique called

one-class classification to detect anomalies, which is a bit

different from original Bayes' formula. In addition, we

presumed that the sum of random variables is distributed in

accordance with a Gaussian or normal probability density

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

293

function, for a sufficiently large number of summing terms.

Therefore, Eq. (1) could be rewritten as the univariate

Gaussian defined by where the μ denotes the mean or

expected value of random variable x, and the parameter σ
2
 is

equal to the variance of random variable x. From Eq. (3), we

estimated the parameters μ and σ of each individual time

interval from the training data set.








 


2

2

2

)(
exp

2

1
)(







x
xp , (3)

To classify test data, we set the parameter value of the

discriminant function between 2σ and 4σ. If a probability of

feature value x or p(x) computed from Eq. (3) at a particular

time interval is less than the probability of the discriminant

value, we classify that time interval as an anomalous

interval. On the other hand, if a probability of feature value

x or p(x) at a particular time interval is equal to or greater

than the probability of the discriminant value, we classify

that time interval as a normal interval.

For example, suppose we defined the parameter value of

discriminant function equal to 2σ. We measured the Packet

feature (f1) to be 48 packets at a particular time interval. If

the value of p(48) is less than the value of p(2σ) (both values

derived from Eq. (3), we classify that time interval as an

anomalous interval. However, if the value of p(48) is equal

to or greater than the value of p(2σ), we classify that interval

as a normal interval.

C. K-Nearest Neighbor Classification

The k-nearest neighbor algorithm is one of the

fundamental and simple classification methods [21] when

reliable parametric estimates of probability densities are

unknown or difficult to determine. In general, this technique

is based on the Euclidean distance between a test sample

and specified training samples. Let xi be a test sample with f

features (xi1, xi2,…, xif); n be the total number of input

samples (i = 1, 2,…, n) and f be the total number of features

(j = 1, 2,…, f). The Euclidean distance between sample xi

and xt (t = 1, 2,…, n) is defined as

 22

11)()(),(tfiftiti xxxxxxd   (4)

In our study, however, we tested each individual feature,

so the Euclidean distance formula from Eq. (4) can be

rewritten as

 2

11)(),(titi xxxxd  (5)

We varied the distance values for each feature to examine

the best distant value for a particular type of anomaly. The

range of distance values depended on each feature, the

distant value of almost all features was not over 100, and the

max distance value was 24,000 for the Byte feature (f2).

To classify test data, we selected common k = 3 as the

same other studies using k-nearest neighbor classification.

At a particular time interval, if training samples near a test

sample are not longer than the distance value, and the

number of nearby training samples is less than the k value,

we classify that time interval as an anomalous interval.

However, if the number of nearby training samples is equal

to or more than the k value, we classify that time interval as

a normal interval.

For example, suppose that we set the distance value d =

20, and k = 3. We measured the Packet feature (f1) to be 48

at a particular time interval. If we find that the number of

training samples, which have a feature value between 28 and

68, is less than 3, we classify that time interval as an

anomalous interval. However, if we find that the number of

training samples, which have a feature value between 28 and

68, is equal to or more than 3, we classify that time interval

as a normal interval.

D. Support Vector Machine Classification

The support vector machines are a relatively new set of

algorithms [22] that can map training data into a high-

dimensional feature space. As a result, we can construct a

separating hyperplane by maximizing the margin or distance

from the hyperplane to the nearest training data points.

A decision function for binary support vector machine is

presented by the following formula:

 







 



m

i

iii bxxkyxf
1

),(.sgn)( . (6)

where x is the feature vector; α and y are the weights of the

support vectors; having y as a positive or negative class

mark (+1 or -1) and b is the bias; function k() is the kernel

function. Training vectors for which αi ≠ 0 are called

support vectors.

In our study, we use the Libsvm tools [23] with a radial

basis function (RBF) kernel of the form

 'exp)',(xxxxk   . (7)

Each support vector thus becomes the center of a RBF,

and γ determines the area of influence that the support

vector has over the data space. We varied γ or the gamma

value between 10
-5

 and 10
4
 to observe a change for the best

detection performance.

To classify test data, we employed the Svm-Predict

function from the Libsvm to determine an unknown vector

sample x, which belongs to the positive or negative class. It

returns +1 or -1 as the result of classification and provides to

y the result of the sum from the decision formula Eq. (6). If

the result at a particular time interval is negative class (-1),

we classify that time interval as an anomalous interval.

While, if the result is positive class (+1), we classify that

time interval as a normal interval.

TABLE II: INTERVAL-BASED EVALUATION

Test Result
Actual Result

Anomaly Normal

Anomaly True Positive (TP) False Positive (FP)

Normal False Negative (FN) True Negative (TN)

E. Performance Evaluation

To evaluate detection performance, we use precision (P),

recall (R) [24], and F-measure value (F) [25] on a per-

interval basis. All measures can be calculated on the basis of

four parameters, namely the true positive (TP) rate (the

number of anomalous intervals correctly detected), the false

positive (FP) rate (the number of normal intervals wrongly

detected as anomalous intervals), the false negative (FN)

rate (the number of anomalous intervals not detected), and

the true negative (TN) rate (the number of normal intervals

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

294

correctly detected). All of the parameters are defined in

Table II. The precision, recall, and F-measure value are

derived from these parameters by using the following Eqs.

8-10, respectively:

FPTP

TP
precision


 , (8)

FNTP

TP
recall


 , (9)

recallprecision

recallprecision
measureF




 2 . (10)

The precision or positive predictive value as Eq. (8) is the

percentage of detected intervals that are actually anomalies.

The recall or sensitivity value as Eq. (9) is the percentage of

the actual anomalous intervals that are detected. Finally, Eq.

(10) shows the F-measure value which is the harmonic mean

value between precision and recall.

Theoretically, we do need methods or features for

reaching a high F-measure value because the F-measure

value takes both precision and recall into consideration.

From a practical point of view, however, we have to

consider costs of both the false positive and false negative

rate. After that, we can decide whether precision or recall is

the more important factor for detecting anomalies in

network traffic.

F. Data Sets

The raw data were collected from an edge router of the

Internet service center in Kasetsart University, Thailand.

This center is for college students, educators, and

researchers to obtain advantageous information for their

studies from the Internet. There are about 1,300 users

everyday, and the service time is between 8:30 and 24:00 on

weekdays. Users cannot modify or install any software in

the clients, and administrators provide appropriate software

for all ordinary users. In addition, administrators regularly

update the virus signatures for anti-virus software installed

on all of the clients. At the end of every day, all clients

automatically have the installed software and operating

system returned back to the initial state. Therefore, we can

guarantee that no clients contain any malicious software for

attacking. We acquired attack-free network data traces from

this center for 55 days in three months.

We divided the attack-free network data traces for a

training data set and test data set. We selected 39-day data

traces from two months as the training data set for training

all of the classifiers. The other 16-day data traces are from

another month, and were combined with five groups of

anomalies as the test data set. The selected anomalies are

from the Lincoln Laboratory at the Massachusetts Institute

of Technology [26], [27]. These anomalies were collected

and provided for evaluation. We selected five categories of

anomalies that had the following characteristics, also as

listed in Table III:

1) Back attack is a denial of service attack against the

Apache web server through port 80, where a client

requests a URL containing many backslashes.

2) IpSweep attack is a surveillance sweep performing

either a port sweep or ping on multiple IP addresses.

3) Neptune attack is a SYN flood denial of service

attack on one or more destination ports.

4) PortSweep attack is a surveillance sweep through

many ports to determine which services are

supported on a single host.

5) Smurf attack is an amplified attack using ICMP echo

reply flood.

The 39-day training data contained only normal traffic

although these machine learning algorithms can learn from

both labeled and unlabeled data. On the other hand, the test

data combined both normal traffic and abnormal traffic to

evaluate detection performance for every feature and

algorithm. According to Table III, each of the Back and

IpSweep attack is 32-day test set where from the 16-day

data traces were combined with two instances. Moreover,

each Neptune, PortSweep, and Smurf attack is 48-day test

set where from the 16-day data traces were combined with

three instances.

TABLE III: CHARACTERISTICS OF SELECTED ATTACKS

Source
No. of

SrcAddr

No. of

DstAddr

No. of

SrcPort

No. of

DstPort

No. of

Packet

Average

Packet

Size (Byte)

Duration

(sec.)

Average

Packet/sec.

%

Anomaly

Back

Week 2 Fri 1 1 1,013 1 43,724 1,292.31 651 67.16 0.75

Week 3 Wed 1 1 999 1 43,535 1,297.29 1,064 40.92 1.23

IpSweep

Week 3 Wed 1 2,816 1 104 5,657 60.26 132 42.86 0.15

Week 6 Thu 5 1,779 2 105 5,279 67.75 4,575 1.15 5.30

Neptune

Week 5 Thu 2 1 26,547 1,024 205,457 60 3,143 65.37 3.64

Week 6 Thu 2 1 48,932 1,024 460,780 60 6,376 72.27 7.38

Week 7 Fri 2 1 25,749 1,024 205,600 60 3,126 65.77 3.62

PortSweep

Week 5 Tue 1 1 1 1,024 1,040 60 1,024 1.02 1.19

Week 5 Thu 1 1 1 1,015 1,031 60 1,015 1.02 1.17

Week 6 Thu 2 2 2 1,024 1,608 60 1,029 1.56 1.19

Smurf

Week 5 Mon 7,428 1 1 1 1,931,272 1,066 1,868 1,033.87 2.16

Week 5 Thu 7,428 1 1 1 1,932,325 1,066 1,916 1,008.52 2.22

Week 6 Thu 7,428 1 1 1 1,498,073 1,066 1,747 857.51 2.02

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

295

III. RESULTS

To ascertain the best F-measure value of each feature for

a different type of anomaly, we varied the time interval

value and determined parameters for each algorithm. For all

three algorithms, we commonly varied time interval value

with 1, 10, 20, 30, 40, 50, and 60 seconds. Moreover, we

varied the value of significant parameter for each algorithm:

the discriminant value for naïve Bayes, the distance value

for k-nearest neighbor, and the gamma value for support

vector machine.

In our experiment, the classification is interval basis, so

each training or test sample represents a single time interval

in training or test data for one-day traffic. Along one-day

test data, we computed the precision, recall, and F-measure

value and then calculated the average of the three values for

all test data. After that, we discovered the highest F-measure

value of each feature for a different type of anomaly.

A. Experiment 1: Naïve Bayes

In the first experiment, the discriminant value affects the

F-measure values on different time interval values. To

examine which discriminant value gains the best F-measure

value, we varied the discriminant value from 2.0 to 4.0,

increasing by 0.1 each time.

The following describes a process to discover the best F-

measure value of each feature for a different type of

anomaly by using the naïve Bayes algorithm. First, we

selected test data containing the Back attacks and tested

detection performance on the Packet feature (f1). Then we

computed the average value of precision, recall, and F-

measure. Second, we varied time interval values and

discriminant values, so we can plot average F-measure

values on a graph as shown in Fig. 2. The x-axis represents

time interval values, the y-axis illustrates discriminant

values, and the z-axis shows F-measure.

From Fig. 2, we spotted the best F-measure value for

Back attacks by using the Packet feature (f1). Next, we

switched from the Packet feature (f1) to the Byte feature (f2)

and performed it again from the first step until all nine

features had been used. After testing all nine features, we

changed the type of anomalies from Back attacks to the

IpSweep attacks, and performed the experiment again from

the first step. We carried out all tasks like this for all five

types of anomalies by using all nine features. Finally, we

compared the maximum value of precision, recall, and F-

measure value for each anomaly sorted by features (f1-f9) as

shown in Fig. 3. The x-axis indicates all nine features and y-

axis shows the value of precision, recall, and F-measure.

B. Experiment 2: K-Nearest Neighbor

In the second experiment, the distance value affects the F-

measure values on different time interval values. To

determine which distance value earns the highest F-measure

value, we commonly varied the distance value from 1 up to

100, increasing by 1 each time, except the Byte feature (f2),

which we varied the distance value up to 24,000. We

constantly specified the number of k is equal to 3 for all

experiments using k-nearest neighbor.

We conducted the experiment like a naïve Bayes

experiment to define the highest F-measure value of each

feature for different types of anomalies. After varying time

interval values and distance values on the Back attacks by

using the Packet feature (f1), we plotted F-measure value on

a graph as shown in Fig. 4. The x-axis represents time

interval values, y-axis illustrates distance values, and z-axis

shows F-measure values. We can notice the different shapes

of graphs between using naïve Bayes and k-nearest neighbor.

Fig. 2. F-measure of Packet (f1) using naïve Bayes.

Fig. 3. Performance comparison using naïve Bayes.

Fig. 4. F-measure of Packet (f1) using k-nearest neighbor.

We spotted the highest F-measure value of the Back

attacks by using the Packet feature (f1) from Fig. 4. Next,

we went through a process the same as that in the naïve

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

296

Bayes experiment for all five types of anomalies and all nine

features. Finally, we compared the maximum value of

precision, recall, and F-measure for individual anomalies

sorted by features (f1-f9) as shown in Fig. 5.

Fig. 5. Performance comparison using k-nearest neighbor.

C. Experiment 3: Support Vector Machine

The final experiment was conducted on the assumption

that the gamma affects the F-measure values on different

time interval values. Therefore, we varied the gamma value

between 10
-5

 and 10
4
 for different time interval values to

ascertain the best gamma value.

We performed the experiment in the same way as for both

previous algorithms to discover the finest F-measure value

of each feature for a different type of anomaly. First, we

varied time interval values and gamma values on the Back

attacks by using the Packet feature (f1), and then we plotted

F-measure values on a graph as shown in Fig. 6. The x-axis

represents time interval values, y-axis illustrates gamma

values, and z-axis shows F-measure values.

Fig. 6. F-measure of Packet (f1) using support vector machine.

As shown in Fig. 6, we discovered the finest F-measure

value of Back attacks by using the Packet feature (f1). Next,

we went through the same process as in the two previous

experiments for all five types of anomalies by using all nine

features. Eventually, we compared the maximum value of

precision, recall, and F-measure value for each anomaly

sorted by features (f1-f9) as shown in Fig. 7. The x-axis

shows all nine features and y-axis indicates the value of

precision, recall, and F-measure.

For all three experiments, we list the top three features of

highest prediction performance in Table V, which is

primarily ordered by the naïve Bayes algorithm. This table

indicates the interval values (Intvl.) of the best detection

performance where the unit of this column is second.

Moreover, the table separately presents precise values of

precision (P), recall (R), and F-measure (F) for each learning

algorithm.

IV. DISCUSSION

Our results suggest that selecting the proper interval-

based network traffic feature for particular types of

anomalies is the key to a great success in anomaly detection

by using machine learning approach. By using naïve Bayes

and k-nearest neighbor algorithms, we can use the Packet (f1)

or Byte feature (f2) to detect anomalies contained in a large

number of packets, such as the Back, Neptune, and Smurf

attack. In addition, the Flow feature (f3) can detect only a

huge number of connections or flows, such as the Neptune

and Smurf attack. The SrcAddr (f4), DstAddr (f5) and

∆Addr features (f8) efficiently detect anomalies in which

source addresses and destination addresses been varied, such

as the IpSweep and Smurf attack. The DstPort feature (f7)

effectively detects anomalies that have changed the

destination ports, especially in PortSweep attack. However,

it is different from the SrcPort (f6) and ∆Port features (f9),

both of these features can detect only substantial varying in

source ports like a Neptune attack, because source port

numbers are always changed by source computers.

In contrast to both the naïve Bayes and k-nearest neighbor

algorithms, we found that the performance of support vector

machine contains a high false positive rate. Although recall

values of all features were high when the support vector

machine was used, the high false positive rate caused the

low values of F-measure. The main reason for the high false

positive values is that the support vector machine is

sensitive to noisy data, of which the network traffic contains

many. Moreover, we discovered that the gamma value is not

strong enough to affect the F-measure values on different

time interval values.

Consideration in time complexity is a secondary issue to

how effective each algorithm will be. Table IV shows the

time complexity of training phase and test phase for each

algorithm. In this table, m is the number of training days, n

is the number of time intervals for one-day long, and f is the

number of features, we performed our experiment by using

individual features so f = 1, and s is the number of support

vectors generated by the Svm-Train function from the

Libsvm, which depend on patterns of training data. If the

training data closely gather together, the number of support

vectors will be low; however, if the training data disperse,

the number of support vectors will reach a higher value.

Although we can apply more than one feature to machine

learning algorithms, the number of features affects the

processing time of both training and test phases. For the

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

297

naïve Bayes, the time complexity of the training phase relies

on m, n and f, while the test phase relies on n and f. These

indicate when we combine more than one feature, the

processing time for training and test phases linearly

increases. For k-nearest neighbor, although the time

complexity of the training phase is a constant, the test phase

depends on m, n, and f. This indicates that only the

processing time of the test phase is linearly grown when we

increase the number of features. For the support vector

machine, the time complexity of the training phase relies on

m
2
, n and f

 2
 while the test phase relies on n, f, and s. That

means when we add a number of features, the processing

time of the training phase increases exponentially, while the

processing time of the test phase increases linearly.

TABLE IV: TIME COMPLEXITY

Classifier Training Phase Test Phase

Naïve Bayes O(mnf) O(nf)

k-Nearest Neighbor O(1) O(mnf)

Support Vector Machine O(m2nf 2) O(nfs)

Fig. 7. Performance comparison using support vector machine.

TABLE V: TOP 3 FEATURES OF DETECTION PERFORMANCE

Anomaly

Type
f#

Naïve Bayes k-Nearest Neighbor Support Vector Machine

Intvl. P R F Intvl. P R F Intvl. P R F

Back

f2 10 0.75 0.95 0.83 1 0.79 0.93 0.84 1 0.03 0.98 0.05

f1 40 0.50 0.52 0.48 1 0.27 0.44 0.31 20 0.03 0.93 0.06

f4 40 0.04 0.29 0.05 30 0.03 0.38 0.05 60 0.02 0.79 0.04

IpSweep

f8 60 0.50 0.42 0.34 1 0.27 0.41 0.27 10 0.14 0.93 0.22

f5 60 0.53 0.40 0.33 1 0.25 0.40 0.25 10 0.14 0.94 0.22

f7 10 0.51 0.52 0.32 10 0.48 0.50 0.34 10 0.14 0.92 0.22

Neptune

f9 30 0.91 0.89 0.90 1 0.69 0.76 0.71 1 0.13 0.99 0.23

f6 30 0.90 0.90 0.90 1 0.71 0.79 0.74 1 0.13 0.99 0.23

f7 10 0.84 0.97 0.89 10 0.82 0.97 0.87 1 0.20 1.00 0.33

PortSweep

f7 50 0.41 0.58 0.45 60 0.61 0.97 0.71 60 0.07 0.99 0.13

f9 60 0.05 0.20 0.07 10 0.04 0.65 0.08 10 0.04 0.90 0.08

f6 60 0.05 0.18 0.06 10 0.04 0.70 0.08 10 0.04 0.90 0.07

Smurf

f4 1 0.97 1.00 0.98 1 0.89 1.00 0.94 1 0.06 1.00 0.11

f1 10 0.85 1.00 0.91 1 0.89 0.99 0.94 1 0.06 1.00 0.11

f8 1 0.84 0.99 0.91 1 0.89 1.00 0.94 1 0.06 1.00 0.12

In summary, our work revealed the effective interval-

based network traffic features for five major types of

network traffic anomalies. In many cases, the results from

the naïve Bayes and k-nearest neighbor algorithm were

virtually the same. Nearly all F-measure values of naïve

Bayes were higher than those of the k-nearest neighbor

algorithm. However, almost all recall values of k-nearest

neighbor were better than those of naïve Bayes. For the

support vector machine, F-measure values for all features

were the lowest of the three algorithms, but recall values

were high for almost all features. Our experimental results

not only reveale interval-based features which enable

administrators to detect current anomalies more accurately

and quickly but these can be used for detecting a novel

anomaly in real time as well.

ACKNOWLEDGMENT

We gratefully acknowledge the funding from the Faculty

Members Development Scholarship Program of Bangkok

University, Thailand. The authors would like to thank all of

the anonymous reviewers for their excellent suggestions that

have greatly improved the quality of this paper.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A

survey,” ACM Comput. Surv., vol. 41, pp. 15:1-15:58, July 2009.
[2] A. Patcha and J.-M. Park, “An overview of anomaly detection

techniques: existing solutions and latest technological trends,”

Computer Networks, vol. 51, no. 12, pp. 3448-3470, 2007.
[3] J. McHugh, “Intrusion and intrusion detection,” International Journal

of Information Security, vol. 1, pp. 14-35, 2001.
[4] M. Roesch, “Snort - lightweight intrusion detection for networks,” in

Proc. the 13th USENIX conference on System administration, ser.

LISA '99. Berkeley, CA, USA: USENIX Association, 1999, pp. 229-
238.

[5] V. Paxson, “Bro: a system for detecting network intruders in real-
time,” Comput. Netw., vol. 31, pp. 2435-2463, December 1999.

[6] K. Yamanishi, J.-I. Takeuchi, G. Williams, and P. Milne, “On-line

unsupervised outlier detection using finite mixtures with discounting
learning algorithms,” Data Min. Knowl. Discov., vol. 8, pp. 275-300,

May 2004.
[7] R. Gwadera, M. J. Atallah, and W. Szpankowski, “Reliable detection

of episodes in event sequences,” Knowl. Inf. Syst., vol. 7, pp. 415-437,

May 2005.
[8] C. Chow, “Parzen-window network intrusion detectors,” in Proc. the

16th International Conference on Pattern Recognition (ICPR'02), vol.
4, ser. ICPR '02. Washington, DC, USA: IEEE Computer Society,

2002, pp. 385-388.

[9] D. Barbará, J. Couto, S. Jajodia, and N. Wu, “Adam: a testbed for
exploring the use of data mining in intrusion detection,” SIGMOD

Rec., vol. 30, pp. 15-24, December 2001.

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

298

[10] K. Sequeira and M. Zaki, “Admit: anomaly-based data mining for

intrusions,” in Proc. the eighth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, ser. KDD '02.

New York, NY, USA: ACM, 2002, pp. 386-395.

[11] M. Thottan and C. Ji, “Anomaly detection in ip networks,” IEEE
Transactions on Signal Processing, vol. 51, no. 8, pp. 2191-2204,

Aug. 2003.

[12] C. Sinclair, L. Pierce, and S. Matzner, “An application of machine
learning to network intrusion detection,” in Proc. the 15th Annual

Computer Security Applications Conference, ser. ACSAC '99.
Washington, DC, USA: IEEE Computer Society, 1999, pp. 371-377.

[13] C. M. Bishop, Pattern Recognition and Machine Learning

(Information Science and Statistics), 1st ed. Springer, Oct. 2007.
[14] K. Leung and C. Leckie, “Unsupervised anomaly detection in

network intrusion detection using clusters,” in Proc. the Twenty-
Eighth Australasian Conference on Computer Science - Volume 38,

ser. ACSC '05. Darlinghurst, Australia, Australia: Australian

Computer Society, Inc., 2005, pp. 333-342.
[15] P. Laskov, P. Düssel, C. Schäfer, and K. Rieck, “Learning intrusion

detection: Supervised or unsupervised?” in Image Analysis and
Processing – ICIAP 2005, ser. Lecture Notes in Computer Science, F.

Roli and S. Vitulano, Eds. Springer Berlin / Heidelberg, 2005, vol.

3617, pp. 50-57.
[16] D. Barbará, N. Wu, and S. Jajodia, “Detecting novel network

intrusions using bayes estimators,” in Proc. the First SIAM
Conference on Data Mining, Apr. 2001.

[17] L. Kuang, “Dnids: A dependable network intrusion detection system

using the csi-knn algorithm,” 2007.
[18] L. Khan, M. Awad, and B. Thuraisingham, “A new intrusion

detection system using support vector machines and hierarchical
clustering,” The VLDB Journal, vol. 16, pp. 507-521, October 2007.

[19] K. Limthong, P. Watanapongse, and F. Kensuke, “A wavelet-based

anomaly detection for outbound network traffic,” in Proc. 8th Asia-
Pacific Symposium on Information and Telecommunication

Technologies, June 2010.
[20] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Fourth

Edition, 4th ed. Academic Press, 2008.

[21] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA:

McGraw-Hill, Inc., 1997.

[22] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C.

Williamson, “Estimating the support of a high-dimensional

distribution,” Neural Comput., vol. 13, no. 7, pp. 1443-1471, Jul.
2001.

[23] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector

machines,” ACM Trans. Intell. Syst. Technol., vol. 2, pp. 27:1-27:27,
May 2011.

[24] J. Davis and M. Goadrich, “The relationship between precision-recall
and roc curves,” in Proc. the 23rd International Conference on

Machine Learning, ser. ICML '06. New York, NY, USA: ACM, 2006,

pp. 233-240.
[25] C. J. V. Rijsbergen, Information Retrieval. Newton, MA, USA:

Butterworth-Heinemann, 1979.
[26] R. Lippmann, D. Fried, I. Graf et al., “Evaluating intrusion detection

systems: the 1998 darpa off-line intrusion detection evaluation,” vol.

2, pp. 12-26, 2000.
[27] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The

1999 darpa off-line intrusion detection evaluation,” Computer
Networks, vol. 34, no. 4, pp. 579-595, 2000.

Kriangkrai Limthong received a B.Eng (2nd

Honors) degree in computer engineering from
Sripatum University; and a M.Eng degree in computer

engineering from Kasetsart University, Thailand. He

worked as a systems engineer at Advanced Info
Service PLC. and Thailand Post Co., Ltd. for several

years. He is currently pursuing the Ph.D. degree in the
Department of Informatics, Graduate University of

Advanced Studies (Sokendai), Japan. He has also been a lecturer in the

Department of Computer Engineering, School of Engineering, Bangkok
University, Thailand, since 2009. His research interests are network traffic

measurement, computer security, signal processing techniques and
machine learning methods.

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

299

