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Abstract—Detecting various anomalies or unusual incidents 

in computer network traffic is one of the great challenges for 

both researchers and network administrators. If they had an 

efficient method that could detect network traffic anomalies 

quickly and accurately, they would be able to prevent security 

problems or network congestion caused by such anomalies. 

Therefore, we conducted a series of experiments to examine 

which and how interval-based network traffic features affect 

anomaly detection by using three famous machine learning 

algorithms: the naïve Bayes, k-nearest neighbor, and support 

vector machine. Our findings would help researchers and 

network administrators to select effective interval-based 

features for each particular type of anomaly, and to choose a 

proper machine learning algorithm for their own network 

system.  
 

Index Terms—Network traffic, anomaly detection, naïve 

Bayes, nearest neighbor, support vector machine. 

 

I. INTRODUCTION 

One of the crucial responsibilities of administrators is 

discovering various anomalies and unusual incidents in 

computer network system. Forms or causes of anomalies can 

vary considerably, which produce a variety of network 

problems such as network congestion or even security 

problems. Examples of network anomalies and unusual 

incidents are denial of service attacks (DoS), viruses or 

worms spreading, outages, misconfigurations, and flash 

crowds. If network administrators had an automatic 

mechanism that expeditiously detected unknown anomalies 

or unusual incidents, they would avoid serious consequences 

caused by such anomalies. Thus, an automatic mechanism 

detecting unknown anomalies in computer network traffic 

would be attractive. 

According to several studies [1]­[3], we can categorize 

detection methods into two major groups: signature-based 

methods and statistical-based methods. 

The signature-based methods, such as Snort [4], Suricata, 

or Bro [5], monitor and compare packets with predetermined 

attack patterns known as signatures. It is a simple and 

efficient method to examine network traffic. Although the 

false positive rate of this technique can also be low, 

comparing network packets or flows with a large set of 

signatures is a time consuming task and has limited 

predictive capabilities. In addition, the signature-based 

methods cannot detect novel anomalies that are not defined 
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in signatures. It means that administrators have to update the 

system signatures frequently. 

The statistical-based methods, however, can learn 

behavior of network traffic and possibly detect novel 

anomalies and unusual incidents. Many researchers have 

studied on particular techniques, such as the statistical 

profiling using histograms [6], parametric statistical 

modeling [7], non-parametric statistical modeling [8], rule-

based system [9], clustering-based technique [10], and 

spectral technique [11]. All these techniques are 

straightforward, but selecting appropriate parameters and 

threshold, especially when behavior of network traffic 

changes, is quite difficult. 

The machine learning technique is one of the methods 

which has high capabilities to automatically recognize 

complex patterns, and make intelligent decisions on the 

basis of data [12]. There are two fundamental groups of 

machine learning algorithms: unsupervised algorithms and 

supervised algorithms [13]. 

The unsupervised algorithms are a machine learning 

technique thats take a set of unlabeled data as input and 

attempt to cluster data. We could detect anomalies on the 

basis of the assumption that major groups are normal traffic 

and minor groups are anomalous traffic [14]. Unfortunately, 

many cases are not true according to this assumption, such 

as distributed denial of service attacks (DDoS), viruses or 

worms spreading, and flash crowds. From these examples, 

the amount of anomalous traffic is normally larger than 

those of normal traffic for a certain period. In other cases, 

outages and misconfigurations for example, although no 

anomalous packet occurs, an unexpected reduction of 

network traffic indicates an unusual incident as well. 

In contrast to unsupervised algorithms, the supervised 

algorithms can cover and detect a wide range of network 

anomalies [15]. The basic assumption of anomaly detection 

using supervised algorithms is that anomalous traffic is 

statistically different from normal traffic. Many studies have 

applied several algorithms based upon this assumption, such 

as the Bayesian network [16], k-nearest neighbor [17], and 

support vector machine algorithm [18]. Nevertheless, the 

performance of these algorithms has not been compared. 

Many previous studies using machine learning method 

utilized packet-based or connection-based features, which 

have a scalability problem when the number of packets or 

flows increases. However, the interval-based features can 

possibly solve this problem. For example, suppose we have 

network traffic including 10 packets for 10 seconds, assume 

that the processing time for 1 packet is 1 unit then the 

processing time of packet-based features for this case is 10 

units. When the number of packets increases to 1,000 

packets for the same 10 seconds, the processing time will 
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also rise to 1,000 units. However, assume that the 

processing time for the interval-based features is 1 unit per 1 

second, the processing time of interval-based feature in both 

cases are equally 10 units. 

Another problem of the packet-based or connection-based 

features is that they cannot detect some incidents such as 

outages or misconfigurations. Although using packet-based 

features can distinguish between normal and anomalous 

packets, it hardly detects an unexpected incident that does 

not contain anomalous packet. While the interval-based 

features have been shown that it could discover unusual 

incidents which do not have anomalous packets [19]. The 

question remains what interval-based features are suitable 

for each particular type of anomaly. Therefore, in this study, 

we examined several interval-based features to find an 

answer for this question. 

In our study, we examined which and how interval-based 

network traffic features affect the performance of anomaly 

detection by using three machine learning algorithms. The 

key contributions of this work comprise the following three 

comparisons: 

1) Comparison of nine interval-based features relating 

to each particular type of anomaly. 

2) Comparison of detection performance for five major 

types of anomalies selected from a testbed dataset. 

3) Comparison of three well-known machine learning 

algorithms, namely naïve Bayes, k-nearest neighbor, 

and support vector machine. 

We explain materials and methods of our experiments in 

Section II. Next, we show results of each experiment in 

Section III. Finally, we discuss the results and draw 

conclusions in Section IV. 

 
Fig. 1. Procedure for our experiments. 

 

TABLE I: INTERVAL-BASED FEATURES 

f# Feature Description 

f1 Packet Number of packets 

f2 Byte Sum of packet size 

f3 Flow Number of flows 

f4 SrcAddr Number of source addresses 

f5 DstAddr Number of destination addresses 

f6 SrcPort Number of source ports 

f7 DstPort Number of destination ports 

f8 ∆Addr |SrcAddr – DstAddr| 

f9 ∆Port |SrcPort – DstPort| 

 

II. MATERIALS AND METHODS 

The diagram in Fig. 1 illustrates the procedure for our 

experiments. First, the feature extraction step will be 

explained in subsection II-A. Second, we describe all three 

learning algorithms applied to the classification step in 

subsections II-B to II-D. Next, we define metrics used for 

the performance evaluation step in subsection II-E. Finally, 

we explain how to collect and prepare training data and test 

data in subsection II-F. 

A. Feature Extraction 

We focused on nine interval-based features of network 

traffic listed in Table I. The interval-based features are 

characteristics of network traffic that occur in a particular 

time interval, such as the number of packets, the number of 

IP addresses, and the number of ports . In Table I, the first 

column (f#) denotes the abbreviation of each feature, the 

second column lists the feature name, and the last column 

describes detail of each feature. Please note that we 

conducted experiments by using individual features rather 

than combined features. 

The key function of the feature extraction step is 

extracting interval-based features from network traffic. We 

separated one-day network traffic data into many piece of 

time interval. Every single time interval had an index 

number for distinction. The number of time intervals or 

index numbers in one-day data depended on the interval 

value. For example, if we define the interval value as 1 

second, the number of time intervals for one day will be 

86,400, so the index numbers are from 0 to 86,399. If we 

change the interval value to 60 seconds, the number of time 

intervals for one day will be 1,440. In this case, the index 

numbers are from 0 to 1,439 and so forth. For our 

experiments, we altered the interval value between 1 and 60 

seconds. 

Another key point in the feature extraction step is that we 

plotted the data point of each time interval on each 

individual feature space. For example, we measured the 

Packet feature (f1) at the time interval holding index number 

0, and then we plotted that data point on the feature space 

number 0. Similarly, we plotted the Packet feature (f1) data 

point of the time interval holding index number 1 on the 

feature space number 1 and so on until the last index number. 

Obviously, decision making relied on individual time 

intervals or individual feature spaces. 

B. Naïve Bayes Classification 

The naïve Bayes algorithm is based on Bayesian theorem 

[20], which can simplify in Bayes' formula as 
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xp

Pxp
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
  ,                    (1) 

so we can express Eq. (1) in plain English by saying that 

           
evidence

priorlikelihood
posterior


 .                        (2) 

P(ω|x) is the posterior probability of category ω given 

that feature value x has been measured; p(x|ω) is the 

likelihood function of category ω with respect to feature 

value x; P(ω) is the prior probability of category ω; and the 

evidence or p(x) can be merely viewed as a scale factor that 

guarantees the posterior probabilities sum to one. 

In our study, however, we applied the technique called 

one-class classification to detect anomalies, which is a bit 

different from original Bayes' formula. In addition, we 

presumed that the sum of random variables is distributed in 

accordance with a Gaussian or normal probability density 
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function, for a sufficiently large number of summing terms. 

Therefore, Eq. (1) could be rewritten as the univariate 

Gaussian defined by where the μ denotes the mean or 

expected value of random variable x, and the parameter σ
2
 is 

equal to the variance of random variable x. From Eq. (3), we 

estimated the parameters μ and σ of each individual time 

interval from the training data set. 

 







 


2

2

2

)(
exp

2

1
)(







x
xp ,                (3) 

To classify test data, we set the parameter value of the 

discriminant function between 2σ and 4σ. If a probability of 

feature value x or p(x) computed from Eq. (3) at a particular 

time interval is less than the probability of the discriminant 

value, we classify that time interval as an anomalous 

interval. On the other hand, if a probability of feature value 

x or p(x) at a particular time interval is equal to or greater 

than the probability of the discriminant value, we classify 

that time interval as a normal interval. 

For example, suppose we defined the parameter value of 

discriminant function equal to 2σ. We measured the Packet 

feature (f1) to be 48 packets at a particular time interval. If 

the value of p(48) is less than the value of p(2σ) (both values 

derived from Eq. (3), we classify that time interval as an 

anomalous interval. However, if the value of p(48) is equal 

to or greater than the value of p(2σ), we classify that interval 

as a normal interval. 

C. K-Nearest Neighbor Classification 

The k-nearest neighbor algorithm is one of the 

fundamental and simple classification methods [21] when 

reliable parametric estimates of probability densities are 

unknown or difficult to determine. In general, this technique 

is based on the Euclidean distance between a test sample 

and specified training samples. Let xi be a test sample with f 

features (xi1, xi2,…, xif); n be the total number of input 

samples (i = 1, 2,…, n) and f be the total number of features 

(j = 1, 2,…, f). The Euclidean distance between sample xi 

and xt (t = 1, 2,…, n) is defined as 

    22

11 )()(),( tfiftiti xxxxxxd               (4) 

In our study, however, we tested each individual feature, 

so the Euclidean distance formula from Eq. (4) can be 

rewritten as 

                 2

11 )(),( titi xxxxd                          (5) 

We varied the distance values for each feature to examine 

the best distant value for a particular type of anomaly. The 

range of distance values depended on each feature, the 

distant value of almost all features was not over 100, and the 

max distance value was 24,000 for the Byte feature (f2). 

To classify test data, we selected common k = 3 as the 

same other studies using k-nearest neighbor classification. 

At a particular time interval, if training samples near a test 

sample are not longer than the distance value, and the 

number of nearby training samples is less than the k value, 

we classify that time interval as an anomalous interval. 

However, if the number of nearby training samples is equal 

to or more than the k value, we classify that time interval as 

a normal interval. 

For example, suppose that we set the distance value d = 

20, and k = 3. We measured the Packet feature (f1) to be 48 

at a particular time interval. If we find that the number of 

training samples, which have a feature value between 28 and 

68, is less than 3, we classify that time interval as an 

anomalous interval. However, if we find that the number of 

training samples, which have a feature value between 28 and 

68, is equal to or more than 3, we classify that time interval 

as a normal interval. 

D. Support Vector Machine Classification 

The support vector machines are a relatively new set of 

algorithms [22] that can map training data into a high-

dimensional feature space. As a result, we can construct a 

separating hyperplane by maximizing the margin or distance 

from the hyperplane to the nearest training data points. 

A decision function for binary support vector machine is 

presented by the following formula: 

 







 



m

i

iii bxxkyxf
1

),(.sgn)(  .             (6) 

where x is the feature vector; α and y are the weights of the 

support vectors; having y as a positive or negative class 

mark (+1 or -1) and b is the bias; function k() is the kernel 

function. Training vectors for which αi ≠ 0 are called 

support vectors. 

In our study, we use the Libsvm tools [23] with a radial 

basis function (RBF) kernel of the form 

 'exp)',( xxxxk   .                      (7) 

Each support vector thus becomes the center of a RBF, 

and γ determines the area of influence that the support 

vector has over the data space. We varied γ or the gamma 

value between 10
-5

 and 10
4
 to observe a change for the best 

detection performance. 

To classify test data, we employed the Svm-Predict 

function from the Libsvm to determine an unknown vector 

sample x, which belongs to the positive or negative class. It 

returns +1 or -1 as the result of classification and provides to 

y the result of the sum from the decision formula Eq. (6). If 

the result at a particular time interval is negative class (-1), 

we classify that time interval as an anomalous interval. 

While, if the result is positive class (+1), we classify that 

time interval as a normal interval. 

TABLE II: INTERVAL-BASED EVALUATION 

Test Result 
Actual Result 

Anomaly Normal 

Anomaly True Positive (TP) False Positive (FP) 

Normal False Negative (FN) True Negative (TN) 

E. Performance Evaluation 

To evaluate detection performance, we use precision (P), 

recall (R) [24], and F-measure value (F) [25] on a per-

interval basis. All measures can be calculated on the basis of 

four parameters, namely the true positive (TP) rate (the 

number of anomalous intervals correctly detected), the false 

positive (FP) rate (the number of normal intervals wrongly 

detected as anomalous intervals), the false negative (FN) 

rate (the number of anomalous intervals not detected), and 

the true negative (TN) rate (the number of normal intervals 
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correctly detected). All of the parameters are defined in 

Table II. The precision, recall, and F-measure value are 

derived from these parameters by using the following Eqs. 

8-10, respectively: 

FPTP

TP
precision


 ,                        (8) 

 
FNTP
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recall
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 ,    (9) 
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
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The precision or positive predictive value as Eq. (8) is the 

percentage of detected intervals that are actually anomalies. 

The recall or sensitivity value as Eq. (9) is the percentage of 

the actual anomalous intervals that are detected. Finally, Eq. 

(10) shows the F-measure value which is the harmonic mean 

value between precision and recall. 

Theoretically, we do need methods or features for 

reaching a high F-measure value because the F-measure 

value takes both precision and recall into consideration. 

From a practical point of view, however, we have to 

consider costs of both the false positive and false negative 

rate. After that, we can decide whether precision or recall is 

the more important factor for detecting anomalies in 

network traffic. 

F. Data Sets  

The raw data were collected from an edge router of the 

Internet service center in Kasetsart University, Thailand. 

This center is for college students, educators, and 

researchers to obtain advantageous information for their 

studies from the Internet. There are about 1,300 users 

everyday, and the service time is between 8:30 and 24:00 on 

weekdays. Users cannot modify or install any software in 

the clients, and administrators provide appropriate software 

for all ordinary users. In addition, administrators regularly 

update the virus signatures for anti-virus software installed 

on all of the clients. At the end of every day, all clients 

automatically have the installed software and operating 

system returned back to the initial state. Therefore, we can 

guarantee that no clients contain any malicious software for 

attacking. We acquired attack-free network data traces from 

this center for 55 days in three months. 

We divided the attack-free network data traces for a 

training data set and test data set. We selected 39-day data 

traces from two months as the training data set for training 

all of the classifiers. The other 16-day data traces are from 

another month, and were combined with five groups of 

anomalies as the test data set. The selected anomalies are 

from the Lincoln Laboratory at the Massachusetts Institute 

of Technology [26], [27]. These anomalies were collected 

and provided for evaluation. We selected five categories of 

anomalies that had the following characteristics, also as 

listed in Table III: 

1) Back attack is a denial of service attack against the 

Apache web server through port 80, where a client 

requests a URL containing many backslashes. 

2) IpSweep attack is a surveillance sweep performing 

either a port sweep or ping on multiple IP addresses. 

3) Neptune attack is a SYN flood denial of service 

attack on one or more destination ports. 

4) PortSweep attack is a surveillance sweep through 

many ports to determine which services are 

supported on a single host. 

5) Smurf attack is an amplified attack using ICMP echo 

reply flood. 

The 39-day training data contained only normal traffic 

although these machine learning algorithms can learn from 

both labeled and unlabeled data. On the other hand, the test 

data combined both normal traffic and abnormal traffic to 

evaluate detection performance for every feature and 

algorithm. According to Table III, each of the Back and 

IpSweep attack is 32-day test set where from the 16-day 

data traces were combined with two instances. Moreover, 

each Neptune, PortSweep, and Smurf attack is 48-day test 

set where from the 16-day data traces were combined with 

three instances. 

TABLE III: CHARACTERISTICS OF SELECTED ATTACKS 

Source 
No. of 

SrcAddr 

No. of 

DstAddr 

No. of 

SrcPort 

No. of 

DstPort 

No. of 

Packet 

Average 

Packet 

Size (Byte) 

Duration 

(sec.) 

Average 

Packet/sec. 

% 

Anomaly 

Back          

Week 2 Fri 1 1 1,013 1 43,724 1,292.31 651 67.16 0.75 

Week 3 Wed 1 1 999 1 43,535 1,297.29 1,064 40.92 1.23 

IpSweep          

Week 3 Wed 1 2,816 1 104 5,657 60.26 132 42.86 0.15 

Week 6 Thu 5 1,779 2 105 5,279 67.75 4,575 1.15 5.30 

Neptune          

Week 5 Thu 2 1 26,547 1,024 205,457 60 3,143 65.37 3.64 

Week 6 Thu 2 1 48,932 1,024 460,780 60 6,376 72.27 7.38 

Week 7 Fri 2 1 25,749 1,024 205,600 60 3,126 65.77 3.62 

PortSweep          

Week 5 Tue 1 1 1 1,024 1,040 60 1,024 1.02 1.19 

Week 5 Thu 1 1 1 1,015 1,031 60 1,015 1.02 1.17 

Week 6 Thu 2 2 2 1,024 1,608 60 1,029 1.56 1.19 

Smurf          

Week 5 Mon 7,428 1 1 1 1,931,272 1,066 1,868 1,033.87 2.16 

Week 5 Thu 7,428 1 1 1 1,932,325 1,066 1,916 1,008.52 2.22 

Week 6 Thu 7,428 1 1 1 1,498,073 1,066 1,747 857.51 2.02 
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III. RESULTS 

To ascertain the best F-measure value of each feature for 

a different type of anomaly, we varied the time interval 

value and determined parameters for each algorithm. For all 

three algorithms, we commonly varied time interval value 

with 1, 10, 20, 30, 40, 50, and 60 seconds. Moreover, we 

varied the value of significant parameter for each algorithm: 

the discriminant value for naïve Bayes, the distance value 

for k-nearest neighbor, and the gamma value for support 

vector machine. 

In our experiment, the classification is interval basis, so 

each training or test sample represents a single time interval 

in training or test data for one-day traffic. Along one-day 

test data, we computed the precision, recall, and F-measure 

value and then calculated the average of the three values for 

all test data. After that, we discovered the highest F-measure 

value of each feature for a different type of anomaly. 

A. Experiment 1: Naïve Bayes 

In the first experiment, the discriminant value affects the 

F-measure values on different time interval values. To 

examine which discriminant value gains the best F-measure 

value, we varied the discriminant value from 2.0 to 4.0, 

increasing by 0.1 each time. 

The following describes a process to discover the best F-

measure value of each feature for a different type of 

anomaly by using the naïve Bayes algorithm. First, we 

selected test data containing the Back attacks and tested 

detection performance on the Packet feature (f1). Then we 

computed the average value of precision, recall, and F-

measure. Second, we varied time interval values and 

discriminant values, so we can plot average F-measure 

values on a graph as shown in Fig. 2. The x-axis represents 

time interval values, the y-axis illustrates discriminant 

values, and the z-axis shows F-measure. 

From Fig. 2, we spotted the best F-measure value for 

Back attacks by using the Packet feature (f1). Next, we 

switched from the Packet feature (f1) to the Byte feature (f2) 

and performed it again from the first step until all nine 

features had been used. After testing all nine features, we 

changed the type of anomalies from Back attacks to the 

IpSweep attacks, and performed the experiment again from 

the first step. We carried out all tasks like this for all five 

types of anomalies by using all nine features. Finally, we 

compared the maximum value of precision, recall, and F-

measure value for each anomaly sorted by features (f1-f9) as 

shown in Fig. 3. The x-axis indicates all nine features and y-

axis shows the value of precision, recall, and F-measure. 

B. Experiment 2: K-Nearest Neighbor 

In the second experiment, the distance value affects the F-

measure values on different time interval values. To 

determine which distance value earns the highest F-measure 

value, we commonly varied the distance value from 1 up to 

100, increasing by 1 each time, except the Byte feature (f2), 

which we varied the distance value up to 24,000. We 

constantly specified the number of k is equal to 3 for all 

experiments using k-nearest neighbor. 

We conducted the experiment like a naïve Bayes 

experiment to define the highest F-measure value of each 

feature for different types of anomalies. After varying time 

interval values and distance values on the Back attacks by 

using the Packet feature (f1), we plotted F-measure value on 

a graph as shown in Fig. 4. The x-axis represents time 

interval values, y-axis illustrates distance values, and z-axis 

shows F-measure values. We can notice the different shapes 

of graphs between using naïve Bayes and k-nearest neighbor. 

 

Fig. 2. F-measure of Packet (f1) using naïve Bayes. 

 
Fig. 3. Performance comparison using naïve Bayes. 

 

 
Fig. 4. F-measure of Packet (f1) using k-nearest neighbor. 

We spotted the highest F-measure value of the Back 

attacks by using the Packet feature (f1) from Fig. 4. Next, 

we went through a process the same as that in the naïve 
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Bayes experiment for all five types of anomalies and all nine 

features. Finally, we compared the maximum value of 

precision, recall, and F-measure for individual anomalies 

sorted by features (f1-f9) as shown in Fig. 5.  

 

 
Fig. 5. Performance comparison using k-nearest neighbor. 

C. Experiment 3: Support Vector Machine 

The final experiment was conducted on the assumption 

that the gamma affects the F-measure values on different 

time interval values. Therefore, we varied the gamma value 

between 10
-5

 and 10
4
 for different time interval values to 

ascertain the best gamma value. 

We performed the experiment in the same way as for both 

previous algorithms to discover the finest F-measure value 

of each feature for a different type of anomaly. First, we 

varied time interval values and gamma values on the Back 

attacks by using the Packet feature (f1), and then we plotted 

F-measure values on a graph as shown in Fig. 6. The x-axis 

represents time interval values, y-axis illustrates gamma 

values, and z-axis shows F-measure values. 

 

 

Fig. 6. F-measure of Packet (f1) using support vector machine. 

 

As shown in Fig. 6, we discovered the finest F-measure 

value of Back attacks by using the Packet feature (f1). Next, 

we went through the same process as in the two previous 

experiments for all five types of anomalies by using all nine 

features. Eventually, we compared the maximum value of 

precision, recall, and F-measure value for each anomaly 

sorted by features (f1-f9) as shown in Fig. 7. The x-axis 

shows all nine features and y-axis indicates the value of 

precision, recall, and F-measure. 

For all three experiments, we list the top three features of 

highest prediction performance in Table V, which is 

primarily ordered by the naïve Bayes algorithm. This table 

indicates the interval values (Intvl.) of the best detection 

performance where the unit of this column is second. 

Moreover, the table separately presents precise values of 

precision (P), recall (R), and F-measure (F) for each learning 

algorithm. 

 

IV. DISCUSSION 

Our results suggest that selecting the proper interval-

based network traffic feature for particular types of 

anomalies is the key to a great success in anomaly detection 

by using machine learning approach. By using naïve Bayes 

and k-nearest neighbor algorithms, we can use the Packet (f1) 

or Byte feature (f2) to detect anomalies contained in a large 

number of packets, such as the Back, Neptune, and Smurf 

attack. In addition, the Flow feature (f3) can detect only a 

huge number of connections or flows, such as the Neptune 

and Smurf attack. The SrcAddr (f4), DstAddr (f5) and 

∆Addr features (f8) efficiently detect anomalies in which 

source addresses and destination addresses been varied, such 

as the IpSweep and Smurf attack. The DstPort feature (f7) 

effectively detects anomalies that have changed the 

destination ports, especially in PortSweep attack. However, 

it is different from the SrcPort (f6) and ∆Port features (f9), 

both of these features can detect only substantial varying in 

source ports like a Neptune attack, because source port 

numbers are always changed by source computers. 

In contrast to both the naïve Bayes and k-nearest neighbor 

algorithms, we found that the performance of support vector 

machine contains a high false positive rate. Although recall 

values of all features were high when the support vector 

machine was used, the high false positive rate caused the 

low values of F-measure. The main reason for the high false 

positive values is that the support vector machine is 

sensitive to noisy data, of which the network traffic contains 

many. Moreover, we discovered that the gamma value is not 

strong enough to affect the F-measure values on different 

time interval values. 

Consideration in time complexity is a secondary issue to 

how effective each algorithm will be. Table IV shows the 

time complexity of training phase and test phase for each 

algorithm. In this table, m is the number of training days, n 

is the number of time intervals for one-day long, and f is the 

number of features, we performed our experiment by using 

individual features so f = 1, and s is the number of support 

vectors generated by the Svm-Train function from the 

Libsvm, which depend on patterns of training data. If the 

training data closely gather together, the number of support 

vectors will be low; however, if the training data disperse, 

the number of support vectors will reach a higher value. 

Although we can apply more than one feature to machine 

learning algorithms, the number of features affects the 

processing time of both training and test phases. For the 
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naïve Bayes, the time complexity of the training phase relies 

on m, n and f, while the test phase relies on n and f. These 

indicate when we combine more than one feature, the 

processing time for training and test phases linearly 

increases. For k-nearest neighbor, although the time 

complexity of the training phase is a constant, the test phase 

depends on m, n, and f. This indicates that only the 

processing time of the test phase is linearly grown when we 

increase the number of features. For the support vector 

machine, the time complexity of the training phase relies on 

m
2
, n and f

 2
 while the test phase relies on n, f, and s. That 

means when we add a number of features, the processing 

time of the training phase increases exponentially, while the 

processing time of the test phase increases linearly. 

TABLE IV: TIME COMPLEXITY 

Classifier Training Phase Test Phase 

Naïve Bayes O(mnf) O(nf) 

k-Nearest Neighbor O(1) O(mnf) 

Support Vector Machine O(m2nf 2) O(nfs)  

Fig. 7. Performance comparison using support vector machine. 

TABLE V: TOP 3 FEATURES OF DETECTION PERFORMANCE 

Anomaly 

Type 
f# 

Naïve Bayes  k-Nearest Neighbor  Support Vector Machine 

Intvl. P R F  Intvl. P R F  Intvl. P R F 

Back 

f2 10 0.75 0.95 0.83  1 0.79 0.93 0.84  1 0.03 0.98 0.05 

f1 40 0.50 0.52 0.48  1 0.27 0.44 0.31  20 0.03 0.93 0.06 

f4 40 0.04 0.29 0.05  30 0.03 0.38 0.05  60 0.02 0.79 0.04 

IpSweep 

f8 60 0.50 0.42 0.34  1 0.27 0.41 0.27  10 0.14 0.93 0.22 

f5 60 0.53 0.40 0.33  1 0.25 0.40 0.25  10 0.14 0.94 0.22 

f7 10 0.51 0.52 0.32  10 0.48 0.50 0.34  10 0.14 0.92 0.22 

Neptune 

f9 30 0.91 0.89 0.90  1 0.69 0.76 0.71  1 0.13 0.99 0.23 

f6 30 0.90 0.90 0.90  1 0.71 0.79 0.74  1 0.13 0.99 0.23 

f7 10 0.84 0.97 0.89  10 0.82 0.97 0.87  1 0.20 1.00 0.33 

PortSweep 

f7 50 0.41 0.58 0.45  60 0.61 0.97 0.71  60 0.07 0.99 0.13 

f9 60 0.05 0.20 0.07  10 0.04 0.65 0.08  10 0.04 0.90 0.08 

f6 60 0.05 0.18 0.06  10 0.04 0.70 0.08  10 0.04 0.90 0.07 

Smurf 

f4 1 0.97 1.00 0.98  1 0.89 1.00 0.94  1 0.06 1.00 0.11 

f1 10 0.85 1.00 0.91  1 0.89 0.99 0.94  1 0.06 1.00 0.11 

f8 1 0.84 0.99 0.91  1 0.89 1.00 0.94  1 0.06 1.00 0.12 

 

In summary, our work revealed the effective interval-

based network traffic features for five major types of 

network traffic anomalies. In many cases, the results from 

the naïve Bayes and k-nearest neighbor algorithm were 

virtually the same. Nearly all F-measure values of naïve 

Bayes were higher than those of the k-nearest neighbor 

algorithm. However, almost all recall values of k-nearest 

neighbor were better than those of naïve Bayes. For the 

support vector machine, F-measure values for all features 

were the lowest of the three algorithms, but recall values 

were high for almost all features. Our experimental results 

not only reveale interval-based features which enable 

administrators to detect current anomalies more accurately 

and quickly but these can be used for detecting a novel 

anomaly in real time as well. 
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