



Abstract—Variable Neighborhood Search (VNS) is one of the

most recent metaheuristics to solve optimization problems. A

new variant of VNS is introduced in this article called Recursive

VNS (R-VNS). The proposed R-VNS incorporates recursive

methods in order to improve both the exploration and

exploitation capability of the basic VNS. The experiments show

that the proposed R-VNS outperforms the basic VNS by offering

better solutions as well as higher convergence rate. The case

study considers classical Job Shop Scheduling Problem in order

to evaluate both proposed methods.

Index Terms—Job shop scheduling problem, recursive

programing, variable neighborhood search.

I. INTRODUCTION

The class of optimization problems is the set of problems

where the goal is to make a system as effective as possible by

optimizing its input variables. Optimization problems are

divided into two categories, namely continuous optimization

problems and combinatorial optimization problems. The

focus of this paper is on the latter where input variables of the

system are discrete. In combinatorial optimization problems a

set of values with respect to all variables is called a solution,

and the solution space is the set of all feasible solutions. The

solution space is usually extremely large, but finite, and the

goal is to find a solution with the optimal objective value. The

objective could be either minimizing a cost function or

maximizing a fitness function. In some large test problems

where finding the optimal solution is difficult, near optimal

solutions are sufficient.

There are different types of algorithms proposed to solve

optimization problems. Heuristics are a class of approaches

working on a solution space to find an optimal solution by

incorporating a number of problem specific rules.

Metaheuristics are general procedures using an iterative

process to guide the operations of heuristics to deal with

optimization problems. In other words, the goal of a

metaheuristic is to build an efficient heuristic with a good

performance on one problem domain. Various metaheuristics

with different capabilities are introduced in literature to deal

with both combinatorial and continuous optimization

problems. One of the most recently introduced metaheuristics

is Variable Neighborhood Search (VNS) proposed by

Mladenovic and Hansen [1].

The procedure of VNS is to change the neighborhood

systematically within a local search. Incorporating a number

Manuscript received September 20, 2013; revised December 26, 2013.

This work is made possible by a grant from the National Science Foundation

and NSERC Discovery No. 327482.

M. R. Raeesi N. and Z. Kobti are with School of Computer Science,

University of Windsor, Windsor, ON N9B 3P4 (e-mail:

raeesim@uwindsor.ca, kobti@uwindsor.ca).

of neighborhood structures enables VNS to switch among

them at the time of local search execution. When the local

search finds a local optimal solution with respect to one

neighborhood structure, VNS switches to another one to

escape from that local optimum. This routine decreases the

chance of trapping into local optimal solutions dramatically.

VNS is a general metaheuristic applicable in various areas

such that it has been successfully applied in different

combinatorial optimization problems such as the Traveling

Salesman Problem [2], the Open Vehicle Routing problem [3],

the p-Median problem [4], and the Graph problems [5].

The main contribution of this article is to introduce a new

version of VNS which improves the searching capability of

the canonical VNS. Since the new version uses recursive

programming, it is called Recursive VNS (R-VNS) which is

described later in detail. In order to evaluate the proposed

R-VNS, Job Shop Scheduling Problem (JSSP) is considered

as our case study, which is a combinatorial optimization

problem.

The remainder of this article is organized as follows.

Section II and Section III concisely describe VNS and the

JSSP problem domain, respectively. Section IV represents

the proposed R-VNS in detail, followed by illustrating the

experiments designed to evaluate the proposed method, the

discussion on the results and their comparison with the

state-of-the-art methods in Section V. Finally, conclusion

remarks are represented in Section VI.

II. VARIABLE NEIGHBORHOOD SEARCH

Heuristics can be differentiated based on their strategy to

find a good solution, which is either constructive or

explorative strategy. Constructive heuristics incorporate a

number of problem domain rules to construct the optimal or

near optimal solutions, while explorative heuristics explore

the solution space to find the optimal solution. Explorative

heuristics suffer from their immature convergence. Since they

only investigate the neighborhood of a solution, they can be

trapped into the neighborhood region of a local optimal

solution. They look around the neighborhood area to find

better solution to move there, but since there is no better

solution in the area, they never escape from there.

Consequently they will converge into a local optimal solution

instead of the global one. This issue is more challenging in

large size problems where the chance of trapping into local

optimal regions is high.

In order to overcome this limitation, explorative

metaheuristics are proposed to design stronger heuristics.

Metaheuristics may use one single solution or a population of

solutions to do so. VNS is a single solution metaheuristic

introduced to decrease the trapping chance of the existing

heuristics. Although VNS is one of the most recently

Recursive Variable Neighborhood Search

Mohammad R. Raeesi N. and Ziad Kobti

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

263DOI: 10.7763/IJMLC.2014.V4.422

introduced metaheuristics, a wide range of its successful

application has been reported.

The basic routine of a VNS is to switch to another

neighborhood structure when a local optimum with respect to

one neighborhood structure is reached. The obtained local

optimum is not necessarily an optimum with respect to the

new neighborhood structure. Therefore, VNS can jump out of

the local optimum region. VNS incorporates multiple

neighborhood structures which are required to be

complementary to each other. Otherwise, VNS will not be

able to escape from local optimal regions. The

complementary attribute of the neighborhood structures is a

key factor for efficiency and effectiveness of a VNS.

The idea of VNS is inspired from the following facts:

 A local optimal solution with respect to one

neighborhood structure could be a non-optimal solution

with respect to another one.

 The global optimal solution is a local optimal solution

with respect to all possible neighborhood structures.

 In general, local optimal solutions are often close to each

other.

The last fact is obtained by empirical observations and

consequently it cannot necessarily be relied upon for every

test problem. However, it does imply that the local optimal

solutions may have some useful information about the global

optimal solution.

While the routine of VNS is fixed, there are different

strategies to implement it. A survey on VNS methods and its

applications is provided by Hansen et al. [6]. The authors

described different implementations of VNS such as basic,

reduced, general and skewed VNS. Almost all

implementations include two subroutines, namely Shake and

LocalSearch, such that the execution of a Shake function is

followed by executing a LocalSearch subroutine, totally

called a Run.

The pseudo-code for the basic version of VNS is

represented in Fig. 1. The basic VNS starts with a random

solution s (line 02), and with respect to the first

neighborhood structure (line 04) it applies the Shake function

to obtain another solution 's within the neighborhood of s

(line 06). The LocalSearch subroutine is then applied on the

neighbor solution 's to find out the local optimal solution ''s

within its neighborhood with respect to the same

neighborhood structure (line 07). The last step of each

iteration of VNS is its selection mechanism (lines 08 through

13), in which if ''s is better than s , it continues with ''s

starting from the first neighborhood, otherwise it switches to

the next neighborhood structure. This routine continues until

no improvement can be achieved with respect to all

neighborhood structures, after which it restarts again with the

best solution so far. Finally, this procedure ends as soon as the

termination criteria (e.g. maximum CPU time, predefined

number of iterations) are met.

It should be noted that the Shake subroutine randomly

selects a solution 's within the neighborhood of solution s

with respect to neighborhood structure
k

N . While there are

two strategies for the LocalSearch function, which are First

Improvement and Best Improvment. In the former strategy,

the LocalSearch method returns a solution as soon as it finds a

better solution compared to the given solution, while in the

latter, it searches the whole neighborhood area of the given

solution and returns the best solution of the area. Although the

latter approach may find better solution, it is extremely

time-consuming.

PROCEDURE: Basic VNS

INPUT: Algorithm Parameters and Problem Specification

OUTPUT: Optimal or Near-Optimal Solutions

01 BEGIN

02 Generate an initial solution s

03 REPEAT

04 1k 

05 REPEAT

06 ' (,)s Shake s k

07 '' (',)s LocalSearch s k

08 IF ('') ()f s f s

09 ''s s

10 1k 

11 ELSE

12 1k k 

13 END IF

14 UNTIL (
max

k k)

15 UNTIL (termination criteria are met)

16 Output Solution s

17 END

Fig. 1. The pseudo-code of Basic VNS.

Overall, VNS has a very effective exploitation mechanism

due to the definition of its procedure, but it suffers from an

inefficient solution space exploration approach. Although it is

able to find local optimal solutions in promising regions, it

cannot explore the solution space effectively to find said

regions.

III. JOB SHOP SCHEDULING PROBLEM

The Job Shop Scheduling Problem (JSSP) is a well-known

class of combinatorial optimization problems which are

applicable in various research areas. In general, JSSP is the

task of sequencing a number of jobs to be processed on a

number of machines in order to optimize an evaluation

function. The popular optimization function of JSSPs is

makespan minimization which is to minimize the maximum

completion time of all the jobs. As an open problem, JSSP is a

good candidate to be used for the evaluation of optimization

methods. Furthermore, Garey et al. [7] proved that JSSPs

with more than two machines are NP-complete which implies

that there is no exact algorithm to be able to find the optimal

solution for all the scheduling problems in an acceptable time.

Due to different specification and various constraints,

various versions of JSSP are introduced in literature. The

general version is called classical JSSP as defined by Baker

[8]. In classical JSSP, each problem is defined by a set of N

jobs and M machines determining the problem size as

N M . Jobs and Machines are denoted by
i

J and
k

m where

i and k are the job index and machine index, respectively.

Each job includes M operations with a fixed sequence to be

processed on different machines such that each machine

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

264

handles only one operation of a job.
ij

O denotes the
th

j

operation of the
th

i job.

The rules of classical JSSP can be summarized as follows:

 The operations of a job have to be processed in their

predefined order, while the operations of different jobs

are independent of each other.

 Each operation has to be evaluated on only one machine

for a known processing time such that it cannot be

interrupted.

 All jobs are available at the beginning without any due

date.

 The set up time of machines and movement time of each

job between two machines are considered negligible.

TABLE I: A SAMPLE 3 3 CLASSICAL JSSP

Operation Index Jobs

1
O

2
O

3
O

1
J

2
m ,1

1
m ,2

3
m ,3

2
J

1
m ,2

3
m ,2

2
m ,2

3
J

2
m ,2

3
m ,4

1
m ,1

Table I represents a sample classical JSSP with size 3 3 .

It illustrates the applicable machine and the corresponding

processing time of each operation. The second operation of

the first job, for instance, has to be completed on the first

machine for 2 time units. A sample schedule for this test

problem is illustrated in a Gantt chart in Fig. 2.

One of the important concepts in JSSP is critical operations

which are defined as the operations such that any delay in

their processing time increases the makespan of the schedule.

Critical operations are determined on a critical path which is

the longest path of consecutive operations starting from time

zero to the makespan. A schedule may have more than one

critical path and an operation may be located on different

critical paths at the same time. A set of adjacent critical

operations on the same machine is called a critical block. The

first and the end operations of a block are called the block

head and the block rear, respectively, and the operations in the

middle of a block are called internal operations.

For instance, the critical path, the critical blocks and the

critical operations of the sample schedule presented in Fig. 2

are as follows.

Fig. 2. A sample schedule for the sample problem represented in Table I.

11 31 32 22 13

2 11 31

3 32 22 13

1 11 12

2 22

3 31 32

:

:
:

:

: ,

: :

: ,

Critical Path O O O O O

m O O
Critical Blocks

m O O O

J O O

Critical Operations J O

J O O











As a result of these definitions, it is clear that the only way

to decrease the makespan is to break up a critical path.

Therefore the concepts of critical operations and critical

blocks are very important to define efficient neighborhood

structures. There are also a number of definitions in JSSP

required to be clarified in order to be used later in

neighborhood determination which include:

 Job's Operation Sequence: This sequence is the fixed

operation sequence predefined for each job.

 Job-Successor Operation: This is the immediate next

operation of the current operation on a job's operation

sequence.

 Job-Predecessor Operation: The operation that is

immediately before the current operation on a job's

operation sequence.

 Machine's Operation Sequence: This is the sequence of

operations that have to be processed on the same

machine.

 Machine-Successor Operation: The operation exactly

after the current operation on a machine's operation

sequence.

 Machine-Predecessor Operation: This is the operation

exactly before the current operation on a machine's

operation sequence.

Job-successor operation of operation O is denoted by

()JS O , and its job-predecessor, its machine-successor and its

machine-predecessor are denoted by ()JP O , ()MS O and

()MP O , respectively. As the operation sequences of all jobs

are predefined, the following equations are always correct

provided
, 1i j

O


 and
, 1i j

O


 exist.

, , 1
()

i j i j
JS O O




, , 1
()

i j i j
JP O O




Another concept in JSSP which is very useful to limit the

solution space is active schedule. Defined by Croce et al. [9],

the schedules where there is no operation that can be started

earlier without delaying another operation are active. A

primary aspect of this concept is that the optimal solution is

more likely an active solution, and if it is not, it has an

equivalent active schedule which is optimal as well. Therefore

- instead of exploring the whole solution space - it is more

efficient to just search among active schedules. This concept

is incorporated by various researchers with different

mechanisms such as a gap reduction rule [10] and a priori

knowledge [11].

IV. PROPOSED RECURSIVE VNS

Herein, a new version of VNS is proposed to improve upon

the basic algorithm. The modified version called Recursive

VNS (R-VNS) is the main contribution of this article which is

described in Subsection A. Subsections B and C describe the

solution representation and neighborhood structures for JSSP

which are incorporated in our proposed method. The

proposed method uses a more powerful fitness evaluation

function which is represented in Subsection D.

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

265

A. Main Contribution

By the knowledge of the authors, all variants of VNS

incorporate the Shake function followed by the LocalSearch

subroutine with respect to one neighborhood structure (One

Run with respect to each neighborhood structure). It means

that the LocalSearch subroutine of two different

neighborhood structures are not executed immediately after

each other. The key contribution here is to define one Run

with respect to all neighborhood structures which includes:

 A RecursiveShake function with respect to all

neighborhood structures for a number of iterations.

 A RecursiveLocalSearch subroutine with respect to all

neighborhood structures.

The RecursiveShake function calls the Shake function for

all neighborhood structures consecutively such that the Shake

subroutine with respect to the latter neighborhood structure is

applied on the result of its application with respect to the

former one. The pseudo-code of the RecursiveShake function

is represented in Fig. 4 in which ShakeIterations denotes the

number of iterations the Shake subroutine is applied with

respect to each neighborhood structure.

PROCEDURE: RecursiveLocalSearch

INPUT: Current Solution 's

OUTPUT: A Local Optimal Solution

01 BEGIN

02 1k 

03 REPEAT

04 '' (',)s LocalSearch s k

05 IF ('') (')f s f s

06 ' ''s s

07 Output (')RecursiveLocalSearch s

08 ELSE

09 1k k 

10 END IF

11 UNTIL (
max

k k)

12 Output Solution 's

13 END

Fig. 3. The pseudo-code of RecursiveLocalSearch.

PROCEDURE: RecursiveShake

INPUT: Current Solution s and Neighborhood k

OUTPUT: A Random Neighbor Solution

01 BEGIN

02 FOR (ShakeIterations)

03 ' (,)s Shake s k

04 's s

05 END FOR

06 1k k 

07 IF
max

k k

08 Output (',)RecursiveShake s k

09 END IF

10 Output Solution 's

11 END

Fig. 4. The pseudo-code of RecursiveShake.

Like RecursiveShake, the RecursiveLocalSearch function

executes the LocalSearch subroutine with respect to all

neighborhood structures consecutively, and if a better

solution is reached, the RecursiveLocalSearch will be called

recursively. Fig. 3 illustrates the pseudo-code of the

RecursiveLocalSearch. Due to the recursive characteristic of

both new functions, the new VNS version is called Recursive

VNS, the pseudo-code of which is depicted in Fig. 5. R-VNS

starts with a random solution, and applies the RecursiveShake

function (line 05) followed by the RecursiveLocalSearch

subroutine (line 06) on the current solution. Finally, a

selection mechanism decides whether to keep the new

solution or not (lines 07 through 09).

The main goal of incorporating recursive methods is to

develop a more explorative and exploitative method. By

incorporating recursive strategy, the proposed

RecursiveShake procedure is able to explore further regions

compared to the simple Shake method. This mechanism helps

the search method to avoid from trapping into local optimal

regions. The RecursiveLocalSearch method is designed to

improve the exploitation mechanism of the basic VNS. This

method exploits a region more deeply until it cannot find a

better solution with respect to all neighborhood structures

without disturbing the current solution.

PROCEDURE: RecursiveVNS

INPUT: Algorithm Parameters and Problem Specification

OUTPUT: Optimal or Near-Optimal Solutions

01 BEGIN

02 Generate an initial solution s

03 REPEAT

04 1k 

05 ' (,)s RecursiveShake s k

06 (')s RecursiveLocalSearch s 

07 IF ('') ()f s f s

08 ''s s

09 END IF

10 UNTIL (termination criteria are met)

11 Output Solution s

12 END

Fig. 5. The pseudo-code of RecursiveVNS.

 Overall the proposed RecursiveShake and

RecursiveLocalSearch methods improve the exploration and

exploitation capabilities of the basic VNS, respectively.

Therefore, it is expected that the proposed R-VNS

incorporating these methods offers better solutions as well as

better convergence rates compared to the basic VNS.

In order to incorporate R-VNS, a solution representation

and a number of neighborhood structures should be

determined. The selected representation and neighborhood

structures for experiments are represented as follows.

B. Solution Representation

In literature, there are various representations for JSSP

with their own advantages and disadvantages. One of the

well-known representation is introduced by Bierwirth [12]

which is mathematically called permutation with repetition.

Permutation with repetition representation is an

operation-based representation encoding a schedule into one

string of job indices. The index of each job is repeated p

times where p is the number of its operations. The total

length of this string for a test problem is equal to the total

number of operations in that problem. Each job index denotes

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

266

one operation of the corresponding job and the operations

within the same job are distinguished with the occurrence of

the same index. The following example represents more

details about this representation. Consider

  1, 2,1,3,3, 2, 2,1,3

as a sample permutation encoded by permutation with

repetition representation for the sample problem illustrated in

Table I. This permutation is decoded into the following

operation sequence.

11 21 12 31 32 22 23 13 33
O O O O O O O O O

This operation sequence produces the following schedule

depicted in Fig. 2.

1 21 12 33
:m O O O

2 11 31 23
:m O O O

3 32 22 13
:m O O O

The advantage of this representation is that all the possible

permutations are feasible solutions, and no repair mechanism

is required. But this representation suffers from its inefficient

n to 1 mapping such that there could be a large number of

different permutations with the same encoded schedule.

Compared to Machine Operation List (MOL) representation

[13] as an example, the number of all possible permutations in

MOL representation is much smaller than that of the

permutation with repetition representation, while both

representations encode the same solution space. Furthermore,

the MOL's possible permutations include some infeasible

solutions in addition to all feasible solutions included in the

solution space. This comparison shows how inefficient the

mapping of the permutation with repetition representation is.

However, due to its very efficient decoding and encoding

procedures, it has been incorporated by various researchers.

C. Neighborhood Structures

There are various neighborhood structures proposed for

JSSP. Blazewicz et al. [14] provided a review on the

techniques proposed to deal with JSSPs. In this review, six

popular neighborhood structures are presented which are

called 1N to 6N by the authors. A brief description of these

neighborhoods is provided as follows:

 Neighborhood Structure 1N : This structure introduced

by Van Laarhoven et al. [15] is a very simple structure

such that swapping two adjacent critical operations is

considered as a valid move to generate new schedule.

The neighborhood area for this structure is pretty large.

 Neighborhood Structure 2N : This neighborhood

structure is defined by Matsuo et al. [16] in which

swapping two critical operations p and q is considered

as a valid move if either p is a block head or q is a

block rear. In addition, two additional moves are

considered to provide more chance to obtain a schedule

with lower makespan including swapping (())MP JP p

and ()JP p , and swapping ()JS q and (())MS JS q .

 Neighborhood Structure 3N : This structure is

incorporated by Dell'Amico and Trubian [17] in which

all permutations of three operations { (), , }MP p p q and

{ , , ()}p q MS q have been considered such that p and

q are adjacent critical operations swapped in the

provided permutations. The neighborhood area of this

structure is finite but very large. Neighborhood structure

3'N is a limited version of 3N in which either p or q

should be a block end.

 Neighborhood Structure 4N : Represented by

Dell'Amico and Trubian [17], 4N considers moving an

internal operation to the very beginning or to the very

end of a block.

 Neighborhood Structure 5N : Nowicki and Smutnicki

[18] introduced the smallest neighborhood area using

neighborhood structure 5N in which only the first two

operations or the last two operations of a critical block

are the candidates for swap operation.

 Neighborhood Structure 6N : The extension of all

previously described neighborhood structures is

proposed by Balas and Vazacopoulos [19]. Considering

p and q as two critical operations on a critical block, a

valid move in 6N is defined as moving q right before

p if ()JP p belongs to the critical path, and moving p

right after q if ()JS q belongs to the critical path. The

authors called these moves backward interchange and

forward interchange, respectively.

In the proposed R-VNS, neighborhood structures 4N ,

5N and 6N are incorporated with different strategies for

RecursiveShake and RecursiveLocalSearch procedures which

are presented in Equations (1) and (2), respectively.

Furthermore, the neighborhood structure 5N is considered

as a nested neighborhood structure for RecursiveLocalSearch

when it cannot find a better solution.

RecursiveShake:

4, if 1

3 5, if 2

6, if 3

max k

N k

k N N k

N k



  









 (1)

RecursiveLocalSearch:

4, if 1

2
6, if 2

max k

N k
k N

N k


 







 (2)

It should be mentioned here that there are not any

pre-processing or post-processing procedures incorporated

for any move in each neighborhood structure. The move is

just moving one index either forward or backward in the

solution representation string.

D. Evaluation Function

In order to evaluate each solution in an optimization

problem, the simple way is to find out only the objective value

of that solution. This approach works well for evaluation but

not for comparison. When comparing a number of solutions

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

267

with the same objective value, according to the simple

approach one of them has to be selected randomly, while a

better way is to consider other characteristics of those

solutions.

For the solution evaluation in the proposed method, a

Priority-Based Fitness Function (PBFF) [20] is incorporated.

Since the proposed method is going to be applied on classical

JSSPs, only two priorities are defined for the PBFF. The first

priority is the makespan, and the second one is the number of

critical machines such that both priorities have to be

minimized. Using this evaluation function, in case of a tie in

comparison, the solution which has the lowest number of

critical machines is selected.

V. EXPERIMENTS AND DISCUSSION

The proposed method is implemented using the Java

programming language (version 1.6.0.18) and experiments

are done on a system with Intel(R) Xeon(R) 2.27GHz CPU (16

Core) and 24GB RAM. As mentioned before (in order to

evaluate the method), they are applied on classical JSSP. As

one of the well-known classical JSSP benchmarks, the case

study considers the data set introduced by Lawrence [21].

This benchmark (denoted by LA) includes 40 test problems

with different size and complexity levels. While almost all the

state-of-the-art methods, as well as the proposed method, are

able to find the optimal solution for 28 test problems in every

run, the remaining 12 problems are still considered

challenging. In the experiments the algorithm is evaluated

based on 50 independent runs for each test problem.

Table II represents the algorithm parameters adjusted by

incorporating extensive experiments. The proposed R-VNS

runs for 20,000 iterations incorporating neighborhood

structures 4N , 5N , and 6N . To have a better

representation of the table, neighborhood structure and nested

neighborhood structure are denoted by NS and NNS,

respectively.

Regarding to the number of shake iterations in the proposed

RecursiveShake procedure two strategies are considered,

namely Fixed ShakeIterations (FSI) and Variable

ShakeIterations (VSI). In the former strategy the parameter

ShakeIterations is set to 2 and remains the same for all

iterations of one experiment, while in the latter it is set to a

number between 2 and 5 which is selected randomly for each

iteration.

The proposed R-VNS in two versions with different

ShakeIterations strategies is applied on the challenging LA

test problems, the results of which are represented in Table III.

Both versions show almost the same performance such that

their best found solutions are similar for all the 12 test

problems, except problem LA38 where the VSI version finds

the optimal solution. In addition to the optimal solution for

problem LA38, the VSI version offers better average, median

and worst solutions for almost all 12 test problems. Therefore,

it is possible to say that the R-VNS (VSI) slightly outperforms

R-VNS (FSI).

In order to show the performance of the proposed R-VNS,

the basic VNS is also applied on the same problems with the

same configuration to have a fair comparison. As represented

in Table III both versions of R-VNS outperform the basic

VNS by finding better solutions. The basic VNS can only find

the optimal solution for three test problems out of 12, while

the proposed R-VNS (FSI) and R-VNS (VSI) offer the

optimal solutions for 7 and 8 test problems, respectively.

Furthermore, the statistical analysis of the results shows much

better average, median and worse solutions for the proposed

R-VNS compared to the basic VNS.

TABLE II: ASJUSTED PARAMETERS OF THE PROPOSED R-VNS

 Proposed R-VNS

Parameter Value

MaxIteration 20,000

ShakeNS 4N , 5N , and 6N

LocalSearchNS 4N and 6N

LocalSearchNNS 5N

FSI 2

VSI {2,3, 4,5}

NS: Neighborhood Structure

NNS: Nested Neighborhood Structure

Overall the results show that the proposed R-VNS

outperform the basic VNS by offering better solutions as well

as improving the convergence rate. Therefore, the results

confirm that the proposed RecursiveShake and

RecursiveLocalSearch methods are capable to improve the

exploration and exploitation mechanisms of the basic VNS,

respectively.

In order to demonstrate the performance of the proposed

methods, the state-of-the-art methods in the area are

considered for comparison including three recently published

methods. The first method which is proposed by Zobolas et al.

[22] is a hybridization of a Genetic Algorithm (GA) and a

VNS which incorporates a Differential Evolution to generate

an initial population. The authors called it as a hybrid

Evolutionary Algorithm (hEA). The two other methods are

our recently published VNS and Memetic Algorithm (MA)

[23]. The published MA is a GA joined with a VNS.

In order to evaluate the proposed over all the test problems,

the Error Rate (ER) parameter is incorporated, which is the

percentage error from the optimal solution. ER is calculated

using Equation (3) where C denotes the best solution found

by the algorithm and BK denotes the best-known solution.

100%
C BK

ER
BK


  (3)

The results of all three methods on the most challenging LA

problems are illustrated in Table IV. The ER parameter is also

incorporated here in order to have a fair comparison over

different test problems. The values within brackets and the

values illustrated on the last row of the table represent the ER

values and their averages over 12 test problems, respectively.

The ER values demonstrate that both proposed R-VNS

methods offers competitive solutions compared to the

state-of-the-art methods. Overall the proposed R-VNS (VSI)

is an effective method such that it offers a very low average

ER for the most challenging LA problems (as low as 0.20%).

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

268

VI. CONCLUSIONS

The main contribution of this article is to introduce a new

version of VNS called Recursive VNS (R-VNS). R-VNS calls

the Shake and LocalSearch functions recursively. The key

idea of the proposed R-VNS is to call the Shake subroutine

with respect to different neighborhood structures immediately

after each other. This mechanism forces the search method to

explore more regions. Calling the LocalSearch method

recursively, improves the exploitative mechanism of the basic

VNS. Applying the proposed R-VNS on a number of classical

JSSP shows that the proposed R-VNS outperforms the basic

VNS by offering better solutions as well as improving the

convergence rate.

However, there is still some possibility to improve the

proposed method. One direction is to investigate the effect of

ShakeIterations parameter over different iterations. A

dynamic strategy (DSI) may outperform both FSI and VSI

strategies. Another direction is to incorporate an EA to be

joined with the proposed R-VNS in order to make it highly

explorative.

TABLE III: RESULTS ON THE CHALLENGING PROBLEMS OF LA BENCHMARK

Problem Method Best Average SD Median Worst

LA20 Basic VNS 907 907.00 0.00 907.0 907

10 10 R-VNS (FSI) 902 906.60 1.37 907.0 907

902 R-VNS (VSI) 902 906.60 1.37 907.0 907

LA21 Basic VNS 1046 1065.66 10.50 1067.0 1093

15 10 R-VNS (FSI) 1046 1061.00 9.28 1058.0 1084

1046 R-VNS (VSI) 1046 1057.00 7.48 1056.0 1077

LA24 Basic VNS 938 947.56 6.06 946.0 970

15 10 R-VNS (FSI) 935 945.02 5.07 946.0 961

935 R-VNS (VSI) 935 944.46 5.08 946.0 957

LA25 Basic VNS 977 986.62 6.36 984.0 1006

15 10 R-VNS (FSI) 977 984.84 5.10 984.0 1004

977 R-VNS (VSI) 977 983.48 3.92 983.5 993

LA27 Basic VNS 1237 1253.48 9.38 1253.0 1269

20 10 R-VNS (FSI) 1235 1251.20 10.63 1248.5 1269

1235 R-VNS (VSI) 1235 1249.86 10.25 1247.5 1269

LA28 Basic VNS 1216 1219.40 5.81 1216.0 1234

20 10 R-VNS (FSI) 1216 1217.78 4.35 1216.0 1234

1216 R-VNS (VSI) 1216 1217.44 2.92 1216.0 1227

LA29 Basic VNS 1173 1195.58 12.94 1194.5 1232

20 10 R-VNS (FSI) 1163 1186.80 15.65 1188.0 1228

1152 R-VNS (VSI) 1163 1189.34 12.56 1189.5 1221

LA36 Basic VNS 1281 1294.94 7.47 1292.0 1315

15 15 R-VNS (FSI) 1274 1291.14 7.06 1291.0 1308

1268 R-VNS (VSI) 1274 1290.50 6.35 1291.0 1299

LA37 Basic VNS 1400 1424.28 14.32 1424.0 1457

15 15 R-VNS (FSI) 1397 1419.28 14.09 1418.0 1455

1397 R-VNS (VSI) 1397 1416.16 9.68 1418.0 1433

LA38 Basic VNS 1202 1237.04 14.66 1237.5 1263

15 15 R-VNS (FSI) 1201 1232.44 15.66 1232.0 1260

1196 R-VNS (VSI) 1196 1230.54 14.29 1231.5 1259

LA39 Basic VNS 1240 1248.36 5.55 1249.0 1268

15 15 R-VNS (FSI) 1239 1246.84 5.29 1248.0 1259

1233 R-VNS (VSI) 1239 1246.92 5.05 1248.0 1258

LA40 Basic VNS 1228 1241.24 5.38 1242.0 1254

15 15 R-VNS (FSI) 1228 1241.04 6.54 1241.5 1263

1222 R-VNS (VSI) 1228 1240.40 6.75 1240.5 1252

TABLE IV: COMPARISON WITH THE STATE-OF-THE-ART METHODS

Problem BK hEA [22] VNS [23] MA [23] R-VNS (FSI) R-VNS (VSI)

LA20 902 - 902 (0.00%) 902 (0.00%) 902 (0.00%) 902 (0.00%)

LA21 1046 1046 (0.00%) 1046 (0.00%) 1046 (0.00%) 1046 (0.00%) 1046 (0.00%)

LA24 935 935 (0.00%) 935 (0.00%) 935 (0.00%) 935 (0.00%) 935 (0.00%)

LA25 977 977 (0.00%) 979 (0.20%) 977 (0.00%) 977 (0.00%) 977 (0.00%)

LA27 1235 1236 (0.08%) 1244 (0.73%) 1238 (0.24%) 1235 (0.00%) 1235 (0.00%)

LA28 1216 1224 (0.66%) 1216 (0.00%) 1216 (0.00%) 1216 (0.00%) 1216 (0.00%)

LA29 1152 1160* (0.69%) 1169 (1.48%) 1163 (0.95%) 1163 (0.95%) 1163 (0.95%)

LA36 1268 1268 (0.00%) 1291 (1.81%) 1281 (1.03%) 1274 (0.47%) 1274 (0.47%)

LA37 1397 1408 (0.79%) 1397 (0.00%) 1397 (0.00%) 1397 (0.00%) 1397 (0.00%)

LA38 1196 1202 (0.50%) 1208 (1.00%) 1208 (1.00%) 1201 (0.42%) 1196 (0.00%)

LA39 1233 1233 (0.00%) 1241 (0.65%) 1241 (0.65%) 1239 (0.49%) 1239 (0.49%)

LA40 1222 1229 (0.57%) 1233 (0.90%) 1233 (0.90%) 1228* (0.49%) 1228* (0.49%)

Average ER 0.30% 0.56% 0.32% 0.24% 0.20%

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

269

REFERENCES

[1] N. Mladenovic and P. Hansen, “Variable neighborhood search,”

Computers and Operations Research, vol. 24, pp. 1097-1100, 1997.

[2] A. Felipe, M. T. Ortuno, and G. Tirado, “The double traveling

salesman problem with multiple stacks: a variable neighborhood

search approach,” Computers and Operations Research, vol. 36, no.

11, pp. 2983-2993, 2009.

[3] K. Fleszar, I. H. Osman, and K. S. Hindi, “A variable neighbourhood

search algorithm for the open vehicle routing problem,” European

Journal of Operational Research, vol. 195, pp. 803-809, 2009.

[4] K. Fleszar and K. S. Hindi, “An effective VNS for the capacitated

p-median problem,” European Journal of Operational Research, vol.

191, no. 3, pp. 612-622, 2008.

[5] J. Brimberg, N. Mladenovic, D. Urosevic, and E. Ngai, “Variable

neighborhood search for the heaviest k-subgraph,” Computers and

Operations Research, vol. 36, no. 11, pp. 2885-2891, 2009.

[6] P. Hansen, N. Mladenovic, and J. A. M. Perez, “Variable

neighbourhood search: methods and applications,” 4OR: A Quarterly

Journal of Operations Research, vol. 6, no. 4, pp. 319-360, 2010.

[7] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of

flowshop and jobshop scheduling,” Mathematics of Operations

Research, vol. 1, pp. 117-129, 1976.

[8] K. R. Baker, Introduction to Sequencing and Scheduling, Wiley, 1974.

[9] F. D. Croce, R. Tadei, and G. Volta, “A genetic algorithm for the job

shop problem,” Computers in Operations Research, vol. 22, pp. 15-24,

1995.

[10] S. M. K. Hasan, R. Sarker, D. Essam, and D. Cornforth, “Memetic

algorithms for solving job-shop scheduling problems,” Memetic

Computing, vol. 1, pp. 69-83, 2008.

[11] R. L. Becerra and C. A. Coello, “A cultural algorithm for solving the

job-shop scheduling problem,” in Proc. Knowledge Incorporation in

Evolutionary Computation, Studies in Fuzziness and Soft Computing,

2005, vol. 167, pp. 37-55.

[12] C. Bierwirth, “A generalized permutation approach to job shop

scheduling with genetic algorithms,” OR Spectrum - Special Issue on

Applied Local Search, vol. 17, no. 2-3, pp. 87-92, 1995.

[13] M. R. Raeesi N. and Z. Kobti, “A machine operation lists based

memetic algorithm for job shop scheduling,” in Proc. IEEE Congress

on Evolutionary Computation (CEC), New Orleans, LA, USA, 2011

pp. 2436-2443.

[14] J. Blazewicz, W. Domschke, and E. Pesch, “The job shop scheduling

problem: Conventional and new solution techniques,” European

Journal of Operational Research, vol. 93, no. 1, pp. 1–33, 1996.

[15] P. J. M. Van Laarhoven, E. H. L. Aarts, and J. K. Lenstra, “Job shop

scheduling by simulated annealing,” Operations Research, vol. 40, no.

1, pp. 113-125, 1992.

[16] H. Matsuo, C. J. Suh, and R. S. Sullivan, “A controlled search

simulated annealing method for the general job shop scheduling

problem,” Working paper 03-04-88, University of Texas at Austin,

1988.

[17] M. Dell’Amico and M. Trubian, “Applying tabu search to the job-shop

scheduling problem,” Annals of Operations Research, vol. 41, no. 3,

pp. 231-252, 1993.

[18] E. Nowicki and C. Smutnicki, “A fast taboo search algorithm for the

job shop scheduling problem,” Management Science, vol. 42, no. 6, pp.

797-813, 1996.

[19] E. Balas and A. Vazacopoulos, “Guided local search with shifting

bottleneck for job shop scheduling,” Management Science, vol. 44, no.

2, pp. 262-275, 1998.

[20] M. R. Raeesi N. and Z. Kobti, “A memetic algorithm for job shop

scheduling using a critical-path-based local search heuristic,” Memetic

Computing, vol. 4, no. 3, pp. 231-245, 2012.

[21] S. Lawrence, “Resource constrained project scheduling: an

experimental investigation of heuristic scheduling techniques,”

Master’s thesis, Graduate School of Industrial Administration,

Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1984.

[22] G. I. Zobolas, C. D. Tarantilis, and G. Ioannou, “A hybrid evolutionary

algorithm for the job shop scheduling problem,” Journal of the

Operational Research Society, vol. 60, pp. 221-235, 2009.

[23] M. R. Raeesi N. and Z. Kobti, “Incorporating a genetic algorithm to

improve the performance of variable neighborhood search,” in Proc.

4th World Congress on Nature and Biologically Inspired Computing

(NaBIC) , Mexico City, Mexico, 2012, pp. 144-149.

Mohammad R. Raeesi N. accomplished his bachelor

of science degree in information technology at Sharif

University of Technology, Tehran, Iran in 2008.

Consequently in 2010, he completed his master of

applied science degree in the field of 3D image

processing at Computer and Electrical Engineering

Department in University of Windsor, Windsor, ON,

Canada. He pursued his scientific career by starting

his Ph.D. program at School of Computer Science in

University of Windsor. His main research interest is evolutionary

computation such that he has explored different characteristics of

evolutionary algorithms specially cultural algorithm.

Ziad Kobti completed his doctorate (Ph.D.) in

computer science in 2004 from Wayne State

University, Michigan, USA, in the field of artificial

intelligence (AI). He completed his Bachelor of

Science, Honours degree (B.Sc.H.) majoring in

Biological and Computer Sciences in 1996 followed

by a Master of Science degree (M.Sc.) in computer

science both from the University of Windsor, Ontario,

Canada. In January 2005 he was appointed to a tenure

track assistant professor position at Windsor. He was also appointed an

adjunct faculty at Wayne State shortly afterwards in order to pursue further

research collaborations. In 2009 he was appointed as an adjunct researcher at

Washington State University, Pullman, Washington with the department of

Anthropology. Dr. Kobti received his early tenure in July 2009 and promoted

to associate professor in July 2011. Dr. Kobti was then appointed as the

director to the School of Computer Science to begin July 2012 for a 5 years

term.

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

270

