
  

 

Abstract—Variable Neighborhood Search (VNS) is one of the 

most recent metaheuristics to solve optimization problems. A 

new variant of VNS is introduced in this article called Recursive 

VNS (R-VNS). The proposed R-VNS incorporates recursive 

methods in order to improve both the exploration and 

exploitation capability of the basic VNS. The experiments show 

that the proposed R-VNS outperforms the basic VNS by offering 

better solutions as well as higher convergence rate. The case 

study considers classical Job Shop Scheduling Problem in order 

to evaluate both proposed methods. 

 
Index Terms—Job shop scheduling problem, recursive 

programing, variable neighborhood search.  

 

I. INTRODUCTION 

The class of optimization problems is the set of problems 

where the goal is to make a system as effective as possible by 

optimizing its input variables. Optimization problems are 

divided into two categories, namely continuous optimization 

problems and combinatorial optimization problems. The 

focus of this paper is on the latter where input variables of the 

system are discrete. In combinatorial optimization problems a 

set of values with respect to all variables is called a solution, 

and the solution space is the set of all feasible solutions. The 

solution space is usually extremely large, but finite, and the 

goal is to find a solution with the optimal objective value. The 

objective could be either minimizing a cost function or 

maximizing a fitness function. In some large test problems 

where finding the optimal solution is difficult, near optimal 

solutions are sufficient. 

There are different types of algorithms proposed to solve 

optimization problems. Heuristics are a class of approaches 

working on a solution space to find an optimal solution by 

incorporating a number of problem specific rules. 

Metaheuristics are general procedures using an iterative 

process to guide the operations of heuristics to deal with 

optimization problems. In other words, the goal of a 

metaheuristic is to build an efficient heuristic with a good 

performance on one problem domain. Various metaheuristics 

with different capabilities are introduced in literature to deal 

with both combinatorial and continuous optimization 

problems. One of the most recently introduced metaheuristics 

is Variable Neighborhood Search (VNS) proposed by 

Mladenovic and Hansen [1]. 

The procedure of VNS is to change the neighborhood 

systematically within a local search. Incorporating a number 
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of neighborhood structures enables VNS to switch among 

them at the time of local search execution. When the local 

search finds a local optimal solution with respect to one 

neighborhood structure, VNS switches to another one to 

escape from that local optimum. This routine decreases the 

chance of trapping into local optimal solutions dramatically. 

VNS is a general metaheuristic applicable in various areas 

such that it has been successfully applied in different 

combinatorial optimization problems such as the Traveling 

Salesman Problem [2], the Open Vehicle Routing problem [3], 

the p-Median problem [4], and the Graph problems [5]. 

The main contribution of this article is to introduce a new 

version of VNS which improves the searching capability of 

the canonical VNS. Since the new version uses recursive 

programming, it is called Recursive VNS (R-VNS) which is 

described later in detail. In order to evaluate the proposed 

R-VNS, Job Shop Scheduling Problem (JSSP) is considered 

as our case study, which is a combinatorial optimization 

problem.  

The remainder of this article is organized as follows. 

Section II and Section III concisely describe VNS and the 

JSSP problem domain, respectively.  Section IV represents 

the proposed R-VNS in detail, followed by illustrating the 

experiments designed to evaluate the proposed method, the 

discussion on the results and their comparison with the 

state-of-the-art methods in Section V. Finally, conclusion 

remarks are represented in Section VI. 

 

II. VARIABLE NEIGHBORHOOD SEARCH 

Heuristics can be differentiated based on their strategy to 

find a good solution, which is either constructive or 

explorative strategy. Constructive heuristics incorporate a 

number of problem domain rules to construct the optimal or 

near optimal solutions, while explorative heuristics explore 

the solution space to find the optimal solution. Explorative 

heuristics suffer from their immature convergence. Since they 

only investigate the neighborhood of a solution, they can be 

trapped into the neighborhood region of a local optimal 

solution. They look around the neighborhood area to find 

better solution to move there, but since there is no better 

solution in the area, they never escape from there. 

Consequently they will converge into a local optimal solution 

instead of the global one. This issue is more challenging in 

large size problems where the chance of trapping into local 

optimal regions is high. 

In order to overcome this limitation, explorative 

metaheuristics are proposed to design stronger heuristics. 

Metaheuristics may use one single solution or a population of 

solutions to do so. VNS is a single solution metaheuristic 

introduced to decrease the trapping chance of the existing 

heuristics. Although VNS is one of the most recently 
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introduced metaheuristics, a wide range of its successful 

application has been reported. 

The basic routine of a VNS is to switch to another 

neighborhood structure when a local optimum with respect to 

one neighborhood structure is reached. The obtained local 

optimum is not necessarily an optimum with respect to the 

new neighborhood structure. Therefore, VNS can jump out of 

the local optimum region. VNS incorporates multiple 

neighborhood structures which are required to be 

complementary to each other. Otherwise, VNS will not be 

able to escape from local optimal regions.  The 

complementary attribute of the neighborhood structures is a 

key factor for efficiency and effectiveness of a VNS. 

The idea of VNS is inspired from the following facts: 

 A local optimal solution with respect to one 

neighborhood structure could be a non-optimal solution 

with respect to another one. 

 The global optimal solution is a local optimal solution 

with respect to all possible neighborhood structures. 

 In general, local optimal solutions are often close to each 

other. 

The last fact is obtained by empirical observations and 

consequently it cannot necessarily be relied upon for every 

test problem. However, it does imply that the local optimal 

solutions may have some useful information about the global 

optimal solution. 

While the routine of VNS is fixed, there are different 

strategies to implement it. A survey on VNS methods and its 

applications is provided by Hansen et al. [6]. The authors 

described different implementations of VNS such as basic, 

reduced, general and skewed VNS. Almost all 

implementations include two subroutines, namely Shake and 

LocalSearch, such that the execution of a Shake function is 

followed by executing a LocalSearch subroutine, totally 

called a Run. 

The pseudo-code for the basic version of VNS is 

represented in Fig. 1. The basic VNS starts with a random 

solution s  (line 02), and with respect to the first 

neighborhood structure (line 04) it applies the Shake function 

to obtain another solution 's  within the neighborhood of s  

(line 06). The LocalSearch subroutine is then applied on the 

neighbor solution 's  to find out the local optimal solution ''s  

within its neighborhood with respect to the same 

neighborhood structure (line 07).  The last step of each 

iteration of VNS is its selection mechanism (lines 08 through 

13), in which if ''s  is better than s , it continues with ''s  

starting from the first neighborhood, otherwise it switches to 

the next neighborhood structure. This routine continues until 

no improvement can be achieved with respect to all 

neighborhood structures, after which it restarts again with the 

best solution so far. Finally, this procedure ends as soon as the 

termination criteria (e.g. maximum CPU time, predefined 

number of iterations) are met. 

It should be noted that the Shake subroutine randomly 

selects a solution 's  within the neighborhood of solution s  

with respect to neighborhood structure 
k

N . While there are 

two strategies for the LocalSearch function, which are First 

Improvement and Best Improvment. In the former strategy, 

the LocalSearch method returns a solution as soon as it finds a 

better solution compared to the given solution, while in the 

latter, it searches the whole neighborhood area of the given 

solution and returns the best solution of the area. Although the 

latter approach may find better solution, it is extremely 

time-consuming. 

PROCEDURE: Basic VNS 

INPUT: Algorithm Parameters and Problem Specification 

OUTPUT: Optimal or Near-Optimal Solutions 

01 BEGIN 

02     Generate an initial solution s  

03     REPEAT 

04         1k    

05         REPEAT 

06             ' ( , )s Shake s k   

07             '' ( ', )s LocalSearch s k   

08             IF ( '') ( )f s f s   

09                     ''s s  

10                     1k   

11             ELSE 

12                     1k k   

13             END IF 

14         UNTIL ( 
max

k k ) 

15     UNTIL (termination criteria are met) 

16     Output Solution s  

17 END 

Fig. 1. The pseudo-code of Basic VNS. 

 

Overall, VNS has a very effective exploitation mechanism 

due to the definition of its procedure, but it suffers from an 

inefficient solution space exploration approach. Although it is 

able to find local optimal solutions in promising regions, it 

cannot explore the solution space effectively to find said 

regions. 

 

III. JOB SHOP SCHEDULING PROBLEM 

The Job Shop Scheduling Problem (JSSP) is a well-known 

class of combinatorial optimization problems which are 

applicable in various research areas. In general, JSSP is the 

task of sequencing a number of jobs to be processed on a 

number of machines in order to optimize an evaluation 

function. The popular optimization function of JSSPs is 

makespan minimization which is to minimize the maximum 

completion time of all the jobs. As an open problem, JSSP is a 

good candidate to be used for the evaluation of optimization 

methods. Furthermore, Garey et al. [7] proved that JSSPs 

with more than two machines are NP-complete which implies 

that there is no exact algorithm to be able to find the optimal 

solution for all the scheduling problems in an acceptable time. 

Due to different specification and various constraints, 

various versions of JSSP are introduced in literature. The 

general version is called classical JSSP as defined by Baker 

[8]. In classical JSSP, each problem is defined by a set of N  

jobs and M  machines determining the problem size as 

N M . Jobs and Machines are denoted by 
i

J  and 
k

m  where 

i  and k  are the job index and machine index, respectively. 

Each job includes M  operations with a fixed sequence to be 

processed on different machines such that each machine 
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handles only one operation of a job. 
ij

O  denotes the 
th

j  

operation of the 
th

i  job. 

The rules of classical JSSP can be summarized as follows: 

 The operations of a job have to be processed in their 

predefined order, while the operations of different jobs 

are independent of each other. 

 Each operation has to be evaluated on only one machine 

for a known processing time such that it cannot be 

interrupted. 

 All jobs are available at the beginning without any due 

date. 

 The set up time of machines and movement time of each 

job between two machines are considered negligible. 

TABLE I: A SAMPLE 3 3  CLASSICAL JSSP 

 
Operation Index Jobs 

1
O  

2
O  

3
O  

1
J  

2
m ,1 

1
m ,2 

3
m ,3 

2
J  

1
m ,2 

3
m ,2 

2
m ,2 

3
J  

2
m ,2 

3
m ,4 

1
m ,1 

 

Table I represents a sample classical JSSP with size 3 3 . 

It illustrates the applicable machine and the corresponding 

processing time of each operation. The second operation of 

the first job, for instance, has to be completed on the first 

machine for 2 time units. A sample schedule for this test 

problem is illustrated in a Gantt chart in Fig. 2. 

One of the important concepts in JSSP is critical operations 

which are defined as the operations such that any delay in 

their processing time increases the makespan of the schedule. 

Critical operations are determined on a critical path which is 

the longest path of consecutive operations starting from time 

zero to the makespan. A schedule may have more than one 

critical path and an operation may be located on different 

critical paths at the same time. A set of adjacent critical 

operations on the same machine is called a critical block. The 

first and the end operations of a block are called the block 

head and the block rear, respectively, and the operations in the 

middle of a block are called internal operations. 

For instance, the critical path, the critical blocks and the 

critical operations of the sample schedule presented in Fig. 2 

are as follows. 

 
Fig. 2. A sample schedule for the sample problem represented in Table I. 
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As a result of these definitions, it is clear that the only way 

to decrease the makespan is to break up a critical path. 

Therefore the concepts of critical operations and critical 

blocks are very important to define efficient neighborhood 

structures. There are also a number of definitions in JSSP 

required to be clarified in order to be used later in 

neighborhood determination which include: 

 Job's Operation Sequence: This sequence is the fixed 

operation sequence predefined for each job. 

 Job-Successor Operation: This is the immediate next 

operation of the current operation on a job's operation 

sequence. 

 Job-Predecessor Operation: The operation that is 

immediately before the current operation on a job's 

operation sequence. 

 Machine's Operation Sequence: This is the sequence of 

operations that have to be processed on the same 

machine. 

 Machine-Successor Operation: The operation exactly 

after the current operation on a machine's operation 

sequence. 

 Machine-Predecessor Operation: This is the operation 

exactly before the current operation on a machine's 

operation sequence. 

Job-successor operation of operation O  is denoted by 

( )JS O , and its job-predecessor, its machine-successor and its 

machine-predecessor are denoted by ( )JP O , ( )MS O  and 

( )MP O , respectively. As the operation sequences of all jobs 

are predefined, the following equations are always correct 

provided 
, 1i j

O


 and 
, 1i j

O


 exist. 

 

, , 1
( )

i j i j
JS O O


  

, , 1
( )

i j i j
JP O O


  

 

Another concept in JSSP which is very useful to limit the 

solution space is active schedule. Defined by Croce et al. [9], 

the schedules where there is no operation that can be started 

earlier without delaying another operation are active. A 

primary aspect of this concept is that the optimal solution is 

more likely an active solution, and if it is not, it has an 

equivalent active schedule which is optimal as well. Therefore 

- instead of exploring the whole solution space - it is more 

efficient to just search among active schedules. This concept 

is incorporated by various researchers with different 

mechanisms such as a gap reduction rule [10] and a priori 

knowledge [11]. 

 

IV. PROPOSED RECURSIVE VNS  

Herein, a new version of VNS is proposed to improve upon 

the basic algorithm. The modified version called Recursive 

VNS (R-VNS) is the main contribution of this article which is 

described in Subsection A. Subsections B and C describe the 

solution representation and neighborhood structures for JSSP 

which are incorporated in our proposed method. The 

proposed method uses a more powerful fitness evaluation 

function which is represented in Subsection D. 
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A. Main Contribution 

By the knowledge of the authors, all variants of VNS 

incorporate the Shake function followed by the LocalSearch 

subroutine with respect to one neighborhood structure (One 

Run with respect to each neighborhood structure). It means 

that the LocalSearch subroutine of two different 

neighborhood structures are not executed immediately after 

each other. The key contribution here is to define one Run 

with respect to all neighborhood structures which includes: 

 A RecursiveShake function with respect to all 

neighborhood structures for a number of iterations. 

 A RecursiveLocalSearch subroutine with respect to all 

neighborhood structures. 

The RecursiveShake function calls the Shake function for 

all neighborhood structures consecutively such that the Shake 

subroutine with respect to the latter neighborhood structure is 

applied on the result of its application with respect to the 

former one. The pseudo-code of the RecursiveShake function 

is represented in Fig. 4 in which ShakeIterations denotes the 

number of iterations the Shake subroutine is applied with 

respect to each neighborhood structure. 

PROCEDURE: RecursiveLocalSearch 

INPUT: Current Solution 's  

OUTPUT: A Local Optimal Solution 

01 BEGIN 

02     1k   

03     REPEAT 

04             '' ( ', )s LocalSearch s k  

05             IF ( '') ( ')f s f s  

06                     ' ''s s  

07                     Output ( ')RecursiveLocalSearch s  

08             ELSE 

09                     1k k   

10             END IF 

11     UNTIL ( 
max

k k ) 

12     Output Solution 's  

13 END 

Fig. 3. The pseudo-code of RecursiveLocalSearch. 

 

PROCEDURE:  RecursiveShake 

INPUT: Current Solution s and Neighborhood k   

OUTPUT: A Random Neighbor Solution 

01 BEGIN 

02     FOR ( ShakeIterations ) 

03             ' ( , )s Shake s k  

04             's s  

05     END FOR 

06    1k k   

07     IF  
max

k k  

08             Output ( ', )RecursiveShake s k  

09     END IF 

10     Output Solution 's  

11 END 

Fig. 4. The pseudo-code of RecursiveShake. 

 

Like RecursiveShake, the RecursiveLocalSearch function 

executes the LocalSearch subroutine with respect to all 

neighborhood structures consecutively, and if a better 

solution is reached, the RecursiveLocalSearch will be called 

recursively. Fig. 3 illustrates the pseudo-code of the 

RecursiveLocalSearch. Due to the recursive characteristic of 

both new functions, the new VNS version is called Recursive 

VNS, the pseudo-code of which is depicted in Fig. 5. R-VNS 

starts with a random solution, and applies the RecursiveShake 

function (line 05) followed by the RecursiveLocalSearch 

subroutine (line 06) on the current solution. Finally, a 

selection mechanism decides whether to keep the new 

solution or not (lines 07 through 09). 

The main goal of incorporating recursive methods is to 

develop a more explorative and exploitative method. By 

incorporating recursive strategy, the proposed 

RecursiveShake procedure is able to explore further regions 

compared to the simple Shake method. This mechanism helps 

the search method to avoid from trapping into local optimal 

regions. The RecursiveLocalSearch method is designed to 

improve the exploitation mechanism of the basic VNS. This 

method exploits a region more deeply until it cannot find a 

better solution with respect to all neighborhood structures 

without disturbing the current solution.  

 

PROCEDURE: RecursiveVNS 

INPUT: Algorithm Parameters and Problem Specification 

OUTPUT: Optimal or Near-Optimal Solutions 

01 BEGIN 

02     Generate an initial solution s  

03     REPEAT 

04             1k   

05             ' ( , )s RecursiveShake s k  

06             ( ')s RecursiveLocalSearch s   

07             IF ( '') ( )f s f s  

08                     ''s s  

09             END IF 

10     UNTIL ( termination criteria are met ) 

11     Output Solution s  

12 END 

Fig. 5. The pseudo-code of RecursiveVNS. 

 

 Overall the proposed RecursiveShake and 

RecursiveLocalSearch methods improve the exploration and 

exploitation capabilities of the basic VNS, respectively. 

Therefore, it is expected that the proposed R-VNS 

incorporating these methods offers better solutions as well as 

better convergence rates compared to the basic VNS. 

In order to incorporate R-VNS, a solution representation 

and a number of neighborhood structures should be 

determined. The selected representation and neighborhood 

structures for experiments are represented as follows. 

B. Solution Representation 

In literature, there are various representations for JSSP 

with their own advantages and disadvantages. One of the 

well-known representation is introduced by Bierwirth [12] 

which is mathematically called permutation with repetition. 

Permutation with repetition representation is an 

operation-based representation encoding a schedule into one 

string of job indices. The index of each job is repeated p  

times where p  is the number of its operations. The total 

length of this string for a test problem is equal to the total 

number of operations in that problem. Each job index denotes 
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one operation of the corresponding job and the operations 

within the same job are distinguished with the occurrence of 

the same index. The following example represents more 

details about this representation. Consider 

 

  1, 2,1,3,3, 2, 2,1,3   

 

as a sample permutation encoded by permutation with 

repetition representation for the sample problem illustrated in 

Table I. This permutation is decoded into the following 

operation sequence. 

11 21 12 31 32 22 23 13 33
O O O O O O O O O  

This operation sequence produces the following schedule 

depicted in Fig. 2. 

 

1 21 12 33
:m O O O  

2 11 31 23
:m O O O  

3 32 22 13
:m O O O  

 

The advantage of this representation is that all the possible 

permutations are feasible solutions, and no repair mechanism 

is required. But this representation suffers from its inefficient 

n  to 1  mapping such that there could be a large number of 

different permutations with the same encoded schedule. 

Compared to Machine Operation List (MOL) representation 

[13] as an example, the number of all possible permutations in 

MOL representation is much smaller than that of the 

permutation with repetition representation, while both 

representations encode the same solution space. Furthermore, 

the MOL's possible permutations include some infeasible 

solutions in addition to all feasible solutions included in the 

solution space. This comparison shows how inefficient the 

mapping of the permutation with repetition representation is. 

However, due to its very efficient decoding and encoding 

procedures, it has been incorporated by various researchers. 

C. Neighborhood Structures 

There are various neighborhood structures proposed for 

JSSP. Blazewicz et al. [14] provided a review on the 

techniques proposed to deal with JSSPs. In this review, six 

popular neighborhood structures are presented which are 

called 1N  to 6N  by the authors. A brief description of these 

neighborhoods is provided as follows: 

 Neighborhood Structure 1N : This structure introduced 

by Van Laarhoven et al. [15] is a very simple structure 

such that swapping two adjacent critical operations is 

considered as a valid move to generate new schedule. 

The neighborhood area for this structure is pretty large. 

 Neighborhood Structure 2N : This neighborhood 

structure is defined by Matsuo et al. [16] in which 

swapping two critical operations p  and q  is considered 

as a valid move if either p  is a block head or q  is a 

block rear. In addition, two additional moves are 

considered to provide more chance to obtain a schedule 

with lower makespan including swapping ( ( ))MP JP p  

and ( )JP p , and swapping ( )JS q  and ( ( ))MS JS q . 

 Neighborhood Structure 3N : This structure is 

incorporated by Dell'Amico and Trubian [17] in which 

all permutations of three operations { ( ), , }MP p p q  and 

{ , , ( )}p q MS q  have been considered such that p  and 

q  are adjacent critical operations swapped in the 

provided permutations. The neighborhood area of this 

structure is finite but very large. Neighborhood structure 

3'N  is a limited version of 3N  in which either p  or q  

should be a block end. 

 Neighborhood Structure 4N : Represented by 

Dell'Amico and Trubian [17], 4N  considers moving an 

internal operation to the very beginning or to the very 

end of a block. 

 Neighborhood Structure 5N : Nowicki and Smutnicki 

[18] introduced the smallest neighborhood area using 

neighborhood structure 5N  in which only the first two 

operations or the last two operations of a critical block 

are the candidates for swap operation. 

 Neighborhood Structure 6N : The extension of all 

previously described neighborhood structures is 

proposed by Balas and Vazacopoulos [19]. Considering 

p  and q  as two critical operations on a critical block, a 

valid move in 6N  is defined as moving q  right before 

p  if ( )JP p  belongs to the critical path, and moving p  

right after q  if ( )JS q  belongs to the critical path. The 

authors called these moves backward interchange and 

forward interchange, respectively. 

In the proposed R-VNS, neighborhood structures 4N , 

5N  and 6N  are incorporated with different strategies for 

RecursiveShake and RecursiveLocalSearch procedures which 

are presented in Equations (1) and (2), respectively. 

Furthermore, the neighborhood structure 5N  is considered 

as a nested neighborhood structure for RecursiveLocalSearch 

when it cannot find a better solution. 

 

RecursiveShake: 

 

4, if 1

3 5, if 2

6, if 3

max k

N k

k N N k

N k



  









  (1) 

 

RecursiveLocalSearch: 

 
4, if 1

2
6, if 2

max k

N k
k N

N k


 







  (2) 

 

It should be mentioned here that there are not any 

pre-processing or post-processing procedures incorporated 

for any move in each neighborhood structure. The move is 

just moving one index either forward or backward in the 

solution representation string. 

D. Evaluation Function 

In order to evaluate each solution in an optimization 

problem, the simple way is to find out only the objective value 

of that solution. This approach works well for evaluation but 

not for comparison. When comparing a number of solutions 
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with the same objective value, according to the simple 

approach one of them has to be selected randomly, while a 

better way is to consider other characteristics of those 

solutions. 

For the solution evaluation in the proposed method, a 

Priority-Based Fitness Function (PBFF) [20] is incorporated. 

Since the proposed method is going to be applied on classical 

JSSPs, only two priorities are defined for the PBFF. The first 

priority is the makespan, and the second one is the number of 

critical machines such that both priorities have to be 

minimized. Using this evaluation function, in case of a tie in 

comparison, the solution which has the lowest number of 

critical machines is selected. 

 

V. EXPERIMENTS AND DISCUSSION 

The proposed method is implemented using the Java 

programming language (version 1.6.0.18) and experiments 

are done on a system with Intel(R) Xeon(R) 2.27GHz CPU (16 

Core) and 24GB RAM. As mentioned before (in order to 

evaluate the method), they are applied on classical JSSP. As 

one of the well-known classical JSSP benchmarks, the case 

study considers the data set introduced by Lawrence [21]. 

This benchmark (denoted by LA) includes 40 test problems 

with different size and complexity levels. While almost all the 

state-of-the-art methods, as well as the proposed method, are 

able to find the optimal solution for 28 test problems in every 

run, the remaining 12 problems are still considered 

challenging. In the experiments the algorithm is evaluated 

based on 50 independent runs for each test problem. 

Table II represents the algorithm parameters adjusted by 

incorporating extensive experiments. The proposed R-VNS 

runs for 20,000 iterations incorporating neighborhood 

structures 4N , 5N , and 6N . To have a better 

representation of the table, neighborhood structure and nested 

neighborhood structure are denoted by NS and NNS, 

respectively. 

Regarding to the number of shake iterations in the proposed 

RecursiveShake procedure two strategies are considered, 

namely Fixed ShakeIterations (FSI) and Variable 

ShakeIterations (VSI). In the former strategy the parameter 

ShakeIterations is set to 2 and remains the same for all 

iterations of one experiment, while in the latter it is set to a 

number between 2 and 5 which is selected randomly for each 

iteration. 

The proposed R-VNS in two versions with different 

ShakeIterations strategies is applied on the challenging LA 

test problems, the results of which are represented in Table III. 

Both versions show almost the same performance such that 

their best found solutions are similar for all the 12 test 

problems, except problem LA38 where the VSI version finds 

the optimal solution. In addition to the optimal solution for 

problem LA38, the VSI version offers better average, median 

and worst solutions for almost all 12 test problems. Therefore, 

it is possible to say that the R-VNS (VSI) slightly outperforms 

R-VNS (FSI). 

In order to show the performance of the proposed R-VNS, 

the basic VNS is also applied on the same problems with the 

same configuration to have a fair comparison. As represented 

in Table III both versions of R-VNS outperform the basic 

VNS by finding better solutions. The basic VNS can only find 

the optimal solution for three test problems out of 12, while 

the proposed R-VNS (FSI) and R-VNS (VSI) offer the 

optimal solutions for 7 and 8 test problems, respectively. 

Furthermore, the statistical analysis of the results shows much 

better average, median and worse solutions for the proposed 

R-VNS compared to the basic VNS. 

TABLE II: ASJUSTED PARAMETERS OF THE PROPOSED R-VNS 

 Proposed R-VNS  

Parameter Value 

MaxIteration 20,000 

ShakeNS 4N , 5N , and 6N  

LocalSearchNS 4N and 6N  

LocalSearchNNS 5N  

FSI 2 

VSI {2,3, 4,5}  

NS: Neighborhood Structure 

NNS: Nested Neighborhood Structure 

 

Overall the results show that the proposed R-VNS 

outperform the basic VNS by offering better solutions as well 

as improving the convergence rate. Therefore, the results 

confirm that the proposed RecursiveShake and 

RecursiveLocalSearch methods are capable to improve the 

exploration and exploitation mechanisms of the basic VNS, 

respectively.  

In order to demonstrate the performance of the proposed 

methods, the state-of-the-art methods in the area are 

considered for comparison including three recently published 

methods. The first method which is proposed by Zobolas et al. 

[22] is a hybridization of a Genetic Algorithm (GA) and a 

VNS which incorporates a Differential Evolution to generate 

an initial population. The authors called it as a hybrid 

Evolutionary Algorithm (hEA). The two other methods are 

our recently published VNS and Memetic Algorithm (MA) 

[23]. The published MA is a GA joined with a VNS.  

In order to evaluate the proposed over all the test problems, 

the Error Rate (ER)  parameter is incorporated, which is the 

percentage error from the optimal solution. ER is calculated 

using Equation (3) where C  denotes the best solution found 

by the algorithm and BK  denotes the best-known solution. 

 

100%
C BK

ER
BK


                       (3) 

 

The results of all three methods on the most challenging LA 

problems are illustrated in Table IV. The ER parameter is also 

incorporated here in order to have a fair comparison over 

different test problems. The values within brackets and the 

values illustrated on the last row of the table represent the ER 

values and their averages over 12 test problems, respectively. 

The ER values demonstrate that both proposed R-VNS 

methods offers competitive solutions compared to the 

state-of-the-art methods. Overall the proposed R-VNS (VSI) 

is an effective method such that it offers a very low average 

ER for the most challenging LA problems (as low as 0.20%). 
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VI. CONCLUSIONS 

The main contribution of this article is to introduce a new 

version of VNS called Recursive VNS (R-VNS). R-VNS calls 

the Shake and LocalSearch functions recursively. The key 

idea of the proposed R-VNS is to call the Shake subroutine 

with respect to different neighborhood structures immediately 

after each other. This mechanism forces the search method to 

explore more regions. Calling the LocalSearch method 

recursively, improves the exploitative mechanism of the basic 

VNS. Applying the proposed R-VNS on a number of classical  

 

JSSP shows that the proposed R-VNS outperforms the basic 

VNS by offering better solutions as well as improving the 

convergence rate. 

However, there is still some possibility to improve the 

proposed method. One direction is to investigate the effect of 

ShakeIterations parameter over different iterations. A 

dynamic strategy (DSI) may outperform both FSI and VSI 

strategies. Another direction is to incorporate an EA to be 

joined with the proposed R-VNS in order to make it highly 

explorative.  

TABLE III: RESULTS ON THE CHALLENGING PROBLEMS OF LA BENCHMARK 

Problem Method Best Average SD Median Worst 

LA20 Basic VNS 907 907.00  0.00 907.0 907 

10 10  R-VNS (FSI) 902 906.60  1.37 907.0 907 

902 R-VNS (VSI) 902 906.60  1.37 907.0 907 

LA21 Basic VNS 1046 1065.66  10.50 1067.0 1093 

15 10  R-VNS (FSI) 1046 1061.00  9.28 1058.0 1084 

1046 R-VNS (VSI) 1046 1057.00  7.48 1056.0 1077 

LA24 Basic VNS 938 947.56  6.06 946.0 970 

15 10  R-VNS (FSI) 935 945.02  5.07 946.0 961 

935 R-VNS (VSI) 935 944.46  5.08 946.0 957 

LA25 Basic VNS 977 986.62  6.36 984.0 1006 

15 10  R-VNS (FSI) 977 984.84  5.10 984.0 1004 

977 R-VNS (VSI) 977 983.48  3.92 983.5 993 

LA27 Basic VNS 1237 1253.48  9.38 1253.0 1269 

20 10  R-VNS (FSI) 1235 1251.20  10.63 1248.5 1269 

1235 R-VNS (VSI) 1235 1249.86  10.25 1247.5 1269 

LA28 Basic VNS 1216 1219.40  5.81 1216.0 1234 

20 10  R-VNS (FSI) 1216 1217.78  4.35 1216.0 1234 

1216 R-VNS (VSI) 1216 1217.44  2.92 1216.0 1227 

LA29 Basic VNS 1173 1195.58  12.94 1194.5 1232 

20 10  R-VNS (FSI) 1163 1186.80  15.65 1188.0 1228 

1152 R-VNS (VSI) 1163 1189.34  12.56 1189.5 1221 

LA36 Basic VNS 1281 1294.94  7.47 1292.0 1315 

15 15  R-VNS (FSI) 1274 1291.14  7.06 1291.0 1308 

1268 R-VNS (VSI) 1274 1290.50  6.35 1291.0 1299 

LA37 Basic VNS 1400 1424.28  14.32 1424.0 1457 

15 15  R-VNS (FSI) 1397 1419.28  14.09 1418.0 1455 

1397 R-VNS (VSI) 1397 1416.16  9.68 1418.0 1433 

LA38 Basic VNS 1202 1237.04  14.66 1237.5 1263 

15 15  R-VNS (FSI) 1201 1232.44  15.66 1232.0 1260 

1196 R-VNS (VSI) 1196 1230.54  14.29 1231.5 1259 

LA39 Basic VNS 1240 1248.36  5.55 1249.0 1268 

15 15  R-VNS (FSI) 1239 1246.84  5.29 1248.0 1259 

1233 R-VNS (VSI) 1239 1246.92  5.05 1248.0 1258 

LA40 Basic VNS 1228 1241.24  5.38 1242.0 1254 

15 15  R-VNS (FSI) 1228 1241.04  6.54 1241.5 1263 

1222 R-VNS (VSI) 1228 1240.40 6.75 1240.5 1252 

 
TABLE IV: COMPARISON WITH THE STATE-OF-THE-ART METHODS 

Problem BK hEA [22] VNS [23]  MA [23] R-VNS (FSI) R-VNS (VSI) 

LA20 902 - 902 (0.00%)  902 (0.00%) 902 (0.00%) 902 (0.00%) 

LA21 1046 1046 (0.00%) 1046 (0.00%)  1046 (0.00%) 1046 (0.00%) 1046 (0.00%) 

LA24 935 935 (0.00%)  935 (0.00%) 935 (0.00%) 935 (0.00%) 935 (0.00%) 

LA25 977 977 (0.00%) 979 (0.20%)  977 (0.00%) 977 (0.00%) 977 (0.00%) 

LA27  1235 1236 (0.08%) 1244 (0.73%)  1238 (0.24%) 1235 (0.00%) 1235 (0.00%) 

LA28 1216 1224 (0.66%) 1216 (0.00%)  1216 (0.00%) 1216 (0.00%) 1216 (0.00%) 

LA29 1152 1160* (0.69%) 1169 (1.48%)  1163 (0.95%) 1163 (0.95%) 1163 (0.95%) 

LA36 1268 1268 (0.00%) 1291 (1.81%)  1281 (1.03%) 1274 (0.47%) 1274 (0.47%) 

LA37 1397 1408 (0.79%) 1397 (0.00%)  1397 (0.00%) 1397 (0.00%) 1397 (0.00%) 

LA38 1196 1202 (0.50%) 1208 (1.00%) 1208 (1.00%) 1201 (0.42%) 1196 (0.00%) 

LA39 1233 1233 (0.00%) 1241 (0.65%) 1241 (0.65%) 1239 (0.49%) 1239 (0.49%) 

LA40 1222 1229 (0.57%) 1233 (0.90%) 1233 (0.90%) 1228* (0.49%) 1228* (0.49%) 

Average ER 0.30% 0.56% 0.32% 0.24% 0.20% 
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