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Abstract—Representing causal relation between set of 

variables is a challenged objective. Causal Bayesian Networks 

has been classified as good modeling technique for this purpose. 

However structure learning for causal Bayesian networks still 

suffering from several problems including the causal 

interpretation of the model and the complexity of the learning 

algorithm. In this research the author presents an approach for 

learning causal graph based on Wiener-Granger causal-theory, 

with minor modifications, and use Genetic Programming to 

determine the parameters of Granger formula. This approach 

enjoys necessary advantages: reasonable complexity and cover 

nonlinear equation. A case study of 5 global stock markets is 

presented to experimentally explain and support this approach. 

The finding show that SP500 has Granger-causal influence on 

NIKKE: the accuracy of forecasting NIKKE stock market can 

be incremented by 24% when integrating past data from 

SP500. Whereas Euro STOXX 50 is reported to be the least 

stock Granger-causally affected by the others. 

 
Index Terms—Genetic programming, granger-causality, 

learning causal graph, stock market forecasting, JEL 

classification: G15 – C32 – D83. 

 

I.   INTRODUCTION 

Traditional Bayesian Network (BN) has been used dozens 

of times to model relation between variables. However the 

interpretation of these relations differs; for example [1], [2] 

claim that their Direct Acyclic Graph (DAG) reflects causal 

relation whereas others (e.g. [3], [4]) argue that causality in 

traditional BN structure is not that obvious. A clear 

statement is cited in [4]: “Formally Belief Networks only 

make independence statements, not causal ones,” 

One important reason for why BN can not imply 

causation is that most of used structure learning approaches 

are based on information score metrics such as: BDe, K2, 

MIT. etc. [5]; those metrics discover correlation between 

variable. More precisely they measure the degree of 

association between each variable and its parent variables in 

the network; but correlation does not imply causation [6]. In 

other words, Bayesian Network can be interpreted as 

probabilistic model that reflect relation like conditional 

independence and associational relationship but without 

consideration of causality. 

Causal Bayesian networks was introduced with the 

intention to solve the problem of “causal” interpretation. It’s 

simply based on the instinct that everything occurred 

according to some reason(s) (i.e. cause). Its importance is 

evident since the decisions concluded based on causal model 
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are more significant, and more reliable. Finally causal 

inference is much more likely to be achieved rather than 

traditional inference because it allows us to predict the 

effects of interventions in a domain. 

Two researchers are recognized as leaders in “causality 

definition and modeling”: a) Pearl ([7] and [8]) subsumes 

and unifies many approaches of causation, and provides a 

consistent mathematical foundation for the analysis of 

causes and counterfactuals, and b) Granger [9], the Nobel 

Prize winner in economic sciences, is well-known for his 

researches on causality especially in econometrics. 

According to Granger: to detect causal effect of a variable X 

on variable Y we should measure how much integrating past 

data of X can improve the forecasting the present value of Y.  

Most of recent works addressing causation are based on the 

works of at least one of these two researchers. 

However the definition of causality and its interpretation 

in causal Bayesian networks is still a challenge. For instance 

reference [3] describes a Bayesian Approach to learning 

causal networks; and [10] propose a method for learning 

causal Bayesian network structures from experimental data 

using MCMC-based model. Definition and interpretation of 

causality in these two works simply does not match. 

This paper introduces a new technique for learning causal 

graph, but not necessary a Direct Acyclic Graph (DAG), 

based on Wiener-Granger causality theory. Since Granger-

causality is compatible with most other definitions of 

causality, it has been widely accepted. This work mainly 

refer to the original papers of Wiener [11] and Granger [9]; 

however two modifications on Granger equations will be 

described practically. The parameters of Granger equations 

will be estimated via Genetic Programming (GP). We also 

explain how GP can solve problem of nonlinear equation. 

We use the Mean Square Error (MSE) as fitness function for 

GP. Based on MSE, we define and calculate Level of 

Significance (LS) of causal influence to deduce edges’ 

orientations. Case of nonlinear equation is covered using GP.   

The accompanied case study is composed of 5 global stock 

markets: SP500, EURO STOXX 50, CAC 40, FTSE 100, 

and NIKKE225. The goal is to discover the associated 

Granger-causal graph to these stocks. 

The rest of this paper proceeds as follow:  Section II 

provides a brief review of Bayesian network and causal 

Bayesian network; Section III describes the basic concept of 

Wiener and Granger-causal theory and describe my 

proposed modifications; Section IV explains the essentials 

of Genetic Programming and its advantages for this research; 

in Section V explains briefly how to construct a causal 

graph structure according to this approach; Section VI 

provides a case study of five global stock markets with deep 

details. Some related works are listed in Section VII; we 
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conclude in Section VIII. 

 

II.   BAYESIAN NETWORKS AND CAUSAL BN 

A. Bayesian Networks 

Bayesian Networks (BN) [2] is a graphical modeling 

technique that is based on the assumption of the existence of 

relationships among different included variables. BN graph 

is a direct acyclic graph (DAG) that shows, mainly, the 

structure of relationship of dependency, associational 

relationship and conditional independency (as edges) 

between different variables (as nodes), see Fig. 1. DAG 

structure can be determined either from historical data 

(structure learning) or by an expert (or even by combination 

of both). Next, conditional probability tables (CPT) are 

constructed. The model finally can be used for inference 

purposes.  

At many works, edges are assumed to have causal 

implication; but they could not prove this assumption 

although some researchers try to do so (e.g. [12]-[14]); they 

end up that having a causal interpretation of BN can be very 

important [3]. In the matter of fact most BN structure are 

constructed based on score metrics approaches that rely on 

information theory (e.g. Mutual Information, Entropy). The 

main problem with information theory is that it mainly 

discover correlation and not causation which is simply a 

different subject. 

Reference [3] called that type of networks “a causal 

Bayesian networks” and basically it represents probabilistic 

independence. 

Our concern in this study is the causal implication of 

edges in a graph; which is the corner stone of causal 

Bayesian network.  

B. Causal Bayesian Networks 

The advantage of causal model over probabilistic model, 

e.g. BN, is clarified in [15]: 

“Causal model are much more informative than 

probability models. A joint distribution tells us how a 

probable events are and how probabilities would change 

with subsequent observations, but a causal model also tell 

us how these probabilities would change as a  result of 

external interventions (e.g. treatment management). These 

changes cannot be deduced from a join distribution even if 

fully specified,”  

For simplicity we denote by causal Bayesian network a 

couple consisting of a directed
 
acyclic graph (called causal 

DAG) that stand for causal relationships and a set of 

probability tables, that in association with the graph identify 

the joint probability of the variables represented as nodes in 

the graph. More formal definition of causal Bayesian 

networks can be found in [15]. 

In this paper we focus on one perspective only: causal 

interpretation of edges in a causal DAG.  

  
Fig. 1. Sample direct acyclic graph (DAG). 

III.  WIENER-GRANGER CAUSALITY WITH MINOR 

MODIFICATION 

A. Granger Causality 

In its simplest explanation Granger-Causality (GC) 

measures an associational relation between the historical of 

a variable and the current of another based on the intuitive 

supposition that a cause have to happened before its result. 

    The basic idea was introduced by Wiener [11]: if the 

accuracy of forecasting the current value of given time 

series variable X is enhanced by integrating past values of 

another time series Y then Y is said to have causal influence 

on X. Wiener’s idea was not supported by mathematical 

formulas or explanation that make it practical. Granger [9] 

formalized the necessary calculus in the framework of linear 

regression models. Specifically, “if the variance of the 

autoregressive prediction error of the first time series at the 

present time is reduced by inclusion of past measurements 

from the second time series, then the second time series is 

said to have a causal influence on the first one,” 

More formally: Let X and Y are two time series data and 

let Ut be all the data in the universe collected since time t-1 

and let Ut-Yt denote all this data without the indicated time 

series Yt: 

The following definitions are adopted from [9]; let σ
2
 (X|Y) 

denote the predictive error variance of Xt using only the past 

of Yt. 

Definition 1: Causality. If σ
2
 (X|U) < σ

2
 (X|U-Y), we say 

that Y is causing X, denoted by Yt→ Xt.  

Definition 2: Feedback. If σ
2
 (X|U) < σ

2
 (X|U-Y) and σ

2
 

(Y|U) < σ
2
 (Y|U-X) that is: feedback is said to occur when Xt 

is causing Yt and also Yt is causing Xt. As consequence a 

causal graph may not being “acyclic” in such case. Let’s 

consider the following simplified equations of two variable 

case:  

                         ∑         
 
        + E1(t)                      (1) 

   ∑         
 
     ∑         

 
    + E2(t)          (2) 

 

In the original theory of Granger [9], lags length are 

assumed to be equal (i.e. m =q.)  E1(t) and E2(t) are the 

prediction errors for each time series. 

Now if it’s found that error of (2) is significantly lower 

than (1) then we say that Y Granger-cause X. More details 

on measurement of “significance” is given in next paragraph.  

The solution of how to determine the parameters ai and bj 

will be given in next section according to this approach. 

B. Minor Modifications 

In this work we applied two basics modifications on the 

Granger-causality concept described in previous paragraph:  

1) Lag length 

First, in this work m can be different, i.e. not equal, from 

q in (2).   Logically, the assumption of m=q does not hold 

always in reality. Simply put, let us assume that m=1, that is 

x is perfectly predicted using xt-1 value; there is no reason to 

conclude from this that yt-2 can not contribute efficiently in 

predicting xt. The results of [16] is an experimental approval 

that it is normal to have m≠q in a Granger-causal test. In 

addition, reference [17] show that the results of Granger-

causality tests are extremely sensitive to the lag condition.  
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We conclude from this that dealing with lags in VAR model 

need more attention. 

In reality selecting the lag length of VAR model can be 

problematic. Several methods for calculating lag length 

were described in [18].  

According to this approach, in the notation of the above 

augmented regression (2), m is the shortest, and q is the 

longest, lag length for which the lagged value of x is 

significant. Calculating m and q is discussed in Section VI. 

2) MSE instead of error variance 

Another difference exists between theory of Granger and 

this approach. In this work we measure forecasting error 

using the Mean Square Error (MSE) (3) instead of the error 

variance σ
2
. We suppose that replacing σ

2
 with MSE in 

definition 1 and 2 does not affect the accuracy of Granger-

theory; i.e. definitions 1 and 2 still holds using MSE.                

This assumption is based on: a) The MSE includes 

together the variance of the estimator and its bias and b) in 

regression analysis, the MSE is consistent although it is not 

an unbiased estimator of the error variance, and c) MSE is, 

clearly, well-matched with initial concept of Wiener causal-

theory [11]. 

 

MSE 
 

 
∑  

 

   
Ŷi-Yi)

2                                   
(3)

 

where Ŷ and Y are two vectors of n predicted values and true 

values respectively. Hence, the MSE evaluates the quality of 

a predictor in terms of its variation (σ
2
) and degree of bias 

(4). 

 

MSE (Ŷ) = σ
2
(Ŷ )+ Bias ((Ŷ ,Y))

2
                 (4) 

That is we compute MSEX and MSEX|Y for equations (1) 

and (2) respectively. Next, we define a so-called variable 

Level of Significance (LSX|Y) used in this work to measure 

how much integrating past data from Y will increase the 

accuracy of predicting X.  LSX|Y (in %) is counted as follow 

(5): 

           
           

    
                     (5) 

Note: LSx|y  =0 only if MSEx = MSEx|y; that is only if 

knowing x does not improve the predictability error of y.  

The roles of the two variables X and Y, in equation (1) and 

(2), can then be overturned to test the existence of causal 

influence in the reverse direction.  

One important note is that none of these two 

modifications violate the original causal theory according to 

Wiener [11].    

Using Granger-causality test is common especially in 

economics, see for example [19] and [20]. Recently 

combining the concept of Granger causality with graphical 

models has become very attractive [21]. 

As can be noticed from [9] the associated definitions (1 & 

2) make no assumptions on the data generation process. 

However the supposition of linearity in VAR-based G-

causality does not hold always in reality. 

Although extension for non-linear cases have been made 

(see for example [22]), but in this paper we adopt the 

original linear version of the theory, described above, and 

we will explain how to cover the limitation of nonlinearity 

by using GP in next section. 

The potential of relying on Granger-causality come from 

its compatibility with most other notions of structure 

learning and causality. For example the link between 

information theory and Granger causality has been reviewed 

in [23]: they discuss the conceptual and theoretical relations 

between Granger causality and directed information theory; 

and report that “measures based on directed information 

theory naturally emerge from Granger causality inference 

frameworks,” 

In addition, it was proved in [24] that Pearl’s Causal 

Model and Granger causality are in fact closely linked.  

Furthermore, Granger-causal theory outperforms many 

other approaches for exploring causal relationships as 

reported in [25]. 

 

IV.  GENETIC PROGRAMMING 

Genetic Programming is based on Darwin’s theory of 

evolution: “survival of the fittest,” It starts with a generation 

composed of set of computer programs that will reproduce 

with each other for thousands of iterations. At each iteration, 

the finest programs only stay alive then they replicate with 

each other’s again to compose the next generation and so on. 

Theoretically each generation, i.e. set of programs, should 

perform better than its predecessors [26]. 

The main concept is that any mathematical equation can 

be modeled as a tree. See for example, Fig. 2.a and Fig. 2.b.  

Hence the problem is to find the optimal equation; i.e. 

optimal tree. GP objective is to find this tree. 

 

                                
Fig. 2.a. tree expression of equation Fig. 2.b. tree expression of  

     M+ [(K*L) /X]        equation (a/b)* Log M 

  

               
Fig. 2.c. tree expression of equation Fig. 2.d. equation M* Log M 
                a/b+ [(K*L) /X]  

 

To this end GP proceed as follow: 

a. Randomly generate a set S of N equations, i.e. trees, 

similar to Fig 2.a. & Fig 2.b., where N could be 

several hundred (or thousands). This is the first 

generation of equations 

b. Sort the equations in S according to a fitness 

function (e.g. MSE) 

c. Select TOP M equations (where M is a parameter 

that can be set by user.) 
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d. New generation is to be formed by reproduction, 

using crossover and mutation (more details after 

few lines). 

e. Step d should end up with another N equations, 

which form the new S. Hypothetically, new S will 

contain better equation(s), i.e. tree(s), than the 

previous set. 

f. If stop criterion =false then Go to step b else quite 

In step b, The fitness function is necessary in order to be 

capable to algorithmically decide whether one solution; i.e. 

tree; is better than another. 

In step d, we can mate any two equations by randomly 

exchanging subtrees that compose them to yield children; i.e. 

equations that have the same elements as their parents. For 

example of crossover, the two trees Fig. 2.c and Fig. 2.d. are 

children of the two at the top. Practically, the same two 

parents might equally well produce a large number of other 

offspring. Crossover make guaranty that GP is not limited to 

linear equations, see Fig. 2.d. for example. More details on 

advantages of using GP for nonlinear system can be found 

in [27]. 

As can be seen, the previous algorithm assures the 

convergence to the global optimal solution; although it may 

not reach it. Due to “mutation,” in step d, falling in local 

optima is avoided. Mutation can be defined, from GP 

perspective, as a sudden alteration in a specific node; for 

example: assume in Fig. 2.d the root node can become “/” 

instead of “*”; the expression turn out to be: M / Log M.    

Criterion to stop the running can be defined such as: a) a 

threshold of error (e.g. MSE < β) or b) number of generation 

without significance improvement in fitness function (e.g. 

2000 successive generations without improvement of MSE). 

According to Wiener-Granger causal-theory, we are not 

interested in finding the exact equations’ parameters; instead 

we are more concerned with accuracy of level of 

significance (LS). That is by computing MSE with high 

accuracy using GP we can then determine LS easily. 

In my approach we rely on GP to estimate parameters, ai 

and bi, of Granger formulas (1) and (2) as well the lag value 

m & q (more details on this is given in the accompanied case 

study). 

The advantage of using optimization algorithm, such GP, 

is to attain a computational advantage (see [28] for details) 

over many other graphical Granger methods those could be 

computationally too expensive to be applicable in some 

cases such as: Exhaustive Granger [20]. Other advantages of 

GP are: its results are human readable, the automatic 

selection of variables, and it cover nonlinear equation easily.  

GP has been a main technique for many researches in 

time series forecasting and modeling (see for example [29], 

[30].) 

 

V.  BUILDING G-CAUSAL GRAPH VIA GP 

Constructing G-causal graph can be done as following: 

First: For each pair of time series- X and Y- find LSx|y and 

LSy|x using GP. 

Second:  

 if (LSy|x ≈ LSy|x) than we fall into case of feedback 

(Definition 2).  

  if   LSy|x > α then build an edge from x to y.  

   Building edges in a causal graph depend mainly on 

value of LS; however if both -LSy|x & LSy|x- are below a 

specific threshold α, to be defined in next section, then no 

G-causal effect exist between those two variables and by 

consequence no edges are drawn.  

In next section we provide an explicit case study that 

shows in details the construction of causal graph of five 

stock markets according to my approach. 

 

VI.   CASE STUDY: GLOBAL STOCK MARKET 

Causality among stock markets has been widely discussed 

through tens of researches. For instance [1] construct a DAG 

which assumed to reflect causality among 9 stock markets; 

causality representation was not confirmed since their 

method was based on error correction modeling which only 

reflect interdependency and not causality. 

Reference [31] introduces a model to infer the volatility 

of the data, to be used in risk management, while explicitly 

accounting for dependencies between different companies. 

However their model can not imply causation; in fact it only 

takes into concern the existence of relationship of 

dependency between stock market when calculating the 

volatility.  

A. Data Description 

The used data cover the period from October 21
th

 2002 to 

July 12
th

 2013. In this approach, we will try to discover the 

existence of causal-relation between each pair of stock 

markets. Therefore each try will have its own tailored data. 

More specifically for each pair, X and Y, we include only the 

common working days. That is if any of the two stocks was 

off at date t then the record of that date was omitted from 

this case. Then we measure the fractional change of the 

obtained data according to (6) for both included stock 

market X and Y.  

 

           
(                   )

           
               (6) 

 

Generally, for each case we got more than 2500 instances. 

(Raw data is available for download at: 

http://amerbakhach.com/ICMLC2014/data.xls ) 

The included 5 major stock markets are: SP500, EURO 

STOXX 50, CAC 40, FTSE 100, and NIKKE 225.  

B. Example of Granger-Causality Detection between 

SP500 and NIKKE 

Based on (1) and (2) let’s suppose that X is NIKKE and Y 

is SP500, in order to determine if SP500 G-cause NIKKE we 

get the following equations: 

 

             ∑             
 
        + E1(t)            (7) 

       ∑             
 
    ∑          

 
   +E2(t) (8) 

C. Discipulus: A Software for Genetic Programming 

As previously explained in Section IV, GP is an 

optimization algorithm that can determine the parameters of 

(7) and (8). Discipulus is easy-to-use commercial software 

that applies GP. Discipulus has a feature called self-tuning 
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and self-parameterizing which selects the GP control 

parameters based on its problem to be solved [32], [33]. It 

has been used in many researches as a GP tool (see for 

example [34].) 

In addition Discipulus provide other useful information 

such as: 

 MSE: for each resulted equation generated by 

Discipulus, it count the associated Mean Square Error 

(MSE) of the equation. we use the MSE as fitness 

function. 

 Once the software marque no improvement in fitness 

function; i.e. MSE; for several generations; it restart 

the whole procedure again. This help in avoiding 

falling in local optima. 

 Input impact: for each variable, e.g.  NIKKEi and SPj in 

(7) & (8), it calculate its coefficient which is defined as 

its importance for determining the predicted variable 

NIKKEt. This is very useful to conclude the Lag values; 

i.e. m & q; in 7 & 8. More specifically Discipulus 

count three numbers for each input variable: Frequency, 

Average Impact (AI), and Maximum Impact (MI); 

where AI and MI show,  respectively, the average 

and the maximum effect of removing that input from 

each of the thirty best programs, i.e. trees, and 

replacing it with a permuted version of that input 

[33]. By comparing these three numbers for each 

variable it become easy to determine m and q. 

The result is: MSENIKKE (7) = 2.255 and MSENIKKE|SP500 (8) 

= 1.707; thus LSNIKKE|SP500= 24.3 %. 

Next we reverse the order of SP500 and NIKKE in 

equations (7) & (8) we got: MSESP = 1.486 and 

MSESP|NIKKE= 1.331 and hence LSSP|NIKKE= 10.43%. 

D. Significance Threshold (α) 

We define a threshold variable α as the limit to draw an 

edge based on LS; that is if LSx|y ≥ α then an edge must be 

drawn from y to x. For example, according to results from 

previous paragraph, if α = 10 we obtain Fig. 3.a.  

whereas if α = 15 we obtain Fig. 3.b.  

 

 

 

 
Fig. 3.a. causal graph with α = 10        Fig. 3.b causal graph with α = 15 

          (Feedback case) 

 

E. Global Stock Market Causal Graph  

By following instructions in paragraph B. for each pair of 

stocks, we got the following result summarized in Table I. 

The results in table can be interpreted as follow: integrating 

past data of EURO STOXX 50 will increase the accuracy of 

forecasting NIKKE 225 by 24.57% while integrating past 

data from NIKKE improve forecasting of EURO STOXX 

only by 6.72%. Therefore we can conclude that for α>7 

EURO STOXX G-cause NIKKE while the reverse is not 

true. 

Resulted causal graph with α = 7 and α = 10 in Fig. 4.a 

and Fig. 4.b respectively.  

TABLE I: LS (X|Y): X STOCKS IN FIRST COLUMN, AND Y STOCKS IN FIRST 

ROW 

Stock markets SP NIKKE FTSE CAC EURO STOXX 

SP500 -- 10.43 7.87 7.58 5.39 

NIKKE 225 24.3 -- 14.98 7.27 24.57 

FTSE 11.58 24.41 --- 5.42 5.33 

CAC 40 6.97 0 0.5 --- 2.1 

EURO 

STOXX 50 
0.06 6.72 0 0.36 --- 

 

 
Fig. 4.a. causal graph with α = 7 

 

 
Fig. 4.b. causal graph with α = 10 

F. Note for experiment 

At each causal test and for each pair of stocks, we should 

recalculate all MSEs because data is synchronized according 

to each pair. (See the data file at 

http://amerbakhach.com/ICMLC2014/data.xls .) 

In other words, the test for each pair is assumed to be 

completely independent. 

For example when testing Granger-causality between 

CAC and FTSE we got MSECAC=1.989 whereas when we do 

the same test between CAC and EURO we got 

MSECAC=2.198.  

 

VII.  RELATED WORKS 

In reference [10] the authors did not prove the 

compatibility of their model with neither Pearl nor Granger; 

in fact they only try to clarify some rules of when a BN can 

be interpreted as causal BN. Although they claim that their 

approach can discover causal edges with area under curve 

(AUC) approaching 95%. 

One important approach was given in [35]. They express 

an influence diagram, which is familiar for representing 

decision problem [4], in a canonical form and prove its 

ability to represent causal relation, and its compatibility with 

Pearl’s causal-theory as well [8]. They explain how causal 

BN can be extracted from this influence diagram. 

Reference [3] proposes an extension for Bayesian 

methods those were used to learn acausal Bayesian network 

to learn causal Bayesian network; always respecting Pearl’s 

causal-theory. 

Reference [16] present work very similar to this research 

in term of testing Granger-causality between stock markets. 

However the difference is that the author did not use 

Genetic Programming and no causal-graph was constructed 

SP500 
NIKKE SP500 

NIKKE 
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neither. Finally, they adopt the lag condition m=q which 

may not be realistic as discussed previously in section III. 

In addition, other works provide methods for constructing 

causal graph based on Granger theory; however, some of 

these methods are computationally infeasible such as: 

exhaustive graphical Granger and the SIN Granger method; 

while some, in order to reduce the complexity, make 

assumptions that may threat the generalization of original 

causality implication such as SIN Granger method and VAR 

method. Note that the computational complexity is a key 

issue that affects the feasibility of a learning algorithm since 

in real world we may deal with large-scale data [36]. 

Although GP may not, in some cases, reach the optimal 

solution, i.e. tree, but it enjoy desirable features such as very 

acceptable complexity since you can stop the process 

anytime, in comparison to other methods, and it does not 

make any further assumptions; hence the main concept of 

Granger-causality [9] is conserved using GP, and finally 

there is no need to assume the existence of linear Gaussian 

model as in VAR method. And finally it solve the 

nonlinearity problem without additional complexity in 

contrast to many other models [27], [28], [36]. 

 

VIII.   CONCLUSION AND PERSPECTIVES 

This paper presents a simple, yet advantageous, technique 

to construct causal graph based on Granger-causal theory. 

This was also the objective of many other researches. The 

main difference is that this approach use Genetic 

Programming (GP) to compute all parameters of Granger-

causality equations. we select G-causality because it enjoys 

several advantages like: compatibility with information 

theory, and Pearl causal model. However we provide two 

modifications on lag length and error variance; we prove 

that the first is necessary in reality while the second dose not 

affect the validity of Granger-causal theory. we choose GP 

because of its desirable advantages: acceptable computation, 

convergence to global optimal solution is guaranteed, and 

cover case of nonlinearity. In addition GP allow us to 

overcome the condition of equal length (m=q) in Granger 

VAR-equations; since such condition is not realistic in many 

cases. 

The case study provides detailed practical experiment for 

data from stock markets. The finding shows that NIKKE is 

the most Granger-causally affected stock market whereas 

EURO STOXX is the least causally affected. While CAC 

show a neutron G-causal effect at α ≥ 8. 

Since BN has been used for stock markets prediction [37], 

we believe that this approach for causal graph learning can 

improve the accuracy prediction of stock markets; in 

addition causal inference according to this approach should 

be investigated.  

This approach does not take into concern the possible 

existence of dynamic causality. In other words the 

calculated values of LS may vary over time. Further research 

may address this subject. 
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