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Abstract—Propositional   Inference   is   of   special   concern   

to Artificial Intelligence, and it has a direct relationship to 

automatic reasoning. Given a Knowledge Base Σ and a query Φ, 

propositional inference is concern to determine if Φ can be 

logically deduced from Σ, that is, if Σ ├ Φ. 

We show a deterministic and a complete polynomial time 

algorithm for given the knowledge base Σ in Disjunctive Form 

and Φ in Conjunctive Form, to decide if Σ ├ Φ. 

 

Index Terms—Automatic reasoning, efficient propositional 

inference, knowledge base systems. 

 

I. INTRODUCTION 

A widely accepted framework for reasoning in intelligent 

systems is the knowledge-based system approach [1]. The 

general idea is to keep the knowledge in some representation 

language with a well defined meaning assigned to those 

sentences. The sentences are stored in a Knowledge Base (KB) 

combined with a reasoning mechanism which is used to 

determine what can be inferred from the sentences in the KB. 

Since logical, mathematical reasoning is one of the purer 

forms of human, intellectual thought, the automation of such 

reasoning by means of computers is a basic and challenging 

scientific problem [2]. Deductive propositional reasoning is 

usually abstracted as follows: Given a KB, assumed to capture 

our knowledge about the domain in question (the “world”), 

and a sentence Φ, a query that is assumed to capture the 

situation at hand, with both formulas expressed through 

propositional logic, decide whether KB implies Φ. This last 

problem is known as the propositional entail problem. 

Let Σ be a KB and Φ be a query formula, we address here, a 

deterministic efficient procedure to decide if Σ ├ Φ. It is 

known that logic entail problem is a hard challenge in 

automatic reasoning and it is co-NP-Hard even in the 

propositional case [3]. Many other forms of reasoning which 

have been developed at least partly to avoid these 

computational difficulties, also have been shown to be hard to 

compute [4]. 

The propositional entail problem is one of the fundamental 

problems into automatic reasoning, and is a relevant task in 

many other issues, such as estimating the degree of belief, to 

review or update beliefs, abductive explanation, logical  

diagnosis, and many other procedures in Artificial 
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Intelligence (AI) applications as planning, expert systems, 

approximate reasoning, etc. [3], [5]-[8]. 

As it has been pointed in [9]-[11], an important problem to  

explore  is  the  computational  complexity  of  the  logical 

inference, and although the problem could be intractable for 

formulas in general, a precise determination of the complexity 

for  procedures  computing  Σ  ├  Φ  has  to  be  studied  for 

classes of formulas Σ and Φ. And for propositional automatic 

reasoning, is essential to know under which restrictions for Σ 

and Φ, Σ ├ Φ could be checked in polynomial time. 

We show here that the entail problem can be solved 

efficiently when Σ is in disjunctive form and Φ is in 

conjunctive form. This is an important case into automatic 

reasoning since many knowledge bases are considered to be in 

disjunctive forms, and then, to work with those classes of 

KB’s allow efficient propositional entailment. 

The research presented here continues the line pointed out 

by Eiter and many others [5]-[7],  [9],  [12],  who have 

analyzed problems arising from deductive inference, such as 

searching for explanations, approximate reasoning, 

computing the degree of belief and incremental recompilation 

of knowledge. These works try to differentiate the classes of 

propositional formulas where such problems can be solved 

efficiently from those classes where such problems present an 

inherent exponential time complexity. 

 

II. PRELIMINARIES 

Let X = {x1, . . . , xn} be a set of n boolean variables. A 

literal is either a variable xi  or a negated variable ¬xi. As 

usual, for each x ∈ X, x
0
 = ¬x and x

1
 = x. We also denote ¬x= 

x̄  as the negation of  x. 

A clause is a disjunction of different literals, we also consider 

a clause as a set of literals. For k ∈ IN , a k-clause is a clause 

consisting of exactly k literals and, a (≤ k)-clause is a clause 

with at most k literals. 

A phrase is a conjunction of literals, and a k-phrase is a 

phrase with exactly k literals. A variable x ∈ X appears in a 

clause (or phrase) c if either x or ¬x is an element of c. 

A conjunctive form (CF) is a conjunction of clauses, we 

also consider a CF as a set of clauses, while a Disjunctive 

Form (DF) is a disjunction of phrases. A k-CF is a CF 

containing only k-clauses. Similarly, a k-DF is a DF 

containing only k- phrases. 

We say that a CF F is monotone if all of its variables appear 

with the same sign. A CF F with n variables represents a n-ary 

boolean function F : {0, 1}
n
  → {0, 1}, although the same 

boolean function F has many equivalent representations and 

in particular, a CF as well as a DF is one of the way to 

represent any boolean function. 

Extending Model Checking to Efficient Propositional 

Inference 

Guillermo de Ita Luna, Luis Polanco-Balcazar, and Omar Pérez-Barrios 

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

232DOI: 10.7763/IJMLC.2014.V4.417



  

We use υ(Y ) to express the variables involved in the object 

Y , where Y could be a literal, a clause, a phrase, a DF or a CF. 

For instance, for the clause c = {¬x1, x2}, υ(c) = {x1, x2}. 

Lit(F ) is the set of literals, i.e. if X  = υ(F ), then Lit(F ) = X 

∪ ¬X = {x1, ¬x1, ..., xn, ¬ xn}. We use Lit(Y ) to express the 

literals involved in the object Y , where Y could be a clause, a 

phrase, a DF or a CF. We denote {1, 2, ..., n} by [n ] and the 

natural number set by IN . We denote the cardinality of a set A 

by |A|. 

An assignment s for F is a boolean function s: υ(F ) → {0, 

1}.  An  assignment  s  can  also  be  considered  as  a  set  of 

non-complementary pairs of literals. If l ∈ s, being s an 

assignment, then s turns l true and ¬l false. 

Considering a clause c and an assignment s as a set of 

literals, c is satisfied by s if and only if (c ∩ s) ≠ ∅, and if for 

all l ∈ c, l ∈ s then s falsifies c. 

On the other hand, considering a phrase d also as a set of 

literals, and let s be an assignment over X, s satisfies d if d ⊆ s. 

And if for any literal l ∈ d, l ∈ s then s falsifies d.  

If F1  ⊂ F is a formula consisting of some clauses from F , 

and υ(F1) ⊂ υ(F), an assignment over υ(F1) is a partial 

assignment over υ(F ). Similarly, if F1  ⊂ F , where F  is a DF, 

then any assignment over υ(F1) is a partial assignment over 

υ(F ). Assuming n =  | υ(F ) | and n1 =  | υ(F1) |, any assignment 

over υ(F1) has 2
n−n1

   extensions as assignments over υ(F ). 

Let F be a CF, F is satisfied by an assignment s if each 

clause in F is satisfied by s. F is contradicted by s if any clause 

in F is contradicted by s. A model of F is an assignment 

defined on υ(F ) that satisfies F. 

If F is a DF, F is satisfied by an assignment s if any phrase 

in F is satisfied by s. F  is contradicted by s if all phrase in F  is 

falsified by s. 

Given a formula F , let  S(F)  be  the  set  of  all  possible  

assignments  defined  over  its  set  of  variables  υ(F). If n = 

|υ(F)| then | S(F ) |= 2
n
. We denote as Sat(F ) to the set of 

assignments from S(F ) which are models of F. Fals(F) is the 

set of assignments from S(F ) which falsify F. For any 

propositional formula F,  S(F) = Sat(F) ∪ Fals(F). 

The SAT problem consists of determining if F has (or not) 

a model. The #SAT problem consists of counting the number 

of models of F. 

If s is a model of F , it is denoted as s ├ F . If an assignment 

s of υ(F ) is not a model of F then s is a falsifying assignment 

of  F.  

A Knowledge Base (KB) Σ is a set of formulae. Given a KB 

Σ and a propositional formula Φ, we say that Σ entails Φ, 

denoted by Σ ├ Φ, if Φ is true for every model of Σ, i.e. Sat(Σ) 

⊆ Sat(Φ). 

 

III. MODEL-CHECKING FOR PROPOSITIONAL INFERENCE 

To  prove  Σ  ├ Φ  is  equivalent  to  show  that  Sat(Σ)  ⊆ 

Sat(Φ). We extend the sets υ(Φ) and υ(Σ) in order to build 

only one set containing all variables appearing in the 

formulas.  

Let X = υ(Σ) ∪ υ(Φ) be the set of variables, and let Lit =            

X ∪ ¬X be the set of literals appearing in Σ and Φ. We assume 

an order over the variables of X and that n =| X |, i.e. X =       

{x1, x2, . . . , xn}. 

As S(Σ) = S(Φ) = Sat(Φ) ∪ Fals(Φ), if  Sat(Σ) ⊆    Sat(Φ) 

holds then (Sat(Σ) ∩ Fals(Φ)) ⊆ (Sat(Φ) ∩ Fals(Φ)) =   ∅. 

Indeed, to prove Σ ├ Φ is equivalent to prove that 

                              

                       Sat(Σ) ∩ Fals(Φ) = ∅                                 (1) 

 

If a KB Σ is in DF, i.e. Σ = 
m

i 1 σi,  where each σi , i =            

1, . . . , m is a conjunction of literals, then it is easy to build 

Sat(Σ), since each σi, i = 1, . . . , m determines a subset of 

satisfying assignments of Σ. In fact, Sat(Σ) = 
k

i 1
 Sat(σi). 

Also, if Φ is in CF, i.e. Φ  = 
k

i 1  φi, where  each                   φi, 

i = 1, . . . , k is a disjunction of literals, then it is easy to    build 

Fals(Φ) since each φi determines a subset of falsifying 

assignments of Φ, and actually, Fals(Φ) = 
k

i 1
 Fals(φi). 

We exploit the previous relation to design a polynomial 

procedure to determine if Σ entails Φ. First, we show how to 

represent each Sat(σi), i = 1, . . . , m and each Fals(φi), i =      

1, . . . , k.  

Let Φ =   
k

i 1  φi be a CF, then each φi, i = 1, . . . , k is a 

clause. For each φi = {li1 ∨ . . . ∨ liki } ∈ Φ, let vφ be a string 

such that its length is n. 

The string vφ  is associated with Fals(φ), and each one of   

its values: vφ [i], i = 1, . . . , n is determined, as: 

 

         










*

1

0

iv

 

 

We  use  the symbol  ∗  to  represent  the  elements  that  can 

take any truth value in the string vφ, for  example  if   F =               

{ φ1, . . . , φm} is a 2-CF, n = |υ(F )|, φ 1  = {x1, x2} and              φ2   

= {x2, x3} then we will write  vφ1= 00∗ ∗ . . . ∗ and                      

v φ2  = ∗00 ∗ . . . ∗.  This abuse of notation will allow us to give    

a concise and clear representation of the set Fals(φ) in the    

rest of the paper, for considering the string vφ  as a string that 

represents the falsifying assignments of the clause φ.  

vφ represents in a succinct form all falsifying assignments 

of the clause φ, Since any assignment over X with values 0 or 

1 in the same positions where vφ has those, and with any value 

{0, 1} in the positions where vφ  has ∗, is a falsifying 

assignment for φ. we call falsifying string to such string vφ  

that represents the falsifying assignments of φ. In fact, vφ 

represents the subset of 2
n−| φ |

 falsifying assignments of φ. 

   On the other hand, let σ = (l1 ∧. . .∧lj ) be a phrase defined 

over Lit(X). A string vσ  of n symbols is associated with σ,   

and each one of its values: vσ [i], i = 1, . . . , n is determined, 

as:  

 










*

1

0

iv

 

   

Similarly, the string vσ is a succinct form to represent Sat(σ). 

Because any assignment over X with values 0 or 1 in the same 

if xi ∈  φ 

if ¬xi ∈  φ                                         (2)   

if neither xi ∉  φ  nor ¬xi ∉  φ 

 

if ¬xi ∈  φ 

if xi ∈  φ                                         (3)   

if neither xi ∉  φ  nor ¬xi ∉  φ 
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positions where vσ  has those, and with any value {0, 1} in the 

positions where vσ  has ∗, is a satisfying assignment  for  σ.  

Thus,  vσ   represents  the  set  of  2
n−|σ | 

satisfying  assignments  

of  the  phrase  σ.  We  call  to  vσ   the satisfying string for the 

phrase σ. 

As  our  procedure  exploit  the  relations:  Sat(Σ) = 
m

i 1
 

Sat(σi), and Fals(Φ) = 
k

i 1
Fals(φi), to reduce sizes of CF’s 

and DF’s is a relevant task in order to build efficient 

algorithms for the following goals in automatic deduction as 

to check if Σ ├ Φ.  

It is common to review a formula in order to reduce its size 

keeping just the necessary subformulas in F. For example, for 

a CF it is common to delete all redundant clauses as: 

tautological clauses and clauses with pure literals. The 

application of the following rules allow to reduce the size of 

CF’s an DF’s. 

A. Rule of Pure Literal 

Let F be a CF, l ∈ Lit(F ) is a pure literal if l appears in F 

but ¬l does not appear in F . 

If a clause contains a pure literal, that clause can be 

eliminated from F , keeping the logical value of F . Because if 

the literal l is set to T rue, the clause containing l is also T rue, 

and then it can be deleted from F. Similarly, if a formula G    is 

in DF, any phrase containing a pure literal can be falsified by 

set False to that pure literal and the phrase is also False, then 

the phrase can be eliminated from G. 

   Other relevant rules to reduce  sizes of  CF’s and DF’s  are 

subsumed clauses and subsumed phrases rules. 

B. Subsumed Clause Rule 

Given two clauses ci and cj  of a CF F , if Lit(ci) ⊆ Lit(cj)   

then  cj   is  subsumed  by  ci,  and  cj   can  be  deleted  from 

F. Because all satisfying assignment of cj  is a satisfying 

assignment of ci, that is Sat(cj) ⊆ Sat(ci). Thus, it is enough 

to keep just ci  (the clause which subsumes) in the CF. 

C. Subsumed Phrase Rule 

Given two phrases di and dj of a DF F , if Lit(di) ⊆ Lit(dj )  

then dj  is subsumed by di, and dj can be deleted from  F. 

Because all falsifying assignment of dj  is a falsifying 

assignment of di, that is Fals(dj ) ⊆ Fals(di). Thus, it is enough 

to keep just di  (the phrase which subsumes) in the DF.   

                                                                                      

IV. POLYNOMIAL ALGORITHM 

Assuming that Σ is in DF and Φ in CF, i.e. Σ = 
m

i 1  σi,    and 

Φ = 
k

i 1  φi, then  Sat(Σ) = 
m

i 1

Sat(σi),  and similarly, Fals(Φ) 

= 
k

i 1
Fals(φi).  Furthermore, we  have an easy way to 

represent each Sat(σi) and each Fals(φj) based on the strings 

vσi  and vφj. The key point in our procedure is to check if it is 

possible to combine the assignments of both strings to form a 

valid set of assignments on X, and such new combined string 

will satisfy a i  and falsify a φ, , proving so that Φ is 

not inferred from Σ. 

Thus to prove that Σ ├ Φ, it is equivalent to prove that 

Sat(Σ)   Fals(Φ) = Ø, and it is equivalent to show that 

 

Sat(σi)  Fals(φj) = Ø, i =1,…,m, j=1,…k            (4) 

 
Then, we have to build the sets of assignments Sat(σi) and  

Fals(φj), for each σi ∈ Σ and for all φj ∈ Φ. And for this,         we 

take advantages of the succinct form to represent those sets 

via the strings shown in previous section. In fact, we need just 

the literals associated with the fixed values appearing in both 

strings vσ and vφ. 

The procedure Inference checks if there exist any σi ∈ Σ and 

any φj  ∈ Φ such that Sat(σi) ∩ Fals(φj ) ≠ ∅ and in this case, it 

outputs False indicating that Σ ├ Φ does not hold. Otherwise, 

it has proved that Sat(Σ) ∩ Fals(Φ) = ∅, and therefore Σ ├ Φ.  

Algorithm 1: Procedure Inference (Σ, Φ) 

Input: Σ = {A Knowledge Base}, Φ = {New Knowledge} 

Output: True/False = Σ ├ Φ / Σ ├ Φ  

for all σi ∈ Σ do 

    A = Lit(σi); {A satisfies σi} 

   for all ϕj ∈ Φ do 

         B = Lit(¬φj ); {B satisfies φi } 

         s = A ∪ B; {s could be a valid assignment or not} 

        if (no_comp_literals in(s)) then 

           Returns(False) {s an assignment, s(Σ) = 1,  and   

s(Φ) = 0} 

       end if 

    end for  

  end for 

Returns(True) 

Notice that A and B in the procedure Inference represents in 

fact, a subset of assignments. And the union s = A∪B could 

be (or not) a valid set of assignments. For example, if there is 

a literal l such that l ∈ s and ¬l ∈ s then s does not represent a 

valid subset of assignments. And that last property is checked 

via the function no_comp_ literals_in(s). 

Notice also that the implementation of the union A∪B and 

the function no_comp_literals_in(s) can be done in efficient  

way according to the representation of a set. But in general, 

both operations can be done in linear time complexity on the 

number of maximum elements on the set, that in this case is of 

order O(n), n =| X |. 

 

V. SOUNDNESS, COMPLETENESS AND TIME COMPLEXITY OF 

THE PROCEDURE 

Let 
i

m

i
 


1

be a CF and let 
i

k

i  1 be a DF, where 

)...( 1 iimi ll  and )...( 1 jjkj ll  .We analyze here the 

algorithm Inference which decides if Σ ├ Φ. 

A. Proof (Soundness) 

If the procedure Inference outputs True, then effectively     

Σ ├ Φ. 

Proof : 

Inference outputs True if and only if there is a pair of 
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complementary literals in s = )()( ji LitLit   , for all 

i  and j . 

It means that there exists a literal l in any possible 

assignment satisfying Σ and falsifying Φ, such that l ∈ s and 

¬l ∈ s, but none valid assignment could contain at the same 

time, a pair of complementary literals.  

Thus, there does not exist an assignment s with s(Σ) = True 

and  s(Φ)  =  False , therefore Sat(Σ)  Fals(Φ)  = Ø and then 

Σ ├ Φ. 

B. Proof (Completeness) 

Assume that Σ ├ Φ, then Inference(Σ,Φ) outputs True. 

Proof : 

As 
i

m

i 1 ,  then )()( 1 i

m

j SatSat   , similarly 

Fals(Φ) = )(1 i

k

j Fals  because 
i

k

i 1 . 

Let A be a valid assignment from Sat(Σ), then there exist σi 

in Σ such that A(σi) = 1, given that )()( 1 i

m

j SatSat    . 

Let B a valid assignment for Fals(Φ), then there exist 

j  such that )( jFalsB  because )()( 1 i

k

j FalsFals   . 

Let BAs  . If s has not complementary literals then s is 

a valid assignment over X, and )(Sats , as well as 

)(Falss , but in this case Inference outputs False because 

the procedure no_comp_literals_in(s) holds. Then, if Σ ├ Φ 

such assignment s does not exist and Inference must output 

True. 

C. Time Complexity 

Inference involves two for’s, one of size | Σ | and the other 

of size |Φ|, then it performs of order O(|Σ| · |Φ|) operations; 

union between two sets with n elements at most, and a 

revision for complementary members on a set. 

Both set operations (union and revision of members) are 

performed in linear time complexity according with the 

maximum number of elements in the sets, that is n = |X |. 

Then, the total time complexity in the worst case is the 

order   O(|Σ| · |Φ| · |X|). Indeed Inference is a linear time 

deterministic algorithm  on  the  size  of  its  inputs:  Σ  and  Φ, 

and on the number of variables appearing in both formulas X 

= υ(Σ) ∪ υ(Φ). 

In order to impact the time complexity of Inference 

procedure, the application of pure literals, subsumed clauses 

and subsumed phrases rules would be beneficial, because 

those rules can reduce the real sizes | Σ | and | Φ |. Although, 

the application of those rules also implies a cost on the time of 

pre-processing the input formulas: Σ and Φ. 

According to the computational representation of the 

formulas Σ and Φ, both rules can be applied very efficiently. 

For example, the representation of Σ and Φ using indexes over 

a fix set of variables X, produces algorithms with a reduced 

time complexity. 

On the other  hand,  the  literal pure  rule  implies to look for 

a literal (and its complementary value) on the size of the 

formulas. Then, literal pure rule can be implemented with a 

time complexity, in the worst case, of O(|X| · |Σ|) and 

O(|X| ·|Φ|), when it is applied on Σ and Φ, respectively.  

And the  subsumed  clause  rule  (subsumed  phrase  rule) 

requests that each clause (or phrase) will be compared with 

the rest of the clauses (phrases) in the formula in order to look 

for subset of literals. That implies the order of O(|X| · |Σ|
2
)  and 

O(|X|·|Φ|
2
 ) basic operations in the worst case, when they are 

applied on Σ and Φ, respectively. 

In whatever case, those pre-processing procedures have 

polynomial time cost, and usually they are done off-line, 

optimizing the time cost of working on-line for deciding if Σ 

├ Φ. 

 

VI. CONCLUSIONS 

A fundamental problem in deductive propositional 

reasoning  is  the  entail  Problem,  i.e.  given  a  KB Σ and  a  

query formula Φ to decide if Σ ├ Φ. 

We have shown that the entail problem is solved efficiently 

when Σ is in disjunctive form and Φ is in conjunctive form. In 

fact, we show a linear time procedure on the size of its inputs: 

Σ, Φ and on the number of variables involved in both 

formulas. 

To design an efficient procedure for  the  entail  problem 

has repercussions in the area of automatic reasoning. Thus, we 

have presented an important case of efficient propositional 

entailment. Since many knowledge bases are considered to be 

in disjunctive forms, our algorithm could provide efficient 

automatic reasoning schemes. 
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