



Abstract—Propositional Inference is of special concern

to Artificial Intelligence, and it has a direct relationship to

automatic reasoning. Given a Knowledge Base Σ and a query Φ,

propositional inference is concern to determine if Φ can be

logically deduced from Σ, that is, if Σ ├ Φ.

We show a deterministic and a complete polynomial time

algorithm for given the knowledge base Σ in Disjunctive Form

and Φ in Conjunctive Form, to decide if Σ ├ Φ.

Index Terms—Automatic reasoning, efficient propositional

inference, knowledge base systems.

I. INTRODUCTION

A widely accepted framework for reasoning in intelligent

systems is the knowledge-based system approach [1]. The

general idea is to keep the knowledge in some representation

language with a well defined meaning assigned to those

sentences. The sentences are stored in a Knowledge Base (KB)

combined with a reasoning mechanism which is used to

determine what can be inferred from the sentences in the KB.

Since logical, mathematical reasoning is one of the purer

forms of human, intellectual thought, the automation of such

reasoning by means of computers is a basic and challenging

scientific problem [2]. Deductive propositional reasoning is

usually abstracted as follows: Given a KB, assumed to capture

our knowledge about the domain in question (the “world”),

and a sentence Φ, a query that is assumed to capture the

situation at hand, with both formulas expressed through

propositional logic, decide whether KB implies Φ. This last

problem is known as the propositional entail problem.

Let Σ be a KB and Φ be a query formula, we address here, a

deterministic efficient procedure to decide if Σ ├ Φ. It is

known that logic entail problem is a hard challenge in

automatic reasoning and it is co-NP-Hard even in the

propositional case [3]. Many other forms of reasoning which

have been developed at least partly to avoid these

computational difficulties, also have been shown to be hard to

compute [4].

The propositional entail problem is one of the fundamental

problems into automatic reasoning, and is a relevant task in

many other issues, such as estimating the degree of belief, to

review or update beliefs, abductive explanation, logical

diagnosis, and many other procedures in Artificial

Manuscript received November 27, 2013; revised January 6, 2013. This

work is partially supported by National Mexican System of Researchers

(SNI) and Conacyt.

Guillermo de Ita Luna, Luis Polanco-Balcazar, and Omar Pérez-Barrios

are with the Computer Science Faculty, Autonomus University of Puebla

(FCC-BUAP), Mexico (e-mail: deita@cs.buap.mx, siulpolb@outlook.com,

peb.omar@hotmail.com).

Intelligence (AI) applications as planning, expert systems,

approximate reasoning, etc. [3], [5]-[8].

As it has been pointed in [9]-[11], an important problem to

explore is the computational complexity of the logical

inference, and although the problem could be intractable for

formulas in general, a precise determination of the complexity

for procedures computing Σ ├ Φ has to be studied for

classes of formulas Σ and Φ. And for propositional automatic

reasoning, is essential to know under which restrictions for Σ

and Φ, Σ ├ Φ could be checked in polynomial time.

We show here that the entail problem can be solved

efficiently when Σ is in disjunctive form and Φ is in

conjunctive form. This is an important case into automatic

reasoning since many knowledge bases are considered to be in

disjunctive forms, and then, to work with those classes of

KB’s allow efficient propositional entailment.

The research presented here continues the line pointed out

by Eiter and many others [5]-[7], [9], [12], who have

analyzed problems arising from deductive inference, such as

searching for explanations, approximate reasoning,

computing the degree of belief and incremental recompilation

of knowledge. These works try to differentiate the classes of

propositional formulas where such problems can be solved

efficiently from those classes where such problems present an

inherent exponential time complexity.

II. PRELIMINARIES

Let X = {x1, . . . , xn} be a set of n boolean variables. A

literal is either a variable xi or a negated variable ¬xi. As

usual, for each x ∈ X, x
0
 = ¬x and x

1
 = x. We also denote ¬x=

x̄ as the negation of x.

A clause is a disjunction of different literals, we also consider

a clause as a set of literals. For k ∈ IN , a k-clause is a clause

consisting of exactly k literals and, a (≤ k)-clause is a clause

with at most k literals.

A phrase is a conjunction of literals, and a k-phrase is a

phrase with exactly k literals. A variable x ∈ X appears in a

clause (or phrase) c if either x or ¬x is an element of c.

A conjunctive form (CF) is a conjunction of clauses, we

also consider a CF as a set of clauses, while a Disjunctive

Form (DF) is a disjunction of phrases. A k-CF is a CF

containing only k-clauses. Similarly, a k-DF is a DF

containing only k- phrases.

We say that a CF F is monotone if all of its variables appear

with the same sign. A CF F with n variables represents a n-ary

boolean function F : {0, 1}
n
 → {0, 1}, although the same

boolean function F has many equivalent representations and

in particular, a CF as well as a DF is one of the way to

represent any boolean function.

Extending Model Checking to Efficient Propositional

Inference

Guillermo de Ita Luna, Luis Polanco-Balcazar, and Omar Pérez-Barrios

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

232DOI: 10.7763/IJMLC.2014.V4.417

We use υ(Y) to express the variables involved in the object

Y , where Y could be a literal, a clause, a phrase, a DF or a CF.

For instance, for the clause c = {¬x1, x2}, υ(c) = {x1, x2}.

Lit(F) is the set of literals, i.e. if X = υ(F), then Lit(F) = X

∪ ¬X = {x1, ¬x1, ..., xn, ¬ xn}. We use Lit(Y) to express the

literals involved in the object Y , where Y could be a clause, a

phrase, a DF or a CF. We denote {1, 2, ..., n} by [n] and the

natural number set by IN . We denote the cardinality of a set A

by |A|.

An assignment s for F is a boolean function s: υ(F) → {0,

1}. An assignment s can also be considered as a set of

non-complementary pairs of literals. If l ∈ s, being s an

assignment, then s turns l true and ¬l false.

Considering a clause c and an assignment s as a set of

literals, c is satisfied by s if and only if (c ∩ s) ≠ ∅, and if for

all l ∈ c, l ∈ s then s falsifies c.

On the other hand, considering a phrase d also as a set of

literals, and let s be an assignment over X, s satisfies d if d ⊆ s.

And if for any literal l ∈ d, l ∈ s then s falsifies d.

If F1 ⊂ F is a formula consisting of some clauses from F ,

and υ(F1) ⊂ υ(F), an assignment over υ(F1) is a partial

assignment over υ(F). Similarly, if F1 ⊂ F , where F is a DF,

then any assignment over υ(F1) is a partial assignment over

υ(F). Assuming n = | υ(F) | and n1 = | υ(F1) |, any assignment

over υ(F1) has 2
n−n1

 extensions as assignments over υ(F).

Let F be a CF, F is satisfied by an assignment s if each

clause in F is satisfied by s. F is contradicted by s if any clause

in F is contradicted by s. A model of F is an assignment

defined on υ(F) that satisfies F.

If F is a DF, F is satisfied by an assignment s if any phrase

in F is satisfied by s. F is contradicted by s if all phrase in F is

falsified by s.

Given a formula F , let S(F) be the set of all possible

assignments defined over its set of variables υ(F). If n =

|υ(F)| then | S(F) |= 2
n
. We denote as Sat(F) to the set of

assignments from S(F) which are models of F. Fals(F) is the

set of assignments from S(F) which falsify F. For any

propositional formula F, S(F) = Sat(F) ∪ Fals(F).

The SAT problem consists of determining if F has (or not)

a model. The #SAT problem consists of counting the number

of models of F.

If s is a model of F , it is denoted as s ├ F . If an assignment

s of υ(F) is not a model of F then s is a falsifying assignment

of F.

A Knowledge Base (KB) Σ is a set of formulae. Given a KB

Σ and a propositional formula Φ, we say that Σ entails Φ,

denoted by Σ ├ Φ, if Φ is true for every model of Σ, i.e. Sat(Σ)

⊆ Sat(Φ).

III. MODEL-CHECKING FOR PROPOSITIONAL INFERENCE

To prove Σ ├ Φ is equivalent to show that Sat(Σ) ⊆

Sat(Φ). We extend the sets υ(Φ) and υ(Σ) in order to build

only one set containing all variables appearing in the

formulas.

Let X = υ(Σ) ∪ υ(Φ) be the set of variables, and let Lit =

X ∪ ¬X be the set of literals appearing in Σ and Φ. We assume

an order over the variables of X and that n =| X |, i.e. X =

{x1, x2, . . . , xn}.

As S(Σ) = S(Φ) = Sat(Φ) ∪ Fals(Φ), if Sat(Σ) ⊆ Sat(Φ)

holds then (Sat(Σ) ∩ Fals(Φ)) ⊆ (Sat(Φ) ∩ Fals(Φ)) = ∅.

Indeed, to prove Σ ├ Φ is equivalent to prove that

 Sat(Σ) ∩ Fals(Φ) = ∅ (1)

If a KB Σ is in DF, i.e. Σ =
m

i 1 σi, where each σi , i =

1, . . . , m is a conjunction of literals, then it is easy to build

Sat(Σ), since each σi, i = 1, . . . , m determines a subset of

satisfying assignments of Σ. In fact, Sat(Σ) = 
k

i 1
 Sat(σi).

Also, if Φ is in CF, i.e. Φ =
k

i 1 φi, where each φi,

i = 1, . . . , k is a disjunction of literals, then it is easy to build

Fals(Φ) since each φi determines a subset of falsifying

assignments of Φ, and actually, Fals(Φ) = 
k

i 1
 Fals(φi).

We exploit the previous relation to design a polynomial

procedure to determine if Σ entails Φ. First, we show how to

represent each Sat(σi), i = 1, . . . , m and each Fals(φi), i =

1, . . . , k.

Let Φ =
k

i 1 φi be a CF, then each φi, i = 1, . . . , k is a

clause. For each φi = {li1 ∨ . . . ∨ liki } ∈ Φ, let vφ be a string

such that its length is n.

The string vφ is associated with Fals(φ), and each one of

its values: vφ [i], i = 1, . . . , n is determined, as:

  










*

1

0

iv

We use the symbol ∗ to represent the elements that can

take any truth value in the string vφ, for example if F =

{ φ1, . . . , φm} is a 2-CF, n = |υ(F)|, φ 1 = {x1, x2} and φ2

= {x2, x3} then we will write vφ1= 00∗ ∗ . . . ∗ and

v φ2 = ∗00 ∗ . . . ∗. This abuse of notation will allow us to give

a concise and clear representation of the set Fals(φ) in the

rest of the paper, for considering the string vφ as a string that

represents the falsifying assignments of the clause φ.

vφ represents in a succinct form all falsifying assignments

of the clause φ, Since any assignment over X with values 0 or

1 in the same positions where vφ has those, and with any value

{0, 1} in the positions where vφ has ∗, is a falsifying

assignment for φ. we call falsifying string to such string vφ

that represents the falsifying assignments of φ. In fact, vφ

represents the subset of 2
n−| φ |

 falsifying assignments of φ.

 On the other hand, let σ = (l1 ∧. . .∧lj) be a phrase defined

over Lit(X). A string vσ of n symbols is associated with σ,

and each one of its values: vσ [i], i = 1, . . . , n is determined,

as:

 










*

1

0

iv

Similarly, the string vσ is a succinct form to represent Sat(σ).

Because any assignment over X with values 0 or 1 in the same

if xi ∈ φ

if ¬xi ∈ φ (2)

if neither xi ∉ φ nor ¬xi ∉ φ

if ¬xi ∈ φ

if xi ∈ φ (3)

if neither xi ∉ φ nor ¬xi ∉ φ

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

233

/

_

positions where vσ has those, and with any value {0, 1} in the

positions where vσ has ∗, is a satisfying assignment for σ.

Thus, vσ represents the set of 2
n−|σ |

satisfying assignments

of the phrase σ. We call to vσ the satisfying string for the

phrase σ.

As our procedure exploit the relations: Sat(Σ) = 
m

i 1

Sat(σi), and Fals(Φ) = 
k

i 1
Fals(φi), to reduce sizes of CF’s

and DF’s is a relevant task in order to build efficient

algorithms for the following goals in automatic deduction as

to check if Σ ├ Φ.

It is common to review a formula in order to reduce its size

keeping just the necessary subformulas in F. For example, for

a CF it is common to delete all redundant clauses as:

tautological clauses and clauses with pure literals. The

application of the following rules allow to reduce the size of

CF’s an DF’s.

A. Rule of Pure Literal

Let F be a CF, l ∈ Lit(F) is a pure literal if l appears in F

but ¬l does not appear in F .

If a clause contains a pure literal, that clause can be

eliminated from F , keeping the logical value of F . Because if

the literal l is set to T rue, the clause containing l is also T rue,

and then it can be deleted from F. Similarly, if a formula G is

in DF, any phrase containing a pure literal can be falsified by

set False to that pure literal and the phrase is also False, then

the phrase can be eliminated from G.

 Other relevant rules to reduce sizes of CF’s and DF’s are

subsumed clauses and subsumed phrases rules.

B. Subsumed Clause Rule

Given two clauses ci and cj of a CF F , if Lit(ci) ⊆ Lit(cj)

then cj is subsumed by ci, and cj can be deleted from

F. Because all satisfying assignment of cj is a satisfying

assignment of ci, that is Sat(cj) ⊆ Sat(ci). Thus, it is enough

to keep just ci (the clause which subsumes) in the CF.

C. Subsumed Phrase Rule

Given two phrases di and dj of a DF F , if Lit(di) ⊆ Lit(dj)

then dj is subsumed by di, and dj can be deleted from F.

Because all falsifying assignment of dj is a falsifying

assignment of di, that is Fals(dj) ⊆ Fals(di). Thus, it is enough

to keep just di (the phrase which subsumes) in the DF.

IV. POLYNOMIAL ALGORITHM

Assuming that Σ is in DF and Φ in CF, i.e. Σ =
m

i 1 σi, and

Φ =
k

i 1 φi, then Sat(Σ) = 
m

i 1

Sat(σi), and similarly, Fals(Φ)

= 
k

i 1
Fals(φi). Furthermore, we have an easy way to

represent each Sat(σi) and each Fals(φj) based on the strings

vσi and vφj. The key point in our procedure is to check if it is

possible to combine the assignments of both strings to form a

valid set of assignments on X, and such new combined string

will satisfy a i and falsify a φ, , proving so that Φ is

not inferred from Σ.

Thus to prove that Σ ├ Φ, it is equivalent to prove that

Sat(Σ)  Fals(Φ) = Ø, and it is equivalent to show that

Sat(σi)  Fals(φj) = Ø, i =1,…,m, j=1,…k (4)

Then, we have to build the sets of assignments Sat(σi) and

Fals(φj), for each σi ∈ Σ and for all φj ∈ Φ. And for this, we

take advantages of the succinct form to represent those sets

via the strings shown in previous section. In fact, we need just

the literals associated with the fixed values appearing in both

strings vσ and vφ.

The procedure Inference checks if there exist any σi ∈ Σ and

any φj ∈ Φ such that Sat(σi) ∩ Fals(φj) ≠ ∅ and in this case, it

outputs False indicating that Σ ├ Φ does not hold. Otherwise,

it has proved that Sat(Σ) ∩ Fals(Φ) = ∅, and therefore Σ ├ Φ.

Algorithm 1: Procedure Inference (Σ, Φ)

Input: Σ = {A Knowledge Base}, Φ = {New Knowledge}

Output: True/False = Σ ├ Φ / Σ ├ Φ

for all σi ∈ Σ do

 A = Lit(σi); {A satisfies σi}

 for all ϕj ∈ Φ do

 B = Lit(¬φj); {B satisfies φi }

 s = A ∪ B; {s could be a valid assignment or not}

 if (no_comp_literals in(s)) then

 Returns(False) {s an assignment, s(Σ) = 1, and

s(Φ) = 0}

 end if

 end for

 end for

Returns(True)

Notice that A and B in the procedure Inference represents in

fact, a subset of assignments. And the union s = A∪B could

be (or not) a valid set of assignments. For example, if there is

a literal l such that l ∈ s and ¬l ∈ s then s does not represent a

valid subset of assignments. And that last property is checked

via the function no_comp_ literals_in(s).

Notice also that the implementation of the union A∪B and

the function no_comp_literals_in(s) can be done in efficient

way according to the representation of a set. But in general,

both operations can be done in linear time complexity on the

number of maximum elements on the set, that in this case is of

order O(n), n =| X |.

V. SOUNDNESS, COMPLETENESS AND TIME COMPLEXITY OF

THE PROCEDURE

Let
i

m

i
 


1

be a CF and let
i

k

i  1 be a DF, where

)...(1 iimi ll  and)...(1 jjkj ll  .We analyze here the

algorithm Inference which decides if Σ ├ Φ.

A. Proof (Soundness)

If the procedure Inference outputs True, then effectively

Σ ├ Φ.

Proof :

Inference outputs True if and only if there is a pair of

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

234

complementary literals in s =)()(ji LitLit   , for all

i and j .

It means that there exists a literal l in any possible

assignment satisfying Σ and falsifying Φ, such that l ∈ s and

¬l ∈ s, but none valid assignment could contain at the same

time, a pair of complementary literals.

Thus, there does not exist an assignment s with s(Σ) = True

and s(Φ) = False , therefore Sat(Σ)  Fals(Φ) = Ø and then

Σ ├ Φ.

B. Proof (Completeness)

Assume that Σ ├ Φ, then Inference(Σ,Φ) outputs True.

Proof :

As
i

m

i 1 , then)()(1 i

m

j SatSat   , similarly

Fals(Φ) =)(1 i

k

j Fals  because
i

k

i 1 .

Let A be a valid assignment from Sat(Σ), then there exist σi

in Σ such that A(σi) = 1, given that)()(1 i

m

j SatSat   .

Let B a valid assignment for Fals(Φ), then there exist

j such that)(jFalsB  because)()(1 i

k

j FalsFals   .

Let BAs  . If s has not complementary literals then s is

a valid assignment over X, and)(Sats , as well as

)(Falss , but in this case Inference outputs False because

the procedure no_comp_literals_in(s) holds. Then, if Σ ├ Φ

such assignment s does not exist and Inference must output

True.

C. Time Complexity

Inference involves two for’s, one of size | Σ | and the other

of size |Φ|, then it performs of order O(|Σ| · |Φ|) operations;

union between two sets with n elements at most, and a

revision for complementary members on a set.

Both set operations (union and revision of members) are

performed in linear time complexity according with the

maximum number of elements in the sets, that is n = |X |.

Then, the total time complexity in the worst case is the

order O(|Σ| · |Φ| · |X|). Indeed Inference is a linear time

deterministic algorithm on the size of its inputs: Σ and Φ,

and on the number of variables appearing in both formulas X

= υ(Σ) ∪ υ(Φ).

In order to impact the time complexity of Inference

procedure, the application of pure literals, subsumed clauses

and subsumed phrases rules would be beneficial, because

those rules can reduce the real sizes | Σ | and | Φ |. Although,

the application of those rules also implies a cost on the time of

pre-processing the input formulas: Σ and Φ.

According to the computational representation of the

formulas Σ and Φ, both rules can be applied very efficiently.

For example, the representation of Σ and Φ using indexes over

a fix set of variables X, produces algorithms with a reduced

time complexity.

On the other hand, the literal pure rule implies to look for

a literal (and its complementary value) on the size of the

formulas. Then, literal pure rule can be implemented with a

time complexity, in the worst case, of O(|X| · |Σ|) and

O(|X| ·|Φ|), when it is applied on Σ and Φ, respectively.

And the subsumed clause rule (subsumed phrase rule)

requests that each clause (or phrase) will be compared with

the rest of the clauses (phrases) in the formula in order to look

for subset of literals. That implies the order of O(|X| · |Σ|
2
) and

O(|X|·|Φ|
2
) basic operations in the worst case, when they are

applied on Σ and Φ, respectively.

In whatever case, those pre-processing procedures have

polynomial time cost, and usually they are done off-line,

optimizing the time cost of working on-line for deciding if Σ

├ Φ.

VI. CONCLUSIONS

A fundamental problem in deductive propositional

reasoning is the entail Problem, i.e. given a KB Σ and a

query formula Φ to decide if Σ ├ Φ.

We have shown that the entail problem is solved efficiently

when Σ is in disjunctive form and Φ is in conjunctive form. In

fact, we show a linear time procedure on the size of its inputs:

Σ, Φ and on the number of variables involved in both

formulas.

To design an efficient procedure for the entail problem

has repercussions in the area of automatic reasoning. Thus, we

have presented an important case of efficient propositional

entailment. Since many knowledge bases are considered to be

in disjunctive forms, our algorithm could provide efficient

automatic reasoning schemes.

REFERENCES

[1] J. McCarhy, “Programs with common sense,” in Proc. the Symposium

on the Mechanization of Thought Processes, vol. 1, 1958, pp. 77-84.

[2] N. Shankar, Metamathematics, Machines, and Gödel’s Proof, Cam-

bridge Tracks in Theoretical Computer Science No. 38, Cambridge

University Press, 1997.

[3] R. Khardon and D. Roth, “Reasoning with Models,” Artificial

Intelligence, vol. 87, no.1, pp. 187-213, 1996.

[4] B. B. Selman, “Tractable default reasoning,” PhD thesis, Department

of Computer Science, University of Toronto, 1990.

[5] A. Darwiche, “On the tractable counting of theory models and its

application to truth maintenance and belief revision,” Jour. of Applied

Non-classical Logics, vol. 11, pp. 11-34, 2001.

[6] T. Eiter, M. Fink, G. Sabattini, and H. Thompits, “Considerations on

up- dates of logic programs,” JELIA00, Lec. Notes in Artificial

Intelligence, vol. 1, 2000.

[7] G. Gogic, C. Papadimitriou, and M. Sideri, “Incremental recompilation

of knowledge,” Jour. of Artificial Intelligence Research, vol. 8, pp.

23- 37, 1998.

[8] D. Roth, “On the hardness of approximate reasoning,” Artificial

Intelligence, vol. 82, pp. 273-302, 1996.

[9] T. Eiter and G. Gottlob, “On the complexity of propositional

knowledge base revision, updates, and counterfactuals,” Artificial

Intelligence, vol. 57, 1992.

[10] H. Katsuno and A. Mendelzon, “On the difference between updating a

knowledge base and revising it,” in Proc. KR-91, 1991, pp. 387-395.

[11] P. Liberatore and M. Schaerf, “The complexity of model checking for

belief revision and update,” in Proc. Thirteenth Nat. Conf. on Art.

Intelligence (AAAI96), 1996.

[12] B. B. Zanuttini, “New polynomial classes for logic-based abduction,”

Journal of Artificial Intelligence Research, vol. 19, pp. 1-10, 2003.

Guillermo de Ita did his BS in computer science in the

Faculty of Computer Sciences in the Autonomus

University of Puebla (BUAP), Mexico. The master and

Ph. D. program in electrical engineering in the

Cinvestav - I.P.N, Mexico. He has worked by 10 years

as a developer and consulter for Database Systems and

Geographic Information Systems for different

enterprises in Mexico. He has done researching stances in Chicago

University, Texas A&M, INAOEP Puebla, and in the INRIA Institute in

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

235

Lille1 - France. Currently, he is a senior researcher - professor of the Faculty

of Computer Sciences in the BUAP.

Omar Pérez did his BS in computer science in the

Faculty of Computer Sciences of the Autonomous

University of Puebla (BUAP), Mexico. He is interested

in researching of propositional inference, automatic

reasoning and artificial intelligence.

Luis Polanco did his BS in computer science in the

Faculty of Computer Sciences in the Autonomous

University of Puebla (BUAP), Mexico. He is interested

in researching of propositional inference, automatic

reasoning and artificial intelligence.

International Journal of Machine Learning and Computing, Vol. 4, No. 3, June 2014

236

