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Abstract—This paper presents an efficient algorithm for iris 

recognition using the spatial fuzzy clustering with level set 

method, and genetic and evolutionary feature extraction 

techniques. The novelty of this research effort is that we deploy 

a fuzzy c-means clustering with level set (FCMLS) method in an 

effort to localize the nonideal iris images accurately. The 

FCMLS method incorporates the spatial information into the 

level set-based curve evolution approach and regularizes the 

level set propagation locally. The proposed iris localization 

scheme based on FCMLS avoids the over-segmentation and 

performs well against blurred iris/sclera boundary. 

Furthermore, we apply a genetic and evolutionary feature 

extraction (GEFE) technique, which uses genetic and 

evolutionary computation to evolve modified local binary 

pattern (MLBP) feature extractor to elicit the distinctive 

features from the unwrapped iris images. The MLBP algorithm 

combines the sign and magnitude features for the improvement 

of iris texture classification performance. The identification and 

verification performance of the proposed scheme is validated 

using the CASIA version 3 interval dataset.    

 
Index Terms—Iris recognition, fuzzy c-means clustering, 

level set, modified local binary pattern, and genetic and 

evolutionary feature extraction.   

 

I. INTRODUCTION 

Automated person identification systems based on iris 

biometrics have gained immense popularity due to its 

applicability to many areas, including national border control, 

forensics and secure financial transactions. A large number of 

iris recognition algorithms mainly depend on the ideal iris 

images that are captured in an ideal situation to ensure the 

higher performance [1]-[6]. However, in many cases, iris 

image acquisition process may be affected by different 

nonideal factors such as illumination variations, 

noncooperation of persons, head rotations, gaze directions, 

and camera angles. These undesirable factors in data 

acquisition process may result in motion blurs, reflections, 

eyelash and eyelid occlusions, and pupil center deviation and 

further hamper the segmentation performance. Iris 

recognition using such noisy iris images still remains a 

challenging issue.  

Several attempts have been made for nonideal iris 

recognition based on active contours. In [6], inner and outer 

boundaries were isolated using the discrete Fourier series 
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expansions of the contour data. The modified Mumford-Shah 

segmentation model was deployed in [2] to localize the iris 

and pupil boundary. A traditional active contour model and 

the Hough transform technique were applied to segment the 

iris region in [7]. The Geodesic Active Contours (GAC) were 

employed in [8] to isolate iris information from the off-angle 

iris images. The parametric active contour-based curve 

evolution process may be interrupted at a certain local 

minima such as the specular reflections, the thick radial fibres 

in the iris or the crypts in the ciliary region [8]. The active 

contours with an edge stopping function as halting criteria 

may fail to isolate the weak outer boundary [2], [8]. 

Addressing the above problems, we propose to apply the 

Fuzzy C-Means clustering with Level Set (FCMLS) method 

which utilizes fuzzy clustering and the Level Set (LS) method 

for optimal estimation of the iris contour [9]. The fuzzy 

clustering utilizes the spatial information along with edge 

stopping criteria during a flexible curve propagation process. 

The controlling parameters of LS segmentation are calculated 

from the fuzzy clustering during the curve evolution process. 

Using fuzzy clustering, the LS method can also be 

regularized.  This discerns FCMLS from the other active 

contour-based iris localization methods [9].  The LS and 

fuzzy clustering methods have been used extensively on 

medical images. However, in this effort, we demonstrate the 

application of the fuzzy LS algorithm in the area of iris 

segmentation.  

    Feature extraction is a key issue in iris recognition. 

Different researchers exploited several iris feature extraction 

techniques, including Gabor wavelets, Daubechies wavelets, 

and discrete cosine transform [1]-[7]. Local Binary Pattern 

(LBP) has been regarded as one of the most robust local 

texture descriptor, and it has been shown promising 

performance in the computer vision field, including motion 

analysis and face recognition [10]. In this work, we apply a 

modified version of LBP, denoted hereafter MLBP, to 

represent the iris texture [11]. In MLBP, a local region is 

represented by its center pixel and a local difference of 

Sign-Magnitude Transform (SMT). The local difference of 

SMT is then decomposed into two complementary 

components: difference sign and difference magnitude [11]. 

We also apply a hybrid feature extraction/genetic and 

evolutionary technique known as Genetic and Evolutionary 

Feature Extraction (GEFE). This technique uses Genetic and 

Evolutionary Computations (GECs) [12]-[15] to evolve the 

dimensions and locations of regions in MLBP. The fitness 

function of GEFE is focused on identification accuracy so 

regions are evolved to extract from the most discriminating 

areas of an image while reducing the number of regions 

needed to be extracted from. GEFE has previously been 

applied towards facial recognition [12], [13] as well as fly 

wing gender classification [15] and has outperformed the 

traditional feature extractor. In this paper, we fuse both the 
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sign and magnitude features in order to obtain a better iris 

texture classification performance.  We then apply GEFE 

with MLBP toward iris feature extraction to further improve 

the performance. 

The rest of this paper is organized as follows. Section II 

describes iris segmentation approach. The MLBP and GEFE 

are discussed in Section III. Section IV reports the 

experimental results and Section V provides our conclusions. 
 

II. SEGMENTATION OF IRIS IMAGES 

Iris localization of the noisy iris image is a complex task 

since the shapes of the iris and pupil are not exactly circular 

or elliptical. The iris contour may differ depending on the 

image acquisition techniques [2]-[5]. We divide the iris 

segmentation process into three steps. In the first step, we 

apply a reflection detection process. We use simple image 

processing techniques and elliptical model to approximate 

the inner (pupil) boundary of the iris in the second step. In the 

final step, we apply the FCMLS to find the exact outer 

boundary of the iris based on the estimated boundary 

obtained in the previous step.   

The strong reflection area is identified, in the first stage of 

segmentation, based on the method reported in [16]. A simple 

thresholding approach is applied to find the strong reflection 

area. A pixel with an intensity value higher than a certain 

threshold belongs to the strong reflection area. The reflection 

is found by the following inequality [16]: 

 

                                                                                    (1) 

 

where        denotes the intensity of an image at the point 

     and    is the required threshold value. A weak 

reflection area denotes the transition from a strong reflection 

to the iris region. We apply the following statistical 

inequality to detect the weak reflection points [16]: 

 

                                                                              (2) 

 

where   and   are the mean and standard deviation for the 

distribution of the intensity in the iris image         
respectively, and   denotes the control parameter. Any pixel 

that is close to the strong reflection area and that satisfies (2) 

is considered as a weak reflection. Fig. 1(b) exhibits the 

reflection detection result. The pupil is usually the darkest 

object in an image of an eye, which allows for easier 

detection. In the second step, we use a simple binary 

thresholding to find the pupil area as shown in Fig.1(c). After 

applying the morphological closing operations and 

determining the largest connected region to obtain the pupil 

area, most of the unwanted regions are removed (see 

Fig.1(d)). Prior to applying the curve evolution approach 

based on FCMLS, we deploy Direct Least Square (DLS) 

elliptical fitting technique to approximate the pupil   

boundary [3], [4]. To find an approximation of the inner 

boundary, an elliptical region with the five parameters (p1, p2, 

r1, r2, φ1) is selected, and the intensity values are measured for 

a fixed number of points on the pupil circumference. We vary 

the ellipse parameters with a small step size of three pixels to 

increase the ellipse size, and choose a fixed number of points 

randomly on the circumference to calculate the total intensity 

value. We repeat this process to find the boundary with a 

maximum variation in luminance and the center of the pupil. 

Fig. 1(e) shows the approximated pupil boundary. Based on 

the approximation of the inner boundary, the curve is evolved 

by using the fuzzy level set for accurate segmentation of the 

iris region [9]. In the following paragraphs, we briefly discuss 

the segmentation process based on fuzzy level set method. 

 

  

                                  (a)                                             (b) 

      

                                   (c)                                               (d) 

                                        

                                                               (e) 

Fig. 1. (a) The original image from the CASIA version 3 interval dataset, (b) 

reflection elimination, (c) image after binary thresholding, (d) application of 

morphological closing operation, (e) approximation of pupil boundary using 
DLS elliptical fitting.  

 

Let us briefly discuss the fuzzy clustering technique first. 

The geometric center and the scope of each subclass are 

calculated adaptively to reduce the cost function in fuzzy 

c-means clustering [9]. This method employs the 

membership function μmn to find the degree of membership 

of nth object to the m-th cluster.  The cost function in fuzzy 

c-means clustering is [9] 

 

                       ∑ ∑  
  

 
      –        

   
 
                          (3) 

 

where,   is the image pixel,    is the center value of m-th 

cluster,  presents the total number of image pixels and   

denotes total clusters. l(>1) controls the fuzziness of the 

resultant segmentation.  The membership functions are 

accountable to the following constraints: 

 

   ∑  
  

     
           ∑  

  
   

        (4) 

The membership functions and the geometric centers can 

be updated in each iteration as follows: 
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In order to incorporate the spatial information into the 

fuzzy clustering technique, Chuang et al. [17] proposed the 

following fuzzy membership functions  

 

                              
   

   
 

   
 

∑    
 

   
  

   
                             (7) 

 

where, p and q control the respective contributions and the  

variable     includes the spatial information [9], [17]. To 

improve the iris segmentation performance in a noisy 

situation, the spatial fuzzy clustering approach is applied with 

the LS method. Unlike the fuzzy clustering method, in which 

the pixel classification is used, LS methods deploy dynamic 

variational boundaries for image segmentation [9]. The 

spatial fuzzy clustering technique is utilized to initiate the LS 

segmentation, estimate controlling parameters and regularize 

level set evolution. The fuzzy LS algorithm, proposed in [9], 

deploys the automatic initialization and parameter 

configuration of the LS localization, using spatial fuzzy 

clustering results. In the LS formulation, the active contours, 

denoted by C, can be represented by the zero LS       
                   of a LS function         . To evolve 

the curve towards the outer boundaries, we use the following 

total energy functional according to [18]:   

 

                                                                         (8) 

where           denotes the external energy, which depends 

on the image data and drives the zero LS towards the iris 

boundaries, and        (   ) denotes the internal energy, 

which penalizes the deviation of   from the Signed Distance 

Function (SDF) during the evolution and is defined as [18]: 

 

     ∫
 

 
             

 
                   (9) 

where   is the image domain. In (8), g denotes the edge 

detector function and is defined by: 

                 

           
 

            
                               (10) 

where    is the Gaussian kernel with a standard deviation 

denoted as  , and I denotes an iris image. We can further 

define the external energy term           of (8) as: 

 

                                                       (11) 

where     and   are constants, and the terms       and 

      in (11) are respectively defined by [18]: 

                 ∫              
 

                   (12) 

and 

                     
                                

       ∫           
 

                     (13) 

where   is the univariate Dirac function, and H is the 

Heaviside function. The energy functional       measures 

the length of the zero LS curve of  , and       is used to 

speed up the curve evolution. From the calculus of variations, 

the Gateaux derivative of the functional   in (11) can be 

written as: 

                     
   

      
   [      (

  

    
)]           ( 

  

    
)

           

(14) 

 

where   is the Laplacian operator. The function   that 

minimizes this functional satisfies the Euler-Lagrange 

equation 
  

  
  . Next, the evolution equation of the LS 

function, where the spatial information can be incorporated, 

is defined as [18]: 

                        
    

     
  [      (

  

    
)]           ( 

  

    
)   

                                                        
 (15) 

The second and third terms on the right-hand side of (15) 

represent the gradient flows of the energy functional and are 

responsible for driving the zero level-curve towards the outer 

boundary of the iris. The Dirac function       in (15) is 

defined by:        

                                                 

          {
      

 

  
[     (

  

 
)]  

     

     
             (16) 

 

The LS algorithm eliminates the computationally 

expensive re-initialization for SDFs and the evolution 

process may start from an arbitrary binary region: 

                             {
            

           
      (17) 

 

The applied FCMLS engages fuzzy clustering with spatial 

restrictions to detect the iris contours in an image. Profiting 

from the flexibility in (17), the fuzzy clustering results can 

certainly improve the LS evolution process. If the intriguing 

factor in fuzzy clustering results produce              
        [9], we can find it advantageous to start the LS

 

function as  

                                                          (18)  

where   is a constant and used to adjust the Dirac function as 

defined in (16). Bk
 
is a binary image retrieved from  

                                    

 
                             (19) 

where            is an adjustable threshold. FCMLS 

method takes the degree of membership for each pixel μk

 
as 

the distance to component of interest Rk.  In order to push or 

pull the dynamic interface towards the iris region, a balloon 

force is applied as follows:  
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                                           (20) 

 

The resulting matrix has a variable pulling or pushing force 

at each image pixel. The LS curve now can evolve towards 

the iris boundary regardless its initial position. The required 

evolutionary function of (15) can be transformed into 

 

   

     
  [      (

  

    
)]           ( 

  

    
)  

              

 (21) 
 

               

                                (a)                                                   (b) 

              

                                (c)                                                  (d) 

 

                                                       (e)            

Fig. 2. (a) Original image from the CASIA version 3 interval dataset, (b) 

pupil and iris detection using the FCMLS model, (c) binary masking of the 
iris with FCMLS, (d) iris image after applying the circle fitting technique, 

and (e) normalized image. 

 

Eq. (21) can be used to evolve the curve in an effort to 

detect the iris boundary. Using spatial fuzzy clustering, the 

balloon force can be calculated. Also, the LS evolution can be 

adapted to the distance of the iris contour. Fig. 2(b) shows the 

FCMLS-based curve evolution process. Since the elicited iris 

regions are not exactly circular and elliptical and may be of 

arbitrary shapes (See Fig. 2(c)), a circle fitting strategy is 

applied to the extracted non-circular iris region in an attempt 

to mitigate the size irregularities as shown in Fig. 2(d) [3]. To 

convert iris region to a rectangular form, the centre values 

obtained through the circle fitting process and the 

approximated radius of such a circle are used for the 

unwrapping process. We unwrap the iris region to a 

normalized rectangular block with a fixed dimension of size 

64  512 using the rubber-sheet model [6]. Fig. 2(e) shows 

the unwrapped image. 

 

III. GENETIC AND EVOLUTIONARY FEATURE EXTRACTION 

WITH MODIFIED LOCAL BINARY PATTERN 

Texture classification plays an important role in the area of 

iris recognition. The LBP operator, proposed by Ojala et al. 

[10], is an effective way of texture description. LBP has been 

applied to many other applications, including face 

recognition, dynamic texture recognition and shape 

localization [11]. In this work, we apply MLBP operator with 

the GEFE to extract the iris features. 

A. Modified Local Binary Pattern 

In the traditional LBP operator, a pixel of an image is 

compared with its neighboring pixels [10]: 

 

             ∑  (     ) 
       

   
   {

     
     

         (22) 

 

where    indicates the gray level value of the center pixel,    

represents the value of the neighboring pixels of the center, 

  denotes the total number of neighboring pixels and  R is 

the radius of the neighborhood. For an image of size I*J, the 
LBP pattern is measured for each pixel of an image and a 

histogram is created to represent the iris texture [11]: 
 

                    ∑ ∑  (             )   [   ]  
   

 
                                                 

                                  {
     

           
                        (23) 

 

where   is the the maximal LBP pattern value. We compute 

the number of spatial changes (bitwise 0/1 changes) in the 

LBP as follows: 

 

       (      )

 | (       )          |

 ∑| (     )   (       )|

   

   

 

                                                                                          (24) 

In the unified LBP pattern, limited transition (        
 ) is presented in the circular binary LBP code pattern and 

measured as: 

 

                                      
       

 ∑  (     ) 
   
                                      

                                                                       (25) 

 

Now, the local difference,       is calculated between the 

center pixel    and the evenly spaced neighboring pixels, 

                 as             Thus, the local 

image structure at    with the local difference vector 

[                ] is created. The local difference vector 

provides robust performance against the illumination changes 

as the center intensity value,    is removed. We decompose 

the       into two components [11]: 

                          and {
              

          
           (26) 

where    {
          
          

 and    are the sign and 
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magnitude of       , respectively. In this research effort, we 

utilize the both the sign and magnitude components of 

      in an effort to improve the iris feature extraction 

performance. The (25) denotes the local difference, SMT. To 

obtain the iris texture features, first, we divide the normalized 

iris region into several patches and apply the MLBP on each 

patch (see Fig. 3). Each patch is represented by 256 sign and 

256 magnitude components since we consider all LBP 

patterns in this effort. We concatenate the sign and magnitude 

components and thus, present a single patch by 256×2=512 

components. In the next section, we discuss the genetic and 

evolutionary feature extraction method which is also applied 

with the MLBP. 

 
Fig. 3. Normalized image is divided into 28 sub-images. 

 

B. Genetic and Evolutionary Feature Extraction 

Genetic and Evolutionary Feature Extraction (GEFE) is a 

technique that evolves MLBP-based Feature extractors (FEs) 

[12]-[15]. Unlike a MLBP FE, GEFE evolves FEs that can 

have patches of varying sizes in various positions on an 

image. Because GEFE is an instance of a Genetic and 

Evolutionary Computation, a FE must be represented as a 

candidate solution. We use a 6-tuple with 5 sets and 1 single 

value, represented as (<Xi, Yi, Wi, Hi, Mi, fi>). Each of the 

patches in a particular FE, fei, are designed using the values 

in the 6-tuple. The Xi and Yi sets hold the <X,Y> points of the 

center of each patch in fei, while the sets Wi and Hi hold the 

width and heights of the matches. The set Mi denotes a 

masking value for each patch in fei. Though there can be 

multiple patches defined by the 6-tuple, a patch’s specific 

masking value determines whether the features extracted by 

that patch are included in the resulting FV.  

The fitness, fi, is determined by applying fei towards a 

dataset of subject’s iris images. A subject has a number of 

images that vary, and these images are separated into a probe 

set and a gallery set. The fei is applied on these images to 

create FVs, and the FVs in the probe set are compared to all 

of the FVs in the gallery set using the Manhattan distance 

measure [13]. The two FVs that have the smallest Manhattan 

distance are considered to be matched. If a probe FV is 

incorrectly matched with a gallery FV, then fei is said to 

cause an error. The fei also considers how much surface area 

of the image it covers. The resulting fi is the number of errors 

e added to the percent of patches activated a, shown below in 

(27).    

                                                                              (27) 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

We conducted the experiments on the CASIA version 3 

interval dataset [19]. The CASIA version 3 interval iris 

dataset includes 2639 iris images from 249 different persons, 

with 396 iris classes. Most of the images were captured in 

two sessions with at least one month interval. The iris images 

are 8-bit gray level images with a resolution of 320×280. 

Since the main focus of this paper is to propose a new 

segmentation technique along with a feature extraction 

method, we used our method to segment the entire dataset. 

We applied the FCMLS to localize the iris images. We 

conducted an extensive set of experiments and selected the 

control parameter values of FCMLS as follows: template 

radius = 5, spatial filter weight,      fuzzy thresholding = 

0.25, Dirac regulator,      , and number of iterations,  

       These parameter values allow us to control the 

growth of the LS contour as well as the clustering 

classifications. Since we used flexible contour-based 

approach for iris detection, we did not include eyelid 

detection method. Fig. 4 shows the segmentation results and 

Fig. 5 shows some normalized images. We find from Fig. 4 

that our segmentation scheme performs well for the cases 

where the iris and sclera regions are separated by a weak 

boundary. Our proposed segmentation scheme exhibits an 

encouraging performance in nonideal situations. The moving 

front of boundary points of the evolving active contour may 

stop if a sudden variation in the intensity level occurs in the 

iris region due to a noisy pixel data. However, in our 

proposed method, the other boundary points continue to 

move and, hence, the curve evolution process, using FCMLS, 

keeps propagating towards the outer boundaries.  

 

 

 
 

 
 

 

Fig. 4. FCMLS-based segmentation results on CASIA version 3 interval 
dataset.  

GEFE with MLBP was run on the CASIA version 3 

interval iris dataset 30 times for 1000 function evaluations 

using an Estimation of Distribution Algorithm (EDA). The 

population size was 20 and we used an elitist value of 1.
 
We 

ran an exhaustive search of the best partitioning of patches on 
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the dataset and found that 6 patch rows by 13 patch columns 

was the best partition, for a total of 7 patches (See Fig. 6(a)). 

The recognition results of MLBP and its GEFE variant 

(GEFE_MLBP) are shown in Table I, as well as the number 

of patches used by each method. The second and third 

columns denote the best performance and number of patches 

used by MLBP and GEFE_MLBP. The average recognition 

accuracy and average number of patches used by 

GEFE_MLBP are shown in the third and fourth columns 

respectively. The best accuracy of MLBP was 86% whereas 

the average recognition accuracy for GEFE-MLBP was 

88.42% and the best accuracy of all 30 genetically evolved 

feature extractors is 91.17%. It is also important to note that 

the genetically evolved feature extractors used an average of 

48.72 patches (See Fig. 6(b)) whereas MLBP used 78 patches 

(6 patch rows by 13 patch column) (See Fig. 6(a)). The 

reduction of patches is significant towards the computational 

time of template matching. Fig. 7 shows the ROC curve of 

both the MLBP and best evolved feature extractor from 

GEFE_MLBP on the CASIA dataset. It appears that the 

MLBP algorithm is outperformed by its GEFE counterpart.  

 

 

 

 

 

Fig. 5. Some normalized images. 

 

 
(a) 

 
(b) 

Fig. 6. (a) Normalized image with 78 patches, (b) normalized image with 

overlapped patches.  

 

 
Fig. 7.  ROC curve shows the comparison of MLBP and GEFE-MLBP. 

TABLE I: RECOGNITION ACCURACIES 

Method 
Best 

Accuracy 

Number of 

Patches 

used 

Average 

Accuracy 

Average 

Number of 

Patches 

used 

MLBP 
86.00% 78 N/A N/A 

GEFE_MLBP 
91.17% 43 88.42% 48.72 

 

V.  CONCLUSIONS 

In this research effort, we have achieved two performance 

goals. First, we propose a new iris segmentation technique 

based on FCMLS, which is implemented with a new LS 

formulation and avoids the costly re-initialization process. 

Thus, it takes less computational time to evolve towards the 

iris boundary. The proposed FCMLS localizes the iris regions 

from the degraded eyes accurately. This method appears to 

have an additional benefit to simplify or eliminate the need 

for eyelash/eyelid detection as the GEFE and fuzzy LS 

methods were used. However, further research will be needed 

to draw a more accurate conclusion. The localization method 

based on FCMLS avoids the over-segmentation and performs 

well against the weak iris/sclera boundary since FCMLS 

combines the merits of traditional fuzzy c-means clustering 

and LS models. Second, a modified local binary pattern 

(MLBP), which combines the sign and magnitude features 

for the improvement of iris texture classification performance, 

is also applied with the GEFE. Results have shown that by 

hybridizing MLBP with genetic and evolutionary 

computations, the recognition accuracy is increased with a 

reduction in feature usage. Future work will be devoted 

towards creating more effective fitness functions for GEFE 

and investigation different feature extraction techniques for 

iris recognition. 
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